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Spin collective phenomena including superradiance are even today being intensively investigated with
experimental tests performed based on state-of-the-art quantum technologies. Such attempts are not only for
the simple experimental verification of predictions from the last century, but also as a motivation to explore
new applications of spin collective phenomena and the coherent control of the coupling between spin ensembles
and reservoirs. In this paper, we investigate the open quantum dynamics of two spin ensembles (double-spin
domains) coupled to a common bosonic reservoir. We analyze in detail the dynamics of our collective state and
its structure by focusing on both the symmetry and asymmetry of this coupled spin system. We find that when
the spin size of one of the double domains is larger than that of the other domain, at the steady state this system
exhibits two unusual collective behaviors: the negative-temperature-state relaxation in the smaller spin domain
and the reservoir-assisted quantum entanglement between the two domains. These results are the consequence
of the asymmetry of this system and the decoherence driven by the common reservoir.
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I. INTRODUCTION

Our recent advances in material device fabrication as
well as highly effective signal detection have allowed us to
reach the stage where various Gedanken experiments from
the earlier stages of quantum physics can be realized in the
laboratory. (These include, for instance, quantum interference
using a double slit, Bose-Einstein condensation, and superra-
diance [1–3].) We are now entering at the era where we can
integrate multiple subquantum systems together into a single
multifunctional quantum system [hybrid quantum systems,
for instance, atoms coupled to optical cavities and nitrogen-
vacancy (NV) centers in diamond coupled to flux qubit in
superconducting circuits] [4–6]. The engineering of the hy-
brid quantum systems has been performed in quite diverse
systems using elements coming from condensed matter to
atomic, molecular, and optical systems [4–17]. Such a mul-
tifunctionality of these hybrid quantum systems is superior to
the functionalities of any individual systems [4–7,18]. These
developments have paved the way to allow us to explore
novel phenomena in many-body and nonequilibrium quantum
physics inherent from the hybridization process. Further, they
may allow new techniques for performing the quantum infor-
mation processing.

One of the major focuses in hybrid quantum physics is
the exploration of collective phenomena motivated by spin
ensembles being coherently or collectively coupled to bosonic
modes [4–7,19,20]. When a spin ensemble couples collec-
tively to bosons, it shows stronger coupling than that between
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individual spin and bosons, which scales with the square root
of the total spin number [4–7,19–21]. The dynamics are char-
acterized by this spin number N (the size of spin ensemble)
and are generally very different from the single-spin dynam-
ics. The typical example is the superradiance, where the spin
ensemble shows extremely rapid decay on a timescale of
1/N with the strong radiative intensity also scaling with N2

[3,22,23]. Although it was proposed by Dicke over 60 years
ago [3], superradiance and such collective quantum phenom-
ena remain as both fascinating and important research fields in
various systems using the state-of-the-art quantum technolo-
gies, such as cavity quantum electrodynamic systems with
atomic, molecular, and optical setups [13] and solids [23].

Most prior research in superradiance has, however, focused
on this collective phenomena with a single spin ensemble. We
are now able to design and fabricate devices with multiple en-
sembles present on them. The next step is to analyze collective
phenomena generated by the multiple spin ensembles and ex-
plore ways to control the coupling structure between multiple
spin ensembles and the reservoirs. Such investigations will be
important and interesting for two reasons. First and foremost
since the dynamics of a single spin and those of the collective
spin are radically different as in the case of the superradiance,
we expect the nontrivial dynamics of multiple spin ensembles
to arise owing to its complicated structure. Second, collective
spins form a strong coupling between bosons. The creation
of this collective-spin-induced strong coupling as well as
engineering of quantum reservoirs are going to be impor-
tant ingredients for quantum information processing [4–7,19–
21,24,25]. The novel spin collective phenomena are starting to
emerge in various experimental setups focused on coherently
controlling multiple spin ensembles and the reservoir [29–33].
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Towards these goals, we investigate in this paper the dy-
namics of the system with two spin ensembles (double-spin
domains, for instance, double-nuclear-spin domains in GaAs
semiconductors [26–28,34] and electron-spin ensembles in
NV centers in diamond [32,33]) coupled to a common bosonic
reservoir. We begin by examining what kind of collective
phenomena and its associated steady state are induced by the
common bosonic reservoir characterizing them by the two
spin-ensemble (domain) sizes (the numbers of spins present
in each of the domains). When the first spin-domain size is
much larger than the second, the double-spin domains relax
to steady states exhibiting two features: First is that the small
spin domain relaxes to the negative-temperature state where
the average excited-state population is greater than 50% [35].
Second is the creation of quantum entanglement between the
two domains (even though they are not directly coupled to-
gether). These phenomena are realized due to the asymmetry
of the double-spin domains and decoherence driven by the
common reservoir.

This paper is organized as follows. It begins in Sec. II with
our mathematical model of the double-spin domains coupled
to the common bosonic reservoir. Then in Sec. III (which
presents the main results of this paper) we discuss how to
analyze the dynamics of our double-spin-domain system and
its structure using a symmetry argument. In particular, we will
investigate the steady state characterized by the sizes of two
spin ensembles. We present two collective phenomena intrin-
sic to this system: the negative-temperature-state relaxation
of the smaller domain and reservoir-assisted quantum entan-
glement generated between the spin domains. In Sec. IV, we
discuss how to realize these two collective spin phenomena by
presenting two candidate hybrid quantum systems. In Sec. V,
we present a generalization of the previous argument for
larger spin systems. Finally in Sec. VI we give a concluding
discussion of this paper.

II. MODELING

In this section, we present a mathematical model of our
double-spin-domain system. As shown in Fig. 1, it is a hybrid
quantum system consisting of two spin ensembles coupled
to a common bosonic reservoir R, each with a coupling
constant g. The temperature of the reservoir is T . Now let
us name the first (second) domain as DA(B). The domain
DA(B) includes NA(B) individual spin-1/2 particles. All the
spins in the double domain are identical species. The spin
frequency is given by ωs. Due to these conditions, both spin
ensembles in the domains DA and DB couple to the common
reservoir R collectively, and these two spin ensembles act
as collective spins J α

A = ∑NA
iA=1 Sα

iA
and J α

B = ∑NA+NB
iB=NA+1 Sα

iB
.

Here J α
a (α = x, y, z.) are the collective spin operators for

x, y, z components of the domain a (a = A, B) whose spin
sizes are NA/2 and NB/2, respectively. Sα

iA
(Sα

iB
) is the iAth

(iBth) 1/2-spin operator. Our combined system is described
by the Hamiltonian

H = h̄ωs
(
J z

A + J z
B

) +
∫

ddk Ekr
†
krk

+ h̄g

2
[(J+

A + J+
B )R + (J−

A + J−
B )R†]. (1)
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A
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FIG. 1. The illustration of a double-spin-domain system consists
of two one-half-spin ensembles and a common bosonic reservoir. The
two spin domains couple equivalently to the common reservoir with
a constant g represented by two green arrows. The first domain DA

has NA spins indicated by up red arrows, whereas the second domain
DB contains NB spins described by blue arrows. All the spins are
identical.

The first and second terms represent the Hamiltonian of the
two spin domains and the common reservior R, respectively.
The spin operators J±

a = J x
a ± iJ

y
a are the rising and lowering

operators of domain a. Ek is the dispersion relation with k, its
wave vector. We will take Ek to be linear. The dimension d is
the spatial dimension of this system, while rk and r

†
k are an-

nihilation and creation operators of the reservoir, respectively.
They satisfy the commutation relation [rk, r

†
k′] = δ(k − k′).

The third term represents the interaction between the two
spin domains and the common reservoir. R = ∫

ddkκkrk is
the reservoir operator described by the annihilation operator
rk with a continuous function κk. The formula of κk is
determined by the system we are considering.

The dynamics we will analyze is the relaxation processes
of the double-spin domain induced by the reservoir R. Such
processes are described by the Lindblad master equation in
the interaction picture as [36]

ρ̇(t ) = γ [(n̄ + 1)L(J−
A + J−

B ) + n̄L(J+
A + J+

B )]ρ(t ), (2)

where the dot “·” represents the time derivative and the
Born-Markov approximation has been applied. The reduced
density matrix ρ is defined by tracing out the reservoir de-
grees of freedom over the total density matrix as ρ(t ) =
TrR[ρtot(t )]. The reservoir density matrix is given by ρR =
exp(−HR/kBT )/TrR[exp(−HR/kBT )], where HR is the sec-
ond term in the total Hamiltonian (1) with kB the Boltzmann
constant. The superoperator L(X) is defined by L(X) =
2XρX† − X†Xρ − ρX†X, whereas γ is the damping rate
described by the coupling g and |κk|2 at the wave vector
ks, which satisfies Eks = h̄ωs. n̄ = 1/(eh̄ωs/kbT − 1) is the
Bose-Einstein distribution for the bosonic reservoir at energy
h̄ωs. The first term in Eq. (2) describes the emission process
of the spin ensembles while the second term represents the
absorption process. In the following, we will solve the master
equation at T = 0 (n̄ = 0). For an initial state, we examine the
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antiparallel configuration

|is〉 = |↑ . . . ↑〉A ⊗ |↓ . . . ↓〉B. (3)

Here we choose the up (down)-spin state to be the excited
(ground) state. The spin numbers are chosen such that NA �
NB. The relaxation processes in the double-spin-domain sys-
tem are mathematically described by two expectation values,
〈JA〉 = Tr(ρJA) and 〈JB〉 = T r (ρJB). All the dynamics we
consider in this paper start with the initial state (3). As we
will see, the relaxation processes are the collective phenomena
described by the two spin sizes NA and NB.

III. SYSTEM STRUCTURE

In this section, we will present the dynamics and the
structure of the reduced density matrix ρ for the double-spin
domain (3) via the master equation (2). In particular, we will
analyze in detail the structure of the steady state characterized
by the two spin sizes. For a preparation, we will first introduce
a tensor-product spin space, a direct-sum spin space, and then
explain their relations. We will solve the master equation (2) in
the direct-sum spin space and derive the steady-state solution.
Then by switching from the direct-sum spin space to the
tensor-product spin space, we will analyze the spin population
(polarization) in each domain and the quantum entanglement
between the two domains.

A. Tensor-product and direct-sum spin subspaces

At the initial time, the double-domain system under con-
sideration has a structure represented by Eq. (3), i.e., |is〉 =
|↑ . . . ↑〉A ⊗ | ↓ . . . ↓〉B. The initial state (3) is fully sym-
metric in each domain but is not in the total spin system
D = DA + DB. Here we mean the symmetric state as a state
which is fully invariant under the permutation between any
two spins.

The total Hamiltonian (1) is described by the total
spin J α = J α

A + J α
B and satisfies [ J2,H ] = [(J x )2 + (J y )2 +

(J z)2,H ] = 0, which means that the total spin angu-
lar momentum is conserved and [ J2

A(B),H ] = [(J x
A(B))

2 +
(J y

A(B))
2 + (J z

A(B))
2,H ] = 0, implying the conservation of the

angular moment of each spin domain. These conditions con-
strain the dynamics of the system. To capture this, we employ
the direct-sum spin state representation. This allows us to
largely reduce the Hilbert space to analyze the dynamics.
Then, later we transform the state of interest to the com-
posite picture (tensor-product representation) to evaluate the
entanglement between the domains. In the direct-sum repre-
sentation, we can easily identify which subspaces are relevant
to the system dynamics. The mechanism of the collective
relaxation in this system then becomes clearly understood and
the steady-state formula is simply calculated.

In preparation for spin state analysis, let us introduce the
above two spin spaces and explain their relations. First, the
total spin space is given by

Vtot = HA ⊗ HB, (4)

where HA and HB are spin subspaces whose dimensions
are 2NA and 2NB , respectively, giving the total dimen-
sion of 2NA+NB for Vtot. From the spin-angular-momentum

conservation [ J2
A(B),H ] = 0 and the symmetry of the ini-

tial state (3), the Hilbert space which describes the sys-
tem dynamics is highly reduced from the full space
Vtot. We will call it Vrel, and next, let us analyze its
structure. We introduce the two subspaces V

sym
A and V

sym
B ,

which are symmetric with respect to JA and JB, respec-
tively. The subspace V

sym
A(B) is spanned by the eigenstates

|mA(B)〉A(B) which satisfy J2
A(B)|mA(B)〉A(B) = jA(B)(jA(B) +

1)|mA(B)〉A(B) and J z
A(B)|mA(B)〉A(B) = mA(B)|mA(B)〉A(B). Here

jA(B) = NA(B)/2 and mA(B) = jA(B), jA(B) − 1, . . . ,−jA(B) are
quantum numbers. The initial state (3) is described in the form
|mA〉A ⊗ |mB〉B, which are the basis vectors of the tensor-
product subspace V

sym
A ⊗ V

sym
B . On the other hand, the total

Hamiltonian (1) or the Lindblad operator in Eq. (2) is de-
scribed by the total spin operator J α . This means that the
initial state (3) decays by the total spin operator and the spin
state is described in terms of the states in V

sym
A ⊗ V

sym
B for

arbitrary time. Therefore, the subspace Vrel is identified with
V

sym
A ⊗ V

sym
B . Furthermore, the spin domain DA(B) behaves as

a collective spin JA(B) whose spin size is equal to NA(B)/2
owing to this Hilbert-space identification. The dimension of
the subspace Vrel is (NA + 1)(NB + 1), which is sufficiently
smaller than that of Vtot. The focus on Vrel makes the analysis
of the system dynamics simple and effective.

Now we convert the Vrel to the direct-sum representation
by the spin-angular-momentum composition of JA and JB,
which is described as [37]

Vrel = V
sym

A ⊗ V
sym

B

= VjA+jB ⊕ VjA+jB−1 ⊕ Vj ⊕ · · ·VjA−jB , (5)

where Vj is the subspace spanned by the basis {|j ; mj 〉〉|−j �
mj � j}, where mj is a quantum number (a half integer)
given as Jz|j ; mj 〉〉 = mj |j ; mj 〉〉. These basis vectors satisfy
J2|j ; mj 〉〉 = j (j + 1)|j ; mj 〉〉. The largest subspace VjA+jB is
spanned by the fully symmetric spin states, which we just
call a symmetric subspace, while the other subspaces we call
asymmetric subspaces.

Finally, the eigenstates |j ; mj 〉〉 in Vj are related to the basis
vectors |mA〉A ⊗ |mB〉B (∈ V

sym
A ⊗ V

sym
B ) via the Clebsch-

Gordan coefficients C
jm
mAmB = 〈〈j ; mj |mA〉A ⊗ |mB〉B.

B. Dynamics and steady state

We will now investigate the spin relaxations in the double-
domain system by solving the master equation (2) in the
direct-sum spin space (5). As a first step, we take a spin
configuration NA=N (� 1) and NB = 1 with the initial state
(3) as the simplest case. As the initial state has the populations
only in the two subspaces VjI and VjII [jI = (N + 1)/2, jII =
(N − 1)/2] and the J2 is a conserved observable, we only
need these two subspaces to represent the dynamics. The
relevant Hilbert subspace is given by

Vrel = VjI ⊕ VjII . (6)

VjI is the symmetric subspace, whereas VjII is an asymmetric
subspace. We illustrate the relevant space Vrel in a matrix form
in Fig. 2. This property of the representation space is powerful
both in analytical calculations and in numerical calculations.
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B1

B2B4

B3

FIG. 2. The density matrix structure in the direct-sum spin space
for NA = N (� 1) and NB = 1. The diagonal blocks B1 and B2

are represented by basis vectors e1 ∼ eN+2 and eN+3 ∼ e2(N+1),
respectively. Blocks B3 and B4 describe the off-diagonal parts.

We can solve the master equation (2) in the direct-sum spin
space (6) by deriving the equations of motion for the matrix
elements of the density matrix ρ(t ). First, we will label the
spin states |jI(II); mI(II)〉〉 as

e1 = |jI; jI〉〉, . . . , eN+2 = |jI; −jI〉〉,
(7)

eN+3 = |jII; jII〉〉, . . . , e2(N+1) = |jII; −jII〉〉.
Second, we will label the rows and columns of the density

matrix ρ using the basis vectors (7). The matrix elements are

obtained as

ραI,α
′
I
= I

〈〈
jI; m

z
αI

∣∣ρ∣∣jI; m
z
α′

I

〉〉
I,

ραII,α
′
II

= I
〈〈
jII; m

z
αII

∣∣ρ∣∣jII; m
z
α′

II

〉〉
I, (8)

ραI,αII = I
〈〈
jI; m

z
αI

∣∣ρ∣∣jII; m
z
αII

〉〉
I.

Here the indices αI, α
′
I run from 1 to N + 2, whereas αII, α

′
II

run from N + 3 to 2N + 2. The values mz
αI

and mz
αII

are
the eigenvalues corresponding to the eigenstates eαI and eαII

in Eq. (7), respectively. The state |jI(II); mz
αI(II)

〉〉I is defined
by |jI(II); mz

αI(II)
〉〉I = exp(iωJ zt )|jI(II); mz

αI(II)
〉〉. As presented in

Fig. 2, the representation of density matrix ρ in the direct-sum
spin space is described in terms of four blocks: A block B1 is
the symmetric part labeled by the basis vectors e1 ∼ eN+2 and
the matrix elements here are given by ραI,α

′
I
in Eq. (8). A block

B2 is the asymmetric part labeled by eN+3 ∼ e2(N+1). The cor-
responding matrix elements are ραII,α

′
II

in Eq. (8). Blocks B3

and B4 are the cross terms between the symmetric and asym-
metric parts. The matrix elements in B3 are given by ραI,αII in
Eq. (8), and their Hermitian conjugates are equal to the matrix
elements in block B4. Third, by multiplying 〈〈jI(II); mz

αI(II)
| to

the left-hand side of Eq. (2) while |jI(II); mz
αI(II)

〉〉 is to the
right-hand side of it, we have the equations of motion for the
matrix elements

ρ̇αI,α
′
I
= 2γ

[(
jI − mz

αI

)(
jI + mz

αI
+ 1

)(
jI − mz

α′
I

)(
jI + mz

α′
I
+ 1

)] 1
2 ραI−1,α′

I−1

− γ
[(

jI + mz
αI

)(
jI − mz

αI
+ 1

) + (
jI + mz

α′
I

)(
jI − mz

α′
I
+ 1

)]
ραI,α

′
I
, (9)

ρ̇αII,α
′
II

= 2γ
[(

jII − mz
αII

)(
jII + mz

αII
+ 1

)(
jII − mz

α′
II

)(
jII + mz

α′
II
+ 1

)] 1
2 ραII−1,α′

II−1

− γ
[(

jII + mz
αII

)(
jII − mz

αII
+ 1

) + (
jII + mz

α′
II

)(
jII − mz

α′
II
+ 1

)]
ραII,α

′
II
, (10)

ρ̇αI,αII = 2γ
[(

jI − mz
αI

)(
jI + mz

αI
+ 1

)(
jII − mz

αII

)(
jII + mz

αII
+ 1

)] 1
2 ραI−1,αII−1

− γ
[(

jI + mz
αI

)(
jI − mz

αI
+ 1

) + (
jII + mz

αII

)(
jII − mz

αII
+ 1

)]
ραI,αII . (11)

Equations (9), (10), and (11) are the equations of motion for the matrix elements in blocks B1, B2, and B3, respectively. The
equations of motion for the matrix elements in block B4 are obtained by taking the Hermitian conjugate of Eq. (11). To derive
the above equations we have used the relations J±J∓ = J2 − (J z)2 ± J z and J±

a |ja,ma〉〉 = √
ja (ja + 1) − ma (ma ± 1)|ja,

ma ± 1〉〉 with a = I, II.
The initial state (3) for this case is given by

|is〉 =
∣∣∣∣N2

〉
A

⊗
∣∣∣∣−1

2

〉
B

. (12)

Now by using the relations [38]∣∣∣∣jI;
N − 1

2

〉〉
=

(
1

N + 1

) 1
2
∣∣∣∣N2

〉
A

⊗
∣∣∣∣−1

2

〉
B

+
(

N

N + 1

) 1
2
∣∣∣∣N − 2

2

〉
A

⊗
∣∣∣∣1

2

〉
B

,

∣∣∣∣jII;
N − 1

2

〉〉
=

(
N

N + 1

) 1
2
∣∣∣∣N2

〉
A

⊗
∣∣∣∣−1

2

〉
B

−
(

1

N + 1

) 1
2
∣∣∣∣N − 2

2

〉
A

⊗
∣∣∣∣1

2

〉
B

, (13)

the density matrix for the initial state (12) can be represented in the direct-sum spin space as

ρis(N ) = 1

N + 1

∣∣∣∣jI;
N − 1

2

〉〉〈〈
jI;

N − 1

2

∣∣∣∣ + N

N + 1

∣∣∣∣jII,
N − 1

2

〉〉〈〈
jII;

N − 1

2

∣∣∣∣
+

√
N

N + 1

(∣∣∣∣jI;
N − 1

2

〉〉〈〈
jII;

N − 1

2

∣∣∣∣ +
∣∣∣∣jII;

N − 1

2

〉〉〈〈
jI;

N − 1

2

∣∣∣∣
)

, (14)
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or the more compact form,

[ρis(N )]2,2 = 1

N + 1
, [ρis(N )]N+3,N+3 = N

N + 1
, [ρis(N )]2,N+3 = [ρis(N )]N+3,2 =

√
N

N + 1
, (15)

with all the remaining elements equal to zero. We will solve
the Eqs. (9)–(11) under the initial conditions (15). Due to the
factors appearing as jI,II and mz

αI,II
in Eqs. (9)–(11), we can

describe the effective dynamics of the matrix elements by two
damping rates enhanced by N. This reflects that the double-
spin-domain system exhibits the collective decay induced by
the common reservoir. In the real systems, there are some
effects which break this collective decay, such as dephasing
effects. Even if the dephasing effects were included, we still
could observe this collective decay in this double-domain
system as long as its timescales are comparable to those of
the dephasing process [39].

To see the dynamics of the matrix elements visually and
what is occurring, we solve Eqs. (9)–(11) for N = 1, 2, 3, and
4. What we are particularly interested in is the dynamics of
matrix elements which contributes to the relaxation of smaller
spin J z

B, because as we see later, this shows the negative-
temperature-state relaxation. Thus, we analyze the dynamics
of all the diagonal components as well as the off-diagonal
elements contributing to the expectation values of J z

B. For
instance, in the case of N = 2 the expectation 〈J z

B〉 is
described by 〈J z

B〉 = 1
6 [4

√
2Re(ρ2,5 + ρ3,6) + 3ρ1,1 + ρ2,2 −

ρ3,3 − 3ρ4,4 − ρ5,5 + ρ6,6]. In Fig. 3, we present the time
evolution of the diagonal components. The horizontal axis
represents the dimensionless time defined by t̃ = γ t. Fig-
ures 3(a), 3(c) 3(e), and 3(g) plot the dynamics of the diagonal
elements in block B1, whereas Figs. 3(b), 3(d) 3(f), and 3(h)
display those in block B2 for N = 1, 2, 3, and 4, respectively.
From these eight figures, what we see is that only the diagonal
components ρN+2,N+2 and ρ2N+2,2N+2, which are the end
points of blocks B1 and B2, respectively, survive at the steady
state. The matrix element ρN+2,N+2 converges to 1/(N + 1)
while ρ2N+2,2N+2 to N/(N + 1). This indicates that in each
block the upper components are going toward the end points
with preserving the probability weight of the diagonal com-
ponents given at the initial time. Denoting the density matrix
for the steady state as ρss(N ), we see that in block B1 all
the diagonal components except for the end point ρN+2,N+2

vanish such that [ρis(N )]2,2 = [ρss(N )]N+2,N+2. Similarly, in
block B2 only the end point ρ2N+2,2N+2 survives such that
[ρis(N )]N+3,N+3 = [ρss(N )]2N+2,2N+2. In contrast, in Fig. 4
we have demonstrated the dynamics of off-diagonal com-
ponents in block B3, which contributes to the expectations
of J z

B. All these matrix elements vanish at the steady state.
We have also presented the dynamics of the matrix elements
[ρss(N )]N+2,2N+2, which are the end point of block B3. It is
zero for the entire time. This is because at first from Eq. (11),
the equation of motion for [ρss(N )]3,N+3 is represented by the
linear differential equation with its initial value zero, which
means that [ρss(N )]3,N+3 is zero for the entire time. Then
again from Eq. (11), [ρss(N )]4,N+4, . . . , [ρss(N )]N+1,2N+1
and [ρss(N )]N+2,2N+2 are zero for any time by the
same reason for [ρss(N )]3,N+3. Thus, even [ρss(N )]N+2,N+2
and [ρss(N )]2N+2,2N+2 are finite, their cross components

[ρss(N )]N+2,2N+2 and [ρss(N )]2N+2,N+2 vanish. By using the
same argument, we can verify that all the other off-diagonal
elements remain zero under the time evolution. As a re-
sult, the only terms which survive at the steady state are
[ρss(N )]N+2,N+2 and [ρss(N )]2N+2,2N+2.

From the above analysis, we can establish (see Appendix
for details) that for any N the density matrix for the steady
state has the form

ρss(N ) =
II∑

i=I

pi |ji ; −ji〉〉〈〈ji ; −ji |, (16)

with pI = 1/(N + 1), pII = N/(N + 1). The steady state
(16) can be represented in the matrix form as

ρss(N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

. . . 0
pI

0

0
. . .

pII

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Next, let us look at the structure of the steady state (16). The
first terms represents the ground state of the total spin because
in this state all the spins align downward. The probability
weight to be in this state is given by 1/(N + 1). The second
term describes the asymmetric state and includes the effect
inherent to the double-domain structure (3) with its proba-
bility weight N/(N + 1). This effect becomes stronger as N

gets larger, leading to the unusual relaxation processes which
cannot be realized in the single-spin-domain system.

The above argument can be extended to a finite temperature
case. The steady-state density matrix becomes

ρss(N, β ) =
II∑

i=I

piρ
i
ss(N, β ), (18)

where

ρI(II)
ss (N, β ) =

∑
αI(II)

e−βHs
∣∣jI(II); mz

αI(II)

〉〉〈〈
jI(II); mz

αI(II)

∣∣∑
αI(II)

〈〈
jI(II); mz

αI(II)

∣∣e−βHs
∣∣jI(II); mz

αI(II)

〉〉 , (19)

with Hs = h̄ωs(J
z
A + J z

B). The density matrix ρI(II)
ss (N, β ) de-

scribes the canonical ensemble of spin JI(II). The total steady-
state density matrix ρss(N, β ) is described as the sum of these
two canonical ensembles with the initially given probability
weights pI and pII. It represents that the double-spin domain
relaxes so that in each diagonal block the spin (JI or JII)
relaxes to the canonical ensemble described by Eq. (19) with
preserving the initially given probability weight. The steady
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FIG. 3. The dynamics of the diagonal components of the density matrix in the direct-sum spin space. The horizontal axis denotes the
dimensionless time t̃ = γ t . (a, c, e, g) The dynamics of the diagonal elements in block B1 and (b, d, f, h) those in block B2 for N = 1, 2, 3,

and 4, respectively. NB is fixed to 1 for all figures. The only components which survive at the steady state are the end points of diagonal blocks:
ρN+2,N+2 in block B1 and ρ2N+2,2N+2 in block B2. ρN+2,N+2 converges to 1/(N + 1), whereas ρ2N+2,2N+2 converges to N/(N + 1).

state in Eq. (16) is reproduced by taking the limit β → ∞
(T → 0) in Eq. (18).

C. Negative-temperature-state relaxation

Having established the form of the steady state, we
will analyze the spin polarization for each domain, es-
pecially the polarization for the small domain DB. To
calculate these quantities, we rewrite the steady state
(16) in the tensor-product space representation using the

relations [38]

|jI; −jI〉〉 =
∣∣∣∣−N

2

〉
A

⊗
∣∣∣∣−1

2

〉
B

|jII; −jII〉〉 = −
√

N

N + 1

∣∣∣∣ − N

2

〉
A

⊗
∣∣∣∣1

2

〉
B

+
√

1

N + 1

×
∣∣∣∣−N − 2

2

〉
A

⊗
∣∣∣∣ − 1

2

〉
B

. (20)
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FIG. 4. The dynamics of the off-diagonal components of the density matrix in the direct-sum spin space. The horizontal axis describes
the dimensionless time t̃ = γ t . (a)–(d) The dynamics of the off-diagonal components in block B3 for N = 1, 2, 3, and 4, respectively. All the
components vanish at steady state.

The steady-state density matrix in the tensor-product spin space can be expressed as

ρss(N ) = 1

(N + 1)

∣∣∣∣ − N

2

〉
AA

〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
− 1

2

∣∣∣∣ + N2

(N + 1)2

∣∣∣∣ − N

2

〉
AA

〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣1

2

〉
BB

〈
1

2

∣∣∣∣
+ N

(N + 1)2

∣∣∣∣ − N − 2

2

〉
AA

〈
− N − 2

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
− 1

2

∣∣∣∣ − N3/2

(N + 1)2

(∣∣∣∣ − N − 2

2

〉
AA

×
〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
1

2

∣∣∣∣ + |−N

2

〉
AA

〈
− N − 2

2

∣∣∣∣ ⊗
∣∣∣∣1

2

〉
BB

〈
− 1

2

∣∣∣∣
)

. (21)

From the above equation we obtain the spin polarization in
the domain DA at the steady state as

〈
J z

A

〉
ss(N ) = Tr

[
J z

Aρss(N )
] = −N

2

(N + 1)2 − 2

(N + 1)2
, (22)

while the spin polarization in the domain DB is

〈
J z

B

〉
ss(N ) = Tr

[
J z

Bρss(N )
] = (N − 1)2 − 2

2(N + 1)2
. (23)

We show the behavior of 〈J z
B〉ss(N ) in Fig. 5(a). We see

that from N = 3, J z
B becomes positive, which means that the

spin population in the excited state is larger than that in the
ground state, i.e., the negative-temperature-state relaxation.
At N → ∞, we have 〈J z

B〉ss → 1/2, which means that DB is
completely excited while 〈J z

A〉ss → −N/2, indicating that the
larger spin domain DA is in the ground state. The mechanism
of the negative-temperature relaxation is clearly understood
from the density matrix (16). The first term describes the
ground state in the symmetric space. In this subspace, initially
the spin state is prepared in the second highest energy level e2

in Eq. (7) and decays to the state eN+2 in Eq. (7). The second
term in Eq. (16) represents the ground state in the asymmetric
subspace. Initially, the spin state in this subspace is prepared

in the highest energy level eN+3 in Eq. (7) and decays to
the state e2N+2 in Eq. (7). This process gives the excitation
to the double-spin domain so that J z

B obtains the positive-
polarization contribution. As mentioned previously, we see
from Eq. (16) that the effect of the first term becomes smaller
while that from the second term gets bigger as N increases.
Therefore, J z

B relaxes to the negative-temperature state and its
effective temperature becomes lower as N increases.

Before ending this section, let us make a comparison be-
tween the negative-temperature state reported in the previous
studies and the one presented in this paper. In [40,41], the
negative-temperature state was realized using the interact-
ing nuclear spins in a LiF crystal. Later, thermodynamic
interpretations for these experimental results were given in
[42,43]. (For other experimental examples and related theo-
retical works, see the references in [43].) The driving force
to generate the negative-temperature state is the transient
inversion of the direction of the external magnetic field. In
this system, initially it is applied in a certain direction and
the corresponding thermal equilibrium state is realized. Then
the direction of the applied field is transiently switched to the
opposite way from the initial one. As a result, a new thermal
equilibrium state is generated. It is characterized by the nega-
tive temperature and is realized within the timescale in which
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FIG. 5. (a) Plot of 〈J z
B〉 as a function of N. The negative-temperature steady state starts to emerge from N = 3. (b) Plot of the amount of

entanglement (logarithmic negativity) present as a function of N. It takes a maximum at N = 5. (c) Plot of the von Neumann entropy as a
function of N. The steady state is maximally mixed at N = 1 and becomes a pure state at N → ∞.

spin-spin interaction comes about. In contrast, the driving
forces of our negative-temperature state are the unbalance
between the two spin sizes and the common reservoir, which
induces the collective spin decay. In real systems, both of
these negative-temperature states do not survive for long due
to couplings with other reservoirs. After a sufficiently long
time has passed, spins relax to a different thermal equilibrium
state described by a positive temperature.

D. Reservoir-assisted quantum entanglement

Next let us examine the quantum-entanglement creation
between the two domains. From Eq. (21) we see that the terms
in the first and second lines are written in a form

∑
k wk (ρA

k ⊗
ρB

k ) (wk � 0,
∑

k wk = 1), which is an expression for the
density matrix of a quantum state in a separable state. The
density matrix (21) is represented by this separable-state part
and the additional terms which are written in the third line.
Therefore, we readily see that the quantum entanglement
is generated between the two domains at the steady state,
namely, the reservoir-assisted quantum entanglement. The

quantum entanglement generated by the common reservoir
were also found in the different contexts, for instance, two-
qubit systems [44–50], two harmonic-oscillator systems [51],
and quantum entanglement in ionic, atomic, and nuclear en-
semble systems [52–56]. (For other related topics of reservoir-
assisted quantum entanglement, see, for instance, [57] and
references therein.) Here we have found the reservoir-assisted
quantum entanglement between the two spin domains as a
consequence of the collective spin decay, where there is a
small domain exhibiting the negative-temperature state.

Let us evaluate the quantum entanglement between the two
spin domains. Here we use the logarithmic negativity [58,59]

E(ρ) = log2 ‖ρ�A‖1, (24)

where �A denotes the partial transposition with respect to
subsystem A, and the trace norm ‖X‖1 is defined by ‖X‖1 =
Tr|X| = Tr

√
X†X.

First, by taking the partial transpose to the density matrix
(21), we have

(ρss)�JA (N ) = 1

(N + 1)

∣∣∣∣ − N

2

〉
AA

〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
− 1

2

∣∣∣∣ + N2

(N + 1)2

∣∣∣∣ − N

2

〉
AA

〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣1

2

〉
BB

〈
1

2

∣∣∣∣
+ N

(N + 1)2

∣∣∣∣ − N − 2

2

〉
AA

〈
− N − 2

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
− 1

2

∣∣∣∣ − N3/2

(N + 1)2

(∣∣∣∣ − N − 2

2

〉
AA

×
〈
− N

2

∣∣∣∣ ⊗
∣∣∣∣1

2

〉
BB

〈
− 1

2

∣∣∣∣ +
∣∣∣∣ − N

2

〉
AA

〈
− N − 2

2

∣∣∣∣ ⊗
∣∣∣∣ − 1

2

〉
BB

〈
1

2

∣∣∣∣
)

. (25)

We note here that (ρss)�JA (N ) = (ρss)�JB (N ). By deriving

the eigenvalues of ρ
�JA
ss (N ) [or ρ

�JB
ss (N )], the logarithmic

negativity for the matrix (25) is given by

E[(ρss)�JA (N )] = log2

[√
4N3 + (N + 1)2 + N2 + N

(N + 1)2

]
.

(26)

We present the logarithmic negativity (26) in Fig. 5(b). It
takes a maximum at N = 5 and its value is around 0.56. By
comparing with the logarithmic negativities for the Bell states,
which is equal to 1, we see that the two domains are quite
entangled at this maximum point. The logarithmic negativity

(26) becomes zero as N → ∞. This can be easily understood
from Eq. (21), because in this limit only the second term
survives, which means that the steady state is in the separable
state |−N

2 〉 ⊗ | 1
2 〉.

Finally, let us discuss how pure the steady state (21) is. We
evaluate its purity by the von Neumann entropy defined by

S[ρss(N )] = −Tr[ρss(N ) log2 ρss(N )]. (27)

From the eigenvalues of the steady state (21), the von Neu-
mann entropy becomes

S[ρss(N )] = − 1

N + 1

(
log2

1

N + 1
+ N log2

N

N + 1

)
.

(28)
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We plot this as a function of N in Fig. 5(c). The steady state
(21) is maximally mixed at N = 1 and the entropy takes 1,
and then it decreases as N increases. At N → ∞, the entropy
becomes zero, which is consistent with the above argument
for the quantum entanglement because the steady state (21)
becomes the pure state in this limit.

The negative-temperature-state relaxation (23) and the
reservoir-assisted quantum entanglement (26) are the collec-
tive spin phenomena intrinsic to the double-domain system
driven by the common reservoir. To see this clearly, let us
compare the dynamics in a double-spin system, where each
domain is individually coupled to a reservoir. Such dynamics
is described by the Hamiltonian, e.g., Eq. (1), except the
last interaction term is modified as h̄gA(J+

A RA + J−
A R

†
A)/2 +

h̄gB(J+
B RB + J−

B R
†
B)/2. Each spin domain relaxes to its

ground state, and the steady state is a separable state in terms
of the ground state of the first domain and that of the second
domain. Therefore, both the negative-temperature relaxation
and the reservoir-assisted entanglement are not realized in this
case.

IV. POTENTIAL IMPLEMENTATIONS

In this section, we present two candidate hybrid quantum
systems to experimentally realize the spin collective phenom-
ena described in Sec. III.

Quantum Hall system as a GaAs semiconductor. In this
system, we can prepare a double spin domain of nuclei via
dynamic nuclear polarization (DNP) [26–28]. First, the many-
body electron-spin state is set into the filling factor 2/3 frac-
tional quantum Hall (QH) regime. It consists of ferromagnetic
and nonferromagnetic phases whose energies are degenerate.
Then, by applying an ac electric current at about 100 nA, the
scattering processes occur with some electrons flipping their
spins while moving from the ferromagnetic part to the non-
magnetic part and vice versa. Subsequently, the nuclear spins
get polarized dynamically and bidirectionally near the electric
phase boundaries driven by the hyperfine interaction. As a
result, the nuclear-double-spin domain is created as described
by Eq. (3). Two nuclear domains are located in different
electric phases (ferromagnetic or nonmagnetic phases). It has
been recently measured in [28] that the nuclear polarization
due to the DNP is about 26%. On the other hand, it was
reported that the sizes of ferromagnetic and nonmagnetic
regions are controllable by applying the gate bias voltage [34].
By preparing these two regions with the areas unbalanced,
we can generate the unbalanced nuclear-double-spin domain.
After the preparation of the initial state (double-spin domain)
generated by the DNP, we couple the Nambu-Goldstone (NG)
mode, which is going to act as a bosonic reservoir, to the
nuclear-double-spin domain. At the Larmor frequency of nu-
clear spin which is around 10 MHz, the NG boson has a long
wavelength which is much larger than the spin separation.
Thus, the coupling between the NG mode and nuclear spins
is spatially homogeneous [31]. Consequently, two nuclear-
spin ensembles couple equivalently to the NG mode, and
such a hybrid system is described by Eqs. (1) and (3). The
NG-mode-induced nuclear-spin relaxation has been measured
which featured the collective behavior [30] and was observed

up to around 1 s. By preparing the large number of nuclear
spins such that the collective decay is realized within 1 s, we
observe our spin collective phenomena.

Nitrogen vacancy centers in a diamond coupled to a
resonator. In this system, the electron-spin ensemble can be
used for the spin domain while the resonator is used as the
common bosonic reservoir. In [32], the superradiant decay of
a single-electron-spin ensemble around 1016 was observed,
which occurred in a few hundred nanoseconds. On the other
hand, the coherent coupling between two-electron-spin en-
sembles in a quantum electrodynamic setup was realized in
[33]. The initial state (3) can be prepared by applying an
approximate π pulse to two spin ensembles. Further, the
size of each spin ensemble can be controlled by tuning the
concentration of the NV center. From these two experimental
results and the approximated π pulse application for the initial
state realization, we expect to observe our spin collective
phenomena.

V. GENERALIZATION TO LARGER SPIN SYSTEMS

In this section, we will present the discussion for the spin
configuration for NB � 2 (or the size of spin domain B larger
than 1). First, we demonstrate the analysis in the case of
NB = 2 by using the same argument which we did in Sec. III.
Then by comparing the results for the steady state in the cases
of NB = 1, 2, we will conjecture the steady-state solution for
general NB.

The tensor-product spin space which describes the sys-
tem dynamics is spanned by the eigenstates |mA〉A ⊗ |mB〉B

with mA = N/2, . . . ,−N/2 and mB = 1, 0,−1. On the
other hand, the corresponding direct-sum spin (symmetric-
asymmetric) space has a structure

Vrel = Vj1 ⊕ Vj2 ⊕ Vj3 , (29)

where j1 = (N/2) + 1, j2 = N/2, and j3 = (N/2) − 1.
Again, Vj1 , Vj2 , and Vj3 are defined to accommodate the initial
state. The basis vectors which span the Hilbert space (29) are

e1 = |j1; j1〉〉, . . . , eN+3 = |j1; −j1〉〉,
eN+4 = |j2; j2〉〉, . . . , e2(N+2) = |j2; −j2〉〉, (30)

e2N+5 = |j3; j3〉〉, . . . , e3(N+1) = |j3; −j3〉〉.

B1

B2B6

B4

B3

B5

B7 B9

B8

FIG. 6. The density matrix structure represented by the direct-
sum spin space. There are nine sub-blocks and the diagonal parts are
blocks B1, B2, and B3.
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The subspaces Vj1 , Vj2 , and Vj3 are spanned by the eigen-
states e1 ∼ eN+3, eN+4 ∼ e2(N+2), and e2N+5 ∼ e3(N+1), re-
spectively. The subspace Vj1 is the symmetric subspace. The
density matrix structure is represented by nine blocks as
depicted in Fig. 6. Blocks B1, B2, and B3 are the diagonal parts
constructed by the eigenvectors e1 ∼ eN+3, eN+4 ∼ e2(N+2),
and e2N+5 ∼ e3(N+1), respectively. The other blocks B4 ∼ B9

are the off-diagonal parts; for instance, in block B4 the row
is labeled by e1 ∼ eN+2 whereas the column by eN+3 ∼
e2(N+2).

Next, we derive the equations of motion for the matrix
elements represented by the direct-sum spin space (29). From
our master equation (2), we have

ρ̇αi ,α
′
i
= 2γ

[(
ji − mz

αi

)(
ji + mz

αi
+ 1

)(
ji − mz

α′
i

)(
ji + mz

α′
i
+ 1

)] 1
2 ραi−1,α′

i−1

− γ
[(

ji + mz
αi

)(
ji − mz

αi
+ 1

) + (
ji + mz

α′
i

)(
ji − mz

α′
i
+ 1

)]
ραi,α

′
i
, (31)

ρ̇αi ,αl
= 2γ

[(
ji − mz

αi

)(
ji + mz

αi
+ 1

)(
jl − mz

αl

)(
jl + mz

αl
+ 1

)] 1
2 ραi−1,αl−1

− γ
[(

ji + mz
αi

)(
ji − mz

αi
+ 1

) + (
jl + mz

αl

)(
jl − mz

αl
+ 1

)]
ραi,αl

, (i �= l) (32)

with i, l = 1, 2, 3. The indices α1, α
′
1 run from 1 to N + 3, whereas α2, α

′
2 runs from N + 4 to 2(N + 2), and α3, α

′
3 from 2N + 5

to 3(N + 1). The value mz
αi

is the eigenvalue of the eigenstate eαi
with respect to J z. We will solve the equations of motion (31)

and (32) under the initial condition

|in〉 =
∣∣∣∣N2

〉
A

⊗ |−1〉B. (33)

In the direct-sum spin space the initial state (33) is expressed as [38]

|in〉 =
√

2

(N + 1)(N + 2)

∣∣∣∣j1;
N

2
− 1

〉〉
+

√
2

N + 2

∣∣∣∣j2;
N

2
− 1

〉〉
+

√
N − 1

N + 1

∣∣∣∣j3;
N

2
− 1

〉〉
, (34)

or

[ρis(N )]3,3 = 2

(N + 1)(N + 2)
, [ρis(N )]N+5,N+5 = 2

N + 2
, [ρis(N )]2N+5,2N+5 = N − 1

N + 1
,

[ρis(N )]3,N+5 = [ρis(N )]N+5,3 = 2

N + 2

√
1

N + 1
, [ρis(N )]3,2N+5 = [ρis(N )]2N+5,3 = 1

N + 1

√
2(N − 1)

N + 2
,

[ρis(N )]N+5,2N+5 = [ρis(N )]2N+5,N+5 =
√

2(N − 1)

(N + 1)(N + 2)
, (35)

and the rest of components are zero. As in the case of NA = N,NB = 1, the two effective damping rates are enhanced as N

increases, indicating the collective decay.
We derive the steady-state density matrix. First, for the matrix elements in block B1, from the initial condition (35) we obtain

(ρ)1,1(N, t ) = (ρ)2,2(N, t ) = 0. Then subsequently, we have

(ρ)3,3(N, t ) = 2

(N + 1)(N + 2)
exp (−6Nγ t ). (36)

At the steady state, (ρ)3,3 is zero, and subsequently, we have (ρss)4,4 = · · · = (ρss)N+1,N+1 = 0. Such an argument can be exactly
applied to the diagonal matrix elements in blocks B2 and B3. Thus the only elements which survive at the steady state are the end
points of blocks B1, B2, and B3. We have (ρss)N+3,N+3 = p1, (ρss )2(N+2),2(N+2) = p2, (ρss )3(N+1),3(N+1) = p3, where p1, p2, p3

are the finite constants satisfying p1 + p2 + p3 = 1. For off-diagonal elements, whether they have finite values or not at the initial
state, they become zero at the steady state. Therefore, by considering that the spin subspaces Vj1 , Vj2 , and Vj3 are orthogonal to
each other, the constants p1, p2, p3 must satisfy p1 = [ρis(N )]3,3, p2 = [ρis(N )]N+5,N+5, p3 = [ρis(N )]2N+5,2N+5. As a result,
the density matrix at steady state in the direct-sum space representation has a form

ρss(N ) =
3∑

i=1

pi |ji ; −ji〉〉〈〈ji ; −ji |, (37)
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where p1 = 2/(N + 1)(N + 2), p2 = 2/(N + 2), p3 = (N − 1)/(N + 1). In a matrix form, the steady state (37) is represented
as

ρss(N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . . 0 0

p1

0

0
. . . 0

p2

0

0 0
. . .

p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

The steady-state formula of the density matrix at finite temperature can be obtained by applying the similar analysis for the case
of NA = N,NB = 1. It is given by

ρss(N, β ) =
3∑

i=1

piρ
i
ss(N, β ), (39)

where

ρi
ss(N, β ) =

∑
αi

e−βHs
∣∣ji ; mz

αi

〉〉〈〈
ji ; mz

αi

∣∣∑
αi

〈〈
ji ; mz

αi

∣∣e−βHs
∣∣ji ; mz

αi

〉〉 . (40)

From the relations [38]

|j1; −j1〉〉 =
∣∣∣∣−N

2

〉
A

⊗ |−1〉B, |j2; −j2〉〉 = −
√

N

N + 2

∣∣∣∣−N

2

〉
A

⊗ |0〉B +
√

2

N + 2

∣∣∣∣−N

2
+ 1

〉
A

⊗ |−1〉B,

|j3; −j3〉〉 =
√

N − 1

N + 1

∣∣∣∣−N

2

〉
A

⊗ |1〉B −
√

2(N − 1)

N (N + 1)

∣∣∣∣−N

2
+ 1

〉
A

⊗ |0〉B +
√

2

N (N + 1)

∣∣∣∣−N

2
+ 2

〉
A

⊗ |−1〉B, (41)

the steady-state density matrix can be represented in the tensor-product space as

ρss(N ) = 2

(N + 1)(N + 2)

∣∣∣∣−N

2

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |−1〉BB〈−1| + 2N

(N + 2)2

∣∣∣∣−N

2

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |0〉BB〈0|

+ 4

(N + 2)2

∣∣∣∣−N

2
+ 1

〉
AA

〈
−N

2
+ 1

∣∣∣∣ ⊗ |−1〉BB〈−1| + (N − 1)2

(N + 1)2

∣∣∣∣−N

2

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |1〉BB〈1|

+ 2(N − 1)2

N (N + 1)2

∣∣∣∣−N

2
+ 1

〉
AA

〈
−N

2
+ 1

∣∣∣∣ ⊗ |0〉BB〈0| + 2(N − 1)

N (N + 1)2

∣∣∣∣−N

2
+ 2

〉
AA

〈
−N

2
+ 2

∣∣∣∣ ⊗ |−1〉BB〈−1|

− 2
√

2N

(N + 2)2

(∣∣∣∣−N

2

〉
AA

〈
−N

2
+ 1

∣∣∣∣ ⊗ |0〉BB〈−1| +
∣∣∣∣−N

2
+ 1

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |−1〉BB〈0|
)

− (N − 1)2

(N + 1)2

√
2

N

(∣∣∣∣−N

2

〉
AA

〈
−N

2
+ 1

∣∣∣∣ ⊗ |1〉BB〈0| +
∣∣∣∣−N

2
+ 1

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |0〉BB〈1|
)

+
√

2(N − 1)3

N (N + 1)4

(∣∣∣∣−N

2

〉
AA

〈
−N

2
+ 2

∣∣∣∣ ⊗ |1〉BB〈−1| +
∣∣∣∣−N

2
+ 2

〉
AA

〈
−N

2

∣∣∣∣ ⊗ |−1〉BB〈1|
)

− 2
√

(N − 1)3

N (N + 1)2

(∣∣∣∣−N

2
+ 1

〉
AA

〈
−N

2
+ 2

∣∣∣∣ ⊗ |0〉BB〈−1| +
∣∣∣∣−N

2
+ 2

〉
AA

〈
−N

2
+ 1

∣∣∣∣ ⊗ |−1〉BB〈0|
)

. (42)

The polarizations of two domains are

〈
J z

A

〉
ss(N ) = −N5 + 5N4 + 4N3 − 16N2 − 8N + 16

2N (N + 1)(N + 2)2
,

(43)

〈
J z

B

〉
ss(N ) = N (N + 1)(N2 − 12) + 8

N (N + 1)(N + 2)2
. (44)

The negative-temperature-state relaxation emerges from
N = 4. In the limit N → ∞, the spin polarization in domain
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DA is −N/2 whereas the spin polarization in domain DB

becomes 1. Hence, the domain DA(B) is in the ground (excited)
state. We will not calculate the logarithmic negativity (24) and
just examine whether the quantum entanglement is generated
or not between the two spin domains. The steady-state density
matrix (42) consists of the separable-state part (the terms in
the first, second, and third lines) plus the additional terms
(from fourth to seventh lines). Thus, the quantum entangle-
ment is generated between the spin domains.

Now let us predict the formula for the density matrix at
the steady state in the direct-sum spin space representation
for general NB. By observing the steady-state density matrix
structures (16) and (37) [note that the density matrices (16)
and (37) are for NB = 1 and 2, respectively), we see that in the
direct-sum spin space the density matrix at the steady state has
a structure such that only the end points in the diagonal blocks
survive. To explain this in a little more detail, let us denote
the diagonal blocks for the density matrix as B1, B2, . . ., and
BNB+1. Initially, in each block there is an element having finite
value. Then, by analyzing the equations of motion for the ma-
trix elements, at the steady state we may predict that only the
end point in each block takes finite value and is equal to that
of the element, which was initially finite. This is because the
subspaces Vj [j = (NA + NB)/2, . . . , (NA − NB)/2], which
construct the direct-sum spin space, are orthogonal to each
other. Therefore, at the steady state the density matrix would
have a structure

ρss(N ) =
NB+1∑
i=1

Pi |ji ; −ji〉〉〈〈ji ; −ji |, (45)

where j1 = (NA + NB)/2, j2 = (NA + NB)/2 − 1, . . . and
jNB+1 = (NA − NB)/2. The coefficients Pi satisfy the condi-
tions 0 � Pi < 1 and

∑NB+1
i=1 Pi = 1. The matrix form of the

steady state (45) is

ρss(N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . . · · · 0

P1
...

. . .
...

0

0 · · · . . .
PNB+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

The formula (45) is physically natural, because at zero temper-
ature the total spin should relax so that the steady state must
be described by the eigenstates whose eigenvalues take the
minimum in the direct-sum spin subspaces which they belong
to. Indeed, the formula (45) satisfies the master equation (2) as
a steady-state solution. The steady-state formula at finite tem-
perature would be obtained by replacing |ji ; −ji〉〉〈〈ji ; −ji |
with the density matrix representing the canonical ensemble
of spin with its magnitude ji . By using the Clebsch-Gordan
coefficients and the description of the steady state (45) in the
tensor-product subspace, we can discuss the two spin polar-
izations and whether the quantum entanglement is generated
or not between the two domains.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the dynamics of the den-
sity matrix and its structure for the collective spin relaxation
in the double-spin-domain system. In this system, the two spin
domains couple equivalently to the common reservoir and the
Hamiltonian is described by the total spin. At the initial time
the spin ensemble in the first domain is in the excited state
(all-up spin state) whereas the second spin ensemble is in
the ground state (all-down spin state), with the first spin size
much larger than the second one. The initial state does not
have a full spin symmetry but is symmetric in each domain.
Due to the angular-momentum conservation in the total sys-
tem, the total system preserves the symmetry the initial state
contains through the relaxation process. To analyze the spin
relaxation process, the direct-sum spin space (direct sum of
symmetric and asymmetric spaces) was more effective than
the tensor-product representation. This representation allowed
us to reduce the dimensionality of the relevant Hilbert space
significantly, and hence it became possible for the system to
be analytically tractable. For more complicated initial states,
we may need to increase the dimensionality of the relevant
Hilbert space; however, this method will be also effective and
beneficial for both analytical and numerical calculations.

By analyzing the dynamics of the density-matrix elements
in the direct-sum spin space, we have found that the density
matrix for the collective spin relaxation had the following
structure. The behavior of the density matrix shows that the
populations in the symmetric space decays to its ground
state, i.e., all spins are down, gradually losing the coherence
between the symmetric and asymmetric subspaces. The be-
havior in the asymmetric space is the same, although some
excitations in spins remains in its ground states. When we
see this behavior in the composite picture (the tensor-product
space), the second domain which started at its ground state
(the spin down) will be relaxed to the excited state. The degree
of the excitation is dependent on the difference of the spin
domains in their size. For instance, in the case of the second
spin number equal to 1, when the number of spins in the
first domain is greater than 2, the spin in the second domain
decays to populate more than 50% in the excited state, which
indicates an effective negative temperature. As the first spin
number becomes sufficiently larger, the second spin domain
is (almost) completely in the excited state where all the spins
are up.

The spin polarizations for both domains show the mono-
tonic behaviors as functions of the first spin size in an opposite
way. The quantum entanglement between the two domains
exhibits the nonmonotonic behavior as a function of the first
spin size. It is an increasing function when the first spin
size is in the range from 1 to 5. Then when it becomes
equal to 6 and starts to exceed, the quantum entanglement
decreases monotonically and converges to zero. This behavior
is consistent with the fact that when the first spin size is
sufficiently large the steady state becomes separable, with the
first spin domain being all down and the second spin domain
all up. Correspondingly, the purity becomes 1 at the first spin
number to infinity.

These collective phenomena never occur in the single-
spin-domain system and must be the consequence of the
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asymmetry of the spin state and the coupling to the common
reservoir. The candidate hybrid quantum systems to observe
these phenomena are the following: One is the GaAs semi-
conductor, where nuclear spins are coupling to the electron
spins in the QH state through the hyperfine interaction. When
we initially prepared the nuclear-double-spin domain having
an antiparallel configuration induced by the DNP [26–28], by
tuning the QH state such that the linear dispersing NG mode,
as the bosonic reservoir emerges [29–31], we observe our
collective phenomena. The second candidate is the electron-
spin ensemble in the NV center in diamonds coupling to the
superconducting resonator [33].

The interesting point of these two collective phenomena
is that the characteristics of the steady state (the spin po-
larizations and the amount of quantum entanglement) are
rather opposite to those at the initial time, although the steady
states exhibit dependency to their initial states. This relaxation
behavior can be interesting to apply to quantum state manipu-
lation and quantum information processes. Usually, the deco-
herence induced by the reservoir is regarded as an obstacle to
perform the quantum information processing, destroying the
initial information of the system. In these systems, after the
system completely relaxed, the system has some in-print of
the information the system initially had. This property may be
exploited to implement robust quantum state manipulation.
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APPENDIX: MATHEMATICAL PROOF OF EQ. (16)

In this section, we demonstrate the mathematical proof of
Eq. (16) by dividing it into three parts. Part I is the discussion
for the dynamics of the diagonal elements, whereas parts II
and III are those for the off-diagonal elements.

Part I. Diagonal elements. First, let us look at the dynamics
of diagonal elements ραI,αI in block B1 through the equation of
motion, Eq. (9). For αI = 1, since the term ραI−1,αI−1 does not
exist, the equation of motion (9) is described solely by ρ1,1

as a linear differential equation. Due to the initial condition
(15), we readily obtain ρ1,1(t ) = 0. Thus, Eq. (9) for αI = 2
becomes the linear equation which is simply described by
ρ2,2. From the initial condition (15), we obtain

(ρ)2,2(N, t ) = 1

N + 1
exp (−4Nγ t ). (A1)

Next let us look at Eq. (9) for αI = 3, which is described
by ρ3,3 and ρ2,2. Although we can solve this equation and
obtained the solution (ρ)3,3(N, t ) for any t , we argue the
steady-state solution because this is our interest. At t → ∞,
both (ρ̇ )3,3(N, t ) and (ρ)2,2(N, t ) vanish. Thus, we have
(ρss)3,3 = 0. By applying the same argument to other

components sequentially, we have (ρss)4,4 = · · · =
(ρss)N+1,N+1 = 0. For α1 = N + 2, which is the end
point of block B1, the right-hand side of the equation is
described solely by (ρ)N+1,N+1 because the second term
vanishes. Therefore, we have (ρss)N+2,N+2 = aI = const.
This argument can be exactly applied for the dynamics of
matrix elements ρs

αII,αII
in block B2 using the equation of

motion, Eq. (10). We obtain (ρss)2N+2,2N+2 = aII = const,
which is finite and the rest of the components are zero.

Part II. Off-diagonal elements 1. We discuss the dynam-
ics of off-diagonal elements ραI,αII in block B3 using the
equation of motion, Eq. (11). The elements we consider
are (ρ)2,N+3(N, t ) and related ones. The matrix element
(ρ)2,N+3(N, t ) is the only off-diagonal element having a finite
value at initial time. We start from analyzing the dynamics
of (ρ)2,N+3(N, t ). Since (ρ)1,N+2(N, t ) belongs to block B1,
the term ραI−1,αII−1 in Eq. (11) vanishes. Thus, the equation
of motion (11) for αI = 2, αII = N + 3 is solely described by
(ρ)2,N+3(N, t ). From the initial condition (15), it is solved as

(ρ)2,N+3(N, t ) = −
√

N

N + 1
exp (−(3N − 1)γ t ). (A2)

Next, what we do is we repeat exactly the same ar-
gument which we did in Part I. Here again, we just
consider only the steady-state solutions. For αI = 3, αII =
N + 4 the right-hand side of the equation of motion
(11) is described by (ρs)3,N+4(N, t ) and (ρ)2,N+3(N, t ).
From Eq. (A2), we see that the steady-state solution for
(ρ)2,N+3(N, t ) is zero. Therefore, the steady-state solution
for (ρ)3,N+4(N, t ) is also zero. We repeat this argument
sequentially for αI = 4, αII = N + 5, . . . , αI = N + 1, αII =
2N + 2. Then we have (ρss)4,N+5 = · · · = (ρss)N+1,2N+2 =
0. As a result, the off-diagonal components for αI = 3, 4, . . . ,

N + 1, αII = N + 4, N + 5, . . . , 2N + 2 vanish at the steady
state. Such behaviors are consistent with the plots in Fig. 4.

Part III. Off-diagonal elements 2. In this part, we discuss the
dynamics of off-diagonal elements ραI,α

′
I
, ραII,α

′
II
, and ραI,αII ,

which were not discussed in Part II. Since the arguments
for ραI,α

′
I
, ραII,α

′
II
, and ραI,αII become exactly the same, here

we will present only the argument for ραI,α
′
I
. These elements

are the simplest cases to analyze the steady-state solution
because from Eq. (15) all these components are zero at
the initial state. First, we start with the dynamics of ρ1,α′

I

(α′
I > 1). From the equation of motion (9) and the initial

condition (15), we have (ρ)1,α′
I
(N, t ) = 0. As we mentioned

above, since all the components at initial time are zero, we
can easily show that (ρ)2,α′

I+1(N, t ) = (ρ)3,α′
I+2(N, t ) · · · =

(ρ)N+3−α′
I,N+2(N, t ) = 0. Similarly, from the equations of

motion, Eqs. (10) and (11), and the initial condition (15),
all the matrix elements ραII,α

′
II

and ραI,αII under consideration
are zero. Therefore, all these off-diagonal elements vanish at
steady state. This is consistent with the results shown in Fig. 4.

As a result, all the off-diagonal elements vanish at
steady state. The only finite elements are ρN+2,N+2 and
ρ2N+2,2N+2. With taking account of the constraint Tr[ρss(N )]
= 1, the natural choices for [ρss(N )]N+2,N+2 = aI and
[ρss(N )]2N+2,2N+2 = aII are

aI = 1

N + 1
, aII = N

N + 1
. (A3)
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This is because the symmetric subspace and asymmetric
subspace are orthogonal to each other. There must be no
spin population transfer between them. In other words, the

probability weight for each spin subspace must be invariant
under the time evolution. Indeed, this is what we see in Fig. 3.
Consequently, we obtain the steady-state formula (16).
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