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Quantum Zeno effect at finite measurement strength and frequency
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The evolution of a system subject to measurement is restricted to Zeno subspaces of the measurement
Hamiltonian in the limit of strong measurements k in a phenomenon known as the quantum Zeno effect (QZE).
As the limit constrains QZE to the lowest orders of perturbation in 1/k, we derive general expressions for the
maximum probability leakage from Zeno subspaces for reversible interactions and leakage rates for irreversible
interactions for both quantum decay and Lindblad measurement operators. We show that pulsed QZE can be
expressed in the same Hamiltonian formulation as continuous QZE, and the two merge in the large-frequency
f limit. We derive a nonperturbative expression for pulsed QZE at finite k and f , which reduces to previously
known results for pulsed QZE at large k and continuous QZE at large f .
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I. INTRODUCTION

The quantum Zeno effect (QZE) was first proposed as a
paradox in which a particle subject to quantum decay while
being continuously observed never decays [1]. The analysis
in [1] is based on the collapse postulate, where measurement
corresponds to complete wave-function collapse described by
a projection operator E, and the QZE arises as a mathemat-
ical consequence of an infinite sequence of projections E

interspersed with Schrödinger evolution U (t ) = e−iH t/h̄. As
the interval between measurements tends to zero τ → 0 and
the number of measurements N in time T = τN tends to
infinity, the evolution operator V (T ) = [EU (τ )E]N is shown
to satisfy V †(T )V (T ) = E. Then, if the initial state ρ(0)
is an eigenstate of the measurement operator tr[ρ(0)E] =
1, the survival probability is unity at all times, tr[ρ(T )] =
tr[ρ(0)V †(T )V (T )] = 1. It was argued that continuous obser-
vation is realized approximately by the tracks of an unstable
charged particle in a bubble chamber.

More recently, understanding of the QZE has been im-
proved [2–13]. It has been shown that continuous observation
corresponds to a measurement timescale of the order of the
characteristic (Zeno) time of initial quadratic evolution [8].
This time, τZ = h̄〈1|(H − 〈1|H |1〉)2|1〉−1/2, obtained from
the probability for no decay of an initial state |〈1|e−iH t/h̄|1〉|2,
is inversely related to the characteristic energy μ of the final-
state spectrum [6]. Because the collision frequency is typically
much smaller than the frequency corresponding to the char-
acteristic energy of the decay continuum ωc = μ/h̄, the QZE
has not been observed to date in its original setting of unstable
particle decay [2,12] and can be altogether absent in systems
with unbounded spectra [13]. However, the QZE has been
observed in reversible and unitary interactions such as Rabi
oscillations under a time-independent system Hamiltonian
Hs , as well as interactions where the measurement itself is
unitary [4]. Experimental verifications of the QZE have been
reported in various settings, including continuous [14,15]
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and pulsed [16,17] measurements in systems exhibiting Rabi
oscillations, and in continuous observations of tunneling [18].
The original formulation has also been refined, showing that
evolution is not entirely frozen in the QZE limit, but rather re-
stricted to quantum Zeno subspaces, which are the degenerate
eigenspaces of the measurement Hamiltonian Hm [4].

In its original [1] and subsequent [2,16] formulations,
pulsed QZE is modeled by periods of Schrödinger evolution
and periods of complete collapse. In practice collapse due
to measurement can be incomplete, and abrupt alternation
between irreversible measurement and reversible system evo-
lution is difficult to achieve. It has been shown that a so-called
continuous QZE [4,8] occurs when a measurement interaction
is characterized by continuous Schrödinger evolution leading
to entanglement with a macroscopic system and decoherence
of system states [19], which therefore evolve irreversibly. The
formulation of the continuous QZE in terms of Schrödinger
evolution alone removes the assumption of complete collapse
and enables analysis of normal evolution and measurement
simultaneously. Expectation values can be calculated with-
out recourse to the collapse postulate, which is sometimes
assumed to be a necessary ingredient of QZE [1,20]. More-
over, because a decrease in transition rates in response to
increased interaction strength [4] is manifest already in simple
interactions, devoid of the complexity of entanglement with a
macroscopic system, the root of continuous QZE does not lie
in measurement.

In this article we consider the continuous QZE as a pertur-
bation of the Schrödinger equation by a system Hamiltonian
Hs about the measurement Hamiltonian Hm [3,4] as the
measurement strength k tends to infinity,

H = Hs + kHm. (1)

In Sec. II we show that due to the large-k limit, perturbation
theory [20] provides a natural framework for analyzing the
QZE, whereby in the QZE limit an unstable state |φ0〉 is
stabilized as a nondegenerate eigenstate of the measurement
Hamiltonian Hm. Generalizing this to Hamiltonians with
degenerate eigenspaces, we show that as a consequence of

2469-9926/2018/98(5)/052132(8) 052132-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.052132&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevA.98.052132


L. LERNER PHYSICAL REVIEW A 98, 052132 (2018)

perturbation theory, evolution is restricted to within each
degenerate eigenspace of Hm, called the Zeno subspace [4],
where evolution is governed by the projection of Hs onto
the degenerate eigenspace of Hm. Extending this ideal case
to practical situations with finite k, we derive a general
expression for finite measurement Hamiltonians, showing the
probability leakage from the Zeno subspaces vanishes as 1/k2

in the QZE limit. We also extend the analysis to irreversible
interactions which are essential to macroscopic measurements
responsible for the emergence of classicality [19]. Irreversibil-
ity results in a qualitative change, whereby the probability
associated with any finite Zeno subspace vanishes with time
for finite k; however, the probability leakage rate tends to
zero as 1/k in the QZE limit. This applies to measurements
with a single decoherence rate, for example, the transmon
[21], where the QZE is manifest in an inhibition of jumps
between the two eigenstates (QZE subspaces) with increasing
decoherence [22].

In Sec. III we show that pulsed QZE, described in the first
paragraph, is based on the same phenomena as continuous
QZE, so that in the limit of infinite measurement frequency,
pulsed and continuous QZEs merge and dependence on the
pulsing frequency vanishes. We derive a result for pulsed QZE
with on-off pulsation in a two-state system and finite pulsing
frequency and measurement strength, which reduces to known
results for pulsed QZE for finite pulsing frequency and in-
finite measurement strength and continuous QZE for infinite
frequency at finite measurement strength. Similar results are
obtained for both a decay measurement Hamiltonian and the
Lindblad measurement operator of [21]. An analysis of pulsed
QZE based on the Schrödinger equation was presented in [23]
for pulsed stimulated transitions in a two-level system, with
one level decaying to a reservoir. In that case, the reservoir
interaction was treated to first order in time, and the pulsation
time was fixed as a function of Rabi frequency. In the present
article the reservoir interaction is treated in the Weisskopf-
Wigner approximation, and pulsation time is a free parameter.

Our analysis is restricted to bounded Hamiltonians, avoid-
ing mathematical complications associated with singularities
[24]; however, this does not present a serious constraint be-
cause many physical processes are approximately finite. This
includes semibounded Hamiltonians generating irreversible
decay, Eq. (17), where an Ohmic spectral density with cutoff
frequency ωc is typically introduced to ensure convergence,
and reflects the fact that the theory becomes inaccurate at
very high energies. The cutoff does not substantially influence
the results because low-energy phenomenology is largely
insensitive to high-energy behavior. In the same vein, to very
good accuracy one can replace the continuous spectrum of
the decay Hamiltonian by a discrete spectrum with energy
spacing much less than the characteristic decay rate. In this
way the decay Hamiltonian can be discretized and bound
without a substantial impact on system evolution.

II. THE QZE WITH CONTINUOUS MEASUREMENTS

A. Interaction with finite systems

As a simple example, consider a three-state system
in a Hilbert space spanned by the orthonormal basis

|φi〉,

|�(t )〉 =
3∑

i=1

ai (t )|φi〉, (2)

in state |�(0)〉 = |φ2〉 prior to the interaction. The measure-
ment system has a Hilbert space spanned by the orthonormal
basis |ϕi〉,

|�(t )〉 =
N∑

j=1

bj (t )|ϕj 〉, (3)

and is in state |�(0)〉 = |ϕ1〉 prior to the interaction. An
interaction Hamiltonian

Hm1 = |φ1〉〈φ2| ⊗ |ϕ2〉〈ϕ1| + |φ2〉〈φ1| ⊗ |ϕ1〉〈ϕ2| (4)

couples the two systems, producing an evolving entangled
state correlating the system and measurement states, repre-
senting “measurement.” The total state evolving under Hamil-
tonian kHm1, where k is a real constant representing measure-
ment strength, with h̄ ≡ 1, is

|�(t )〉|�(t )〉 = cos kt |φ2〉|ϕ1〉 + i sin kt |φ1〉|ϕ2〉. (5)

Now add a system Hamiltonian Hs producing oscillations
between system states |φ3〉 and |φ2〉,

Hs = α(|φ2〉〈φ3| + |φ3〉〈φ2|) ⊗ 1, (6)

where 1 = ∑
j |ϕj 〉〈ϕj | is the identity operator acting on the

measurement states |ϕj 〉. Taking into account the expressions
for Hs and Hm1, the total state evolving under H = Hs +
kHm1, with initial state |φ3〉|ϕ1〉, has a three-dimensional
solution space,

|�(t )〉|�(t )〉 = c1(t ) |φ3〉|ϕ1〉 + c2(t ) |φ2〉|ϕ1〉
+ c3(t ) |φ1〉|ϕ2〉, (7)

which entangles system and measurement states. The com-
bined Hilbert space can be expanded in a new orthonormal
basis, |�(t )〉 ⊗ |�(t )〉 = ∑3

j=1 cj (t )|ηj 〉, so the first three
basis states correspond to Eq. (7). A more detailed analysis
is presented in the Appendix.

Since |η1〉 = |φ3〉|ϕ〉 is an eigenstate of Hm1 (with eigen-
value 0), where |ϕ〉 is any measurement state, Hm1 fulfills
a requirement for a measurement of the occupation of state
|φ3〉. The Schrödinger equation is solved by diagonalizing the
Hamiltonian H in the three-dimensional space of Eq. (7), and
for a system initially prepared in state |φ3〉|ϕ1〉, we have

|c1(t )|2 =
(

k2 + α2 cos ωt

k2 + α2

)2

, (8)

where ω = √
k2 + α2. As the measurement strength k in-

creases, the survival probability of the system state |φ3〉
changes from Rabi oscillations at k = 0 to unity at all times,
while the magnitude of the oscillatory component diminishes
and its frequency increases. This result is in accordance with
what would be expected from the QZE.

We can obtain more general results using perturbation
theory, which can be applied to Eq. (1) upon dividing by k

and rescaling the time, with k−1 being a small parameter, or,
equivalently, using Hs directly as the perturbing Hamiltonian,
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with powers of k scaling the eigenvalues of Hm in the pertur-
bation expansion, ensuring its convergence. Using the latter
approach, the first-order correction to the eigenvectors |χj 〉 of
H is

|χj 〉 =
⎛
⎝1 − 1

2k2

∑
n�=j

|〈ψn|Hs |ψj 〉|2
(λj − λn)2

⎞
⎠

×
⎛
⎝|ψj 〉 + 1

k

∑
n�=j

〈ψn|Hs |ψj 〉
λj − λn

|ψn〉
⎞
⎠, (9)

where λj and |ψj 〉 are the eigenvalues and eigenvectors of Hm

and the eigenvectors |χj 〉 are normalized to order k−2. The
eigenvalues μj of H to lowest nonzero order in k−1 are

μj = kλj + 1

k

∑
n�=j

|〈ψn|Hs |ψj 〉|2
λj − λn

(10)

if Hm has no degenerate eigenvalues.
We can now evaluate the stability of a system initially

in an eigenstate of the measurement Hamiltonian |ψ0〉 but
unstable under the action of the system Hamiltonian Hs , using
an expansion of the solution in the eigenstates of the total
Hamiltonian H ,

|�(t )〉 =
∑

j

e−iμj t |χj 〉〈χj |ψ0〉, (11)

and substituting from the perturbation theory expression (9).
Then, the time-averaged probability of |�〉 to order k−2 is

|〈ψ0|�(t )〉|2 =
∑

j

|〈ψ0|ψj 〉|4 (12)

= 1 − 2

k2

∑
j �=0

|〈ψ0|Hs |ψj 〉|2λ−2
j . (13)

Since the maximum of |〈ψ0|�(t )〉|2 is unity and the oscilla-
tory excursion of the probability is symmetric about the mean,
the second term in Eq. (13) is half the maximum leakage of
probability out of the unstable state |ψ0〉. It is easily checked
that Eq. (13) agrees with Eq. (8) when Hs is the two-state
Rabi Hamiltonian. Consequently, in the general case, as k

increases, the amplitude of probability oscillations decreases
as k−2, and state |ψ0〉 stabilizes.

In the nondegenerate case of Eq. (11), evolution in the QZE
is restricted to simple phase cycling in the one-dimensional
eigenspaces of Hm, |ψj (t )〉 = e−ikλj t |ψj 〉, with projection
operators Pj = |ψj 〉〈ψj |. Similarly, an immediate result of
degenerate perturbation theory is the restriction of evolu-
tion to multidimensional degenerate eigenspaces of Hm, with
evolution in the j th eigenspace governed by the projec-
tion of the perturbing Hamiltonian Hs onto the eigenspace,
Hsj = PjHsPj , with Pj = ∑

l |ψjl〉〈ψjl|, where l indexes the
eigenspace of the j th eigenvalue [20]. This was obtained
in a more complicated fashion in [4], where the degener-
ate eigenspaces of Hm are called quantum Zeno subspaces.
We can immediately derive an expression for the evolution
operator U (t ) = e−iH t using the completeness of the

eigenspace,
∑

j Pj = 1,

U (t ) =
∑
j,l

e−i(Hs+kHm )t |φjl〉〈φjl| (14)

=
∑

j

e−ikλj t
∑

l

e−iHsj t |φjl〉〈φjl| (15)

= e−i(kHm+∑
j Hsj )t , (16)

which was obtained in a more complicated fashion in [4].1

Note that the zeroth order in k is neglected in the nonde-
generate case because it leads to phase cycling and does not
affect the stability. In the degenerate case, however, it couples
the degenerate eigenstates, so the transition rate for a j th
eigenstate of Hm, which is not simultaneously an eigenstate of
Hsj , does not vanish in the QZE limit, k → ∞. Quantitative
results for finite k can be obtained from Eq. (16) as in the
nondegenerate case.

B. Irreversible interactions representing classical measurements

Finite-measurement Hamiltonians [4] do not generate the
usual properties of measurements in quantum theory. The
latter typically correspond to classical irreversible processes
with a definite outcome and are associated with an entropy
increase [19]. The measurement operator E generating von
Neumann projections in the Introduction has this property,
while evolution for finite Hamiltonians is reversible and the
system eventually returns to its initial state. To attain clas-
sicality, one introduces the thermodynamic limit, using a
measurement apparatus whose number of degrees of freedom
tends to infinity, leading to irreversible evolution of the system
[11,19]. We now consider this limit of Hm, with the unstable
state being an eigenvector. For such interactions the QZE
differs qualitatively from the case at finite k, and there is not
a limit on probability leakage from the unstable state, so the
QZE subspaces of Eq. (16) decay.

1. Measurement by quantum decay

A simple model of irreversible measurement couples the
system to an external field, resulting in the exponential decay
of Weisskopf-Wigner (WW) theory, which registers a system
transition by the irreversible emission of a quantum. Such a
measurement applied to a two-state system was analyzed in
[4,7] without accounting for Lamb shift. Here we establish
notation by rederiving the two-state result and then obtain a
general QZE expression for finite systems using the perturba-
tion expansion of Eq. (10).

We imagine that the emitted photon eigenspace is discrete,
corresponding to a finite apparatus volume, where the contin-
uous limit is approached as the volume tends to infinity. Then,

1Equation (15) is derived using the degenerate eigenvalue equation
for the j th eigenspace Hsj |φjl〉 = Ejl |φjl〉, where Ejl is the first-
order energy correction, so e−i(Hs+kHm )t |φjl〉 = e−ikλj t e−iEjl t |φjl〉 =
e−ikλj t e−iHsj t |φjl〉. Equation (16) is derived using the proper-
ties of projection operators, PjPk = HsjHsk = PjHsk = 0 for j �=
k and [Pj , Hsj ] = 0, so that

∑
j Pj e

λj +Hsj = e
∑

j λj Pj +Hsj , while∑
j λjPj = Hm.
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the measurement eigenspace is that of Eq. (3), with j indexing
the emitted photon energy ωj and N = ∞.2 The photon field
interacts so a system transition |φ1〉 → |φ0〉 emits a photon
in state |ψj 〉 with coupling constant βj . Including the pho-
ton self-energy at ground-state energy −�, the measurement
Hamiltonian becomes

Hm =
∑

j

(ωj − �)1 ⊗ |ϕj 〉〈ϕj |

+
∑

j

βj |φ0〉〈φ1| ⊗ |ϕj 〉〈ϕ0| + H.c. (17)

This interaction term entangles system and measurement
states, as per Eq. (4). We set the initial state to |ψ0〉 =
|φ2〉|ϕ0〉, which is a nondegenerate eigenstate of Hm, so that
the interaction is an irreversible measurement of the occu-
pation of |φ2〉, in accordance with the property of classical
measurements.

Adding a two-state Rabi Hamiltonian Hs generating the
transition |φ2〉 ↔ |φ1〉, we solve the Schrödinger equation
using the state vector expansion

|�(t )〉|�(t )〉 = a(t )|φ2〉|ϕ0〉 + b(t )|φ1〉|ϕ0〉
+

∑
j �=0

cj (t )|φ0〉|ϕj 〉 (18)

to give the following relations between the expansion coeffi-
cients in Laplace space:

isa(s) − i = αb(s), (19)

isb(s) = αa(s) + k
∑

j

βj cj (s), (20)

iscj (s) = k(ωj − �)cj (s) + kβ∗
j b(s). (21)

The solution is

a(s) =
⎡
⎣s + α2

⎛
⎝s +

∑
j

k2|βj |2
s + ik(wj − �)

⎞
⎠

−1⎤
⎦

−1

(22)

≈
(

s + α2

s + k�/2 + ik�0

)−1

, (23)

where we have used the Weisskopf-Wigner approximation
[25] in Eq. (22), with decay rate � = 2πρ(�)|β(�)|2 and
Lamb shift �0 = ∑

j |βj |2/(� − ωj ).
Instead of solving the quadratic pole structure of a(s), it is

more instructive for what follows to note that the second term
in parentheses in Eq. (23) tends to zero as k → ∞, producing
a dominant (amplitude squared ∼ 1) pole at small s. Then,
dropping terms in s2, we immediately find

a(t ) ≈ exp

( −α2t

k�/2 + ik�0

)
, (24)

so that for irreversible measurements the unstable state de-
cays, but the rate tends to zero in the QZE limit. We shall now

2The angular variable in WW decay gives a multiplicity factor
which can be absorbed into a redefinition of the energy eigenstate
amplitudes.

demonstrate this as a more general result of irreversible mea-
surements using the eigenvalue perturbation expansion (10),
which remains valid in the continuous limit as the eigenstates
of Hm are orthogonal. In this case, although the unperturbed
eigenvalues λj of Hm are real since Hm is Hermitian, decay
arises from a sum over states vanishing irreversibly in the
thermodynamic limit.

We expand the expression in Eq. (10) for the first-order
correction to the zero eigenvalue λ0 of the unstable state
|φ0〉 over any orthonormal basis |ηi〉 spanning the system
states, so that

∑
i Hs |ηi〉〈ηi | = Hs . Then, since λ0 = 0 for the

unperturbed Hamiltonian Hm, the corresponding eigenvalue
μ0 of the total Hamiltonian H , corrected to first order due to
the perturbation Hs , is

μ0 = −1

k

∑
n�=0

λ−1
n

∣∣∣∣∣
∑

i

〈ψ0|Hs |ηi〉〈ηi |ψn〉
∣∣∣∣∣
2

(25)

= −1

k

∑
i,j

〈ηj |Hs |ψ0〉〈ψ0|Hs |ηi〉
∑
n�=0

〈ηi |ψn〉λ−1
n 〈ψn|ηj 〉

(26)

= −1

k

∑
i,j

〈ηj |Hs |ψ0〉�ij 〈ψ0|Hs |ηi〉, (27)

where �ij ≡ ∑
n�=0〈ηi |ψn〉λ−1

n 〈ψn|ηj 〉 is a matrix dependent
only on the measurement apparatus, while the vector αi ≡
〈ψ0|Hs |ηi〉 depends only on the system. If the measurement
is irreversible, the amplitude of at least one state |ηi〉 decays
with time under the action of Hm. We now illustrate the
consequences of this for the example of the Rabi Hamiltonian
Hs of Eq. (6).

Writing the decay of the unstable states as e−γi t =
〈ηi |e−itHm |ηi〉 for some γi and expanding the exponential of
Hm in terms of its eigenstates e−iHmt = ∑

n e−iλnt |ψn〉〈ψn|
give e−γi t = ∑

n e−iλnt |〈ψn|ηi〉|2. Multiplying both sides by
the convergence factor e−εt , integrating from zero to infinity,
and letting ε → 0, we find γ −1

i = ∑
n(ε + iλn)−1|〈ψn|ηi〉|2,

which has a real component if the spectrum of Hm has support
at the origin, λn → 0. Comparing the expression for γ −1

i with
the expression for �ij , we have �ii = iγ −1

i , while �i �=j = 0
since a WW Hamiltonian does not couple system states. We
thus find

μ0 = −1

k

∑
i

|αi |2
γi

. (28)

For the Rabi Hamiltonian Hs there is a single unstable state
which decays due to Hm, |η1〉 = |φ1〉|ϕ0〉, while the initial
state is |ψ0〉 = |φ2〉|ϕ0〉. Then the system vector has a single
nonzero element 〈ψ0|Hs |η1〉 = α. Using the WW decay coef-
ficient γ1 = �/2 + i�0, we recover Eq. (24) from Eq. (28).

2. Measurement by Lindblad operators

We now consider the more general case where the mea-
surement operator obeys the Lindblad equations describing
a Markovian, no-memory interaction with the environment
[11]. An example of such an equation can be derived by con-
sidering the measurement Hamiltonian as a sum of products
of operators with Ĥm acting just on the system space and H ′

m

acting just on the apparatus space, Hm = ∑
i Ĥ

i
m ⊗ H ′i

m [25].
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Choosing for clarity the case when the sum contains a single
term and carrying out a trace over the apparatus states, one
derives [25,26] a Lindblad equation for the reduced density
matrix,

i
dρ

dt
= [Hs, ρ] − iγ k[Ĥm, [Ĥm, ρ]], (29)

where 2γ is the decoherence rate. Here ρ acts only on the
system space, so that the first term on the right-hand side
represents evolution in the absence of measurement, while
the second term embodies the action of the measurement
on the system in terms of the projection of the interaction
Hamiltonian onto the measurement space Ĥm. Such an equa-
tion of motion with a two-state Hs was recently used to
analyze the QZE in a transmon [21].

We now transform this equation to the eigenspace of op-
erator Ĥm, where Ĥm is diagonal with eigenvalues λa , and
denote the transformed system Hamiltonian by H ′

s . In this
basis, Eq. (29) becomes

i
dρab

dt
= [H ′

s , ρ]ab − iγ k(λa − λb )2ρab, (30)

where this type of equation for reduced matrix evolution is
typical at small decoherence rates [19]. At large k, H ′

s rep-
resents a small perturbation about a diagonal density matrix,
which solves Eq. (29) when H ′

s = 0, while for k = 0 Eq. (30)
generates Rabi oscillations in the absence of measurement. As
before, the unstable state |ψ0〉 is an eigenstate of Ĥm, and so
in the QZE limit, k → ∞, the density matrix ρ(t ) = |ψ0〉〈ψ0|
is a solution of Eq. (30). Therefore, for large k we search for
a solution of the form

ρ(t ) = ρ00(t )|ψ0〉〈ψ0| + k−1ρ ′(t ), (31)

where ρ00(0) = 1. Substituting this trial solution into Eq. (30),
we find

ik
d

dt
ρ00(t ) =

∑
a

[H0a ρ ′
a0(t ) − ρ ′

0a (t )Ha0], (32)

i
d

dt
ρ ′

a0(t ) = kHa0 ρ00(t ) − iγ kλ2
aρ

′
a0(t ), (33)

where we have dropped terms of zeroth order in k on the right-
hand side of Eq. (33) and for clarity of notation replaced H ′

s

by the symbol H . Transforming to Laplace space and solving
the set of simultaneous equations, we find an expression for
the probability of the unstable state |ψ0〉

ρ00(s) =
(

s + 2
∑

a

|Ha0|2
s + γ kλ2

a

)−1

, (34)

which is similar in form to Eq. (24). In particular, as k → ∞,
the right term in Eq. (34) generates a dominant low-frequency
pole, at which a(s) can be evaluated by neglecting the s

dependence in the denominator of the second term. We thus
find

ρ00(t ) ≈ exp

(
− 2t

γ k

∑
a

λ−2
a |Ha0|2

)
, (35)

so that as for measurement by decay, for a Lindblad measure-
ment operator the decay rate of the unstable state vanishes in
proportion to 1/k in the QZE limit.

Since Eq. (30) is a general decoherence result for a
Schrödinger interaction with a measurement system in the
thermodynamic limit, Eq. (35) is a general continuous QZE
result at finite measurement strength which follows from the
Schrödinger equation.

III. PULSED QZE

The original formulation of the QZE, as described in
the Introduction, is based on pulsed measurements, allowing
periods of unitary evolution between events of instantaneous
collapse. This contrasts with the manifestations of QZE con-
sidered above, which are based on time-independent system
Hs and measurement Hm Hamiltonians. Although the two
modes of QZE have sometimes been regarded as being of
separate origin, it is easily shown that the pulsed QZE does
not essentially differ from the continuous case. For a pulsed
measurement Eq. (1) becomes

H = Hs + kf (t )Hm, (36)

for which the Schrödinger equation can be integrated to give

|�(t )〉 = exp

(
−itHs − ikHm

∫ t

0
dt ′f (t ′)

)
|�(0)〉. (37)

Since the pulsing is periodic, f (t ) can be Fourier expanded,
f (t ) = c0 + ∑

n cn sin nωt , so that the evolution operator in
Eq. (37) reads

U (t ) = exp

⎧⎨
⎩−itHs −ik

[
c0 t + ω−1

∑
n

cn(1−cos nωt )/n

]

×
∑

j

λjPj

⎫⎬
⎭, (38)

where we have used Hm = ∑
j λjPj . In the limit of very fast

measurements kλjω
−1 → 0, the time dependence of f (t ) is

lost, and only the constant term remains. Then, the problem
reduces to the continuous QZE previously analyzed, with f (t )
replaced by its time-averaged mean. This is demonstrated in
the special case considered below.

Continuous QZE is typically analyzed as a function of
measurement strength k, with the unstable state decaying
exponentially, which, using (24) and neglecting the Lamb
shift, gives

|a(T )|2 = exp(−4α2T/k�), (39)

where the measurement strength k determines the decay rate
in the QZE limit. In contrast, pulsed QZE assumes k → ∞
a priori, so collapse is instantaneous on the measurement
timescale, and the measurement frequency 1/τ determines
the decay rate in the QZE limit, τ → 0 [2]. The latter also
gives rise to exponential decay of the unstable state, which we
can see in the case of the Rabi Hamiltonian of Eq. (6). For
an alternating sequence of unitary evolutions, a(τ ) = cos αt ,
interspersed with T/τ measurements in time T , we have

|a(τ )|2T/τ ≈ cos2T/τ (ατ ) ≈ exp(−α2τT ). (40)

This well-known result [2,8] assumes a dual limit. The mea-
surement interval must be short compared to the characteristic
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time of quadratic evolution τ � α−1, enabling the approxima-
tion cos2 ατ ≈ (1 − α2τ 2) to be used, and the measurement
interval must be large compared to the collapse timescale τ �
(k�)−1, so the decay rate is independent of k�. Comparing
the functional dependence of the unstable state survival prob-
ability in the continuous and pulsed QZE limits, Eqs. (39) and
(40), shows the decay rates are equal when τk� = 4. This was
proposed in [8] as a relationship between the characteristic
response time for continuous measurement, 4(k�)−1, and the
characteristic measurement rate for pulsed observations, τ .

Equation (40) for pulsed QZE is rather problematic be-
cause of the assumed dual limit. For practical purposes one
wants an expression valid for finite measurement strengths,
which reduces to Eq. (40) for (k�)−1 � τ � α−1 and to the
continuous QZE of Eq. (39) for τ � (k�)−1 � α−1 when
f (t ) is replaced by its mean value. In this way the unspec-
ified instantaneous measurement which collapses the state
in the Introduction [1] is replaced by the mechanism of the
Schrödinger evolution of Sec. II B, introducing measurements
of finite strength and duration into the pulsed QZE.

We now perform such an analysis for the Rabi Hamiltonian
Hs of Eq. (6) and the decay measurement Hamiltonian Hm of
Eq. (17). The expansion coefficients satisfy equations similar
to (19)–(21) but are now more conveniently solved in the time
domain due to the time dependence of f (t )

i
da

dt
= α b(t ), (41)

i
db

dt
= α a(t ) + kf (t )

∑
j

βj cj (t ), (42)

i
dcj

dt
= kf (t )(ωj − �)cj (t ) + kf (t )β∗

j b(t ), (43)

with the initial conditions a(t ) = 1, b(0) = 0, and cj (0) = 0.
The measurement system amplitudes cj (t ) can be eliminated
from Eq. (42) using Eq. (43). Applying the WW approxima-
tion in the time domain [27], we obtain

i
db

dt
= α a(t ) − i

k�

2
f (t )b(t ), (44)

where � is the WW decay rate and we have neglected the
Lamb shift for subsequent clarity. Differentiating Eq. (41)
and solving it simultaneously with Eq. (44), we obtain a
differential equation for the unstable state amplitude a(t ),

d2a

dt2
+ k�

2
f (t )

da

dt
+ α2a(t ) = 0, (45)

with the initial conditions a(0) = 1 and ȧ(0) = 0. Trans-
forming the dependent variable as a(T ) = exp[− ∫ T

0 s(t )dt],
which automatically satisfies the first initial condition, we find

ds

dt
+ k�

2
f (t )s(t ) − α2 = 0, (46)

where we have neglected the nonlinear term s2(t ) since
s(t ) � k� follows from Eq. (40) as a consequence of α �
k�. We have checked by numerical simulation that the nonlin-
ear term has no noticeable effect on the solution to Eq. (46) in
the entire parameter space where a(t ) is dominated by decay
rather than Rabi oscillations.

Equation (46) can be solved analytically for s(t ); however,
since we are not interested in the details of short transient
behavior around t = 0 when a(t ) evolves quadratically with
time, but rather in the long-term exponential decay, it is
simpler and more transparent to proceed as follows. For corre-
spondence with standard pulsed QZE, where measurement is
varied in an on-off fashion, we let f (t ) be a square wave with
period τ and amplitude 2, so that its mean is unity. Then the
long-term behavior of Eq. (46) is that of relaxation oscillations
with constant amplitude, where s(t ) is entirely positive due
to the α2 term. There is a period of linear growth satisfying
ds/dt − α2 = 0 for time τ/2 and exponential decay sat-
isfying ds/dt + k�s(t ) − α2 = 0. Solving both differential
equations for s(t ) and setting the growth and decay amplitudes
equal in the steady state, we obtain the following expression
for sm = max[s(t )]:

sm = α2

(
1

k�
+ τ

2

1

1 − e−k�τ/2

)
. (47)

We now integrate s(t ) over the periods exhibiting linear
growth and decay to yield the decay coefficient of |a(t )|2,

2
∫ T

0
s(t )dt ≈ 2T

1

τ

∫ τ

0
s(t )dt (48)

= α2T

k�

[
3 + k�τ

4
coth

(
k�τ

4

)]
. (49)

The same result is obtained in a more laborious fashion
by solving Eq. (46) exactly and then dropping the transient
behavior.

We now investigate the two limits of Eq. (49). In the
limit of infinite measurement frequency so that k�τ → 0,
the second term in brackets tends to unity, and Eq. (49)
tends to the decay coefficient of Eq. (39), corresponding to
continuous QZE for an f (t ) with a mean of unity. This
behavior was predicted above on the basis of Eq. (38). In
the other extreme, k�τ → ∞, corresponding to sufficiently
strong measurements that the complete collapse of Eq. (40)
is a valid approximation, the measurement strength cancels in
Eq. (49), and the decay coefficient tends to α2τ/4. The factor
of 4 difference from Eq. (40) is to be expected since under a
square wave on-off measurement, unitary evolution lasts half
the period, τ/2, and the appropriate limit in the collapse model
is cos2T/τ (ατ/2) ≈ e−α2τT /4.

Thus, Eq. (49) has the expected limiting behavior and
extends the well-known result of Eq. (40) to measurements
of finite strength and duration, when complete collapse is not
achieved during the measurement interval.

Equation (49) was derived with the assumption of the
decay measurement Hamiltonian of Eq. (17), but we now
show that it is more general and applies to Lindblad opera-
tor measurements, Eq. (29). To see this, we write the Rabi
Hamiltonian as Hs = α σx , and without loss of generality let
Ĥm = σz, where σi are the Pauli matrices. The equation of
motion becomes

i
dρ

dt
= α[σx, ρ] − ikγf (t )[σz, [σz, ρ]]. (50)

We expect a system initially in an eigenstate of σz to display
the QZE and so calculate the expectation value of this state
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as z = tr (σzρ). Multiplying Eq. (50) by σz and σy and taking
the trace using the relation tr(A[B,C] = tr([A,B]C) as well
as the commutation relations of the Pauli matrices [σi, σj ] =
2iεijkσk , we find

ż = 2αy, (51)

ẏ = − 2αz − 4kγf (t )y. (52)

Solving simultaneously, we obtain Eq. (45) for z, with double
the oscillation frequency since z(t ) corresponds to the ampli-
tude squared, z = ρ00 − ρ11 ≈ ρ00, and with � = 4γ since 2γ

is the decay rate of the amplitude.

IV. CONCLUSIONS

We have shown that the QZE can advantageously be un-
derstood as a perturbative effect of Hs about the measurement
Hamiltonian Hm in an approach which readily generates
quantitative results. A bound for probability leakage from
the eigenspaces of Hm, an instance of which is the initial
unstable state, can be calculated in perturbation theory and
tends to zero as a function of measurement strength. For Hm in
the thermodynamic limit, which properly describes classical
irreversible measurements, application of perturbation theory
leads to unlimited probability leakage from the eigenspaces at
finite measurement strength, but the rate of leakage tends to
zero as measurement strength increases. Perturbative expres-
sions are obtained in decoherence theory based on Lindblad
operators with factorization into system and measurement
components. The pulsed QZE mode originally envisaged
in [1] is shown to be based on the same features of the
Schrödinger equation as continuous QZE, with collapse not
essential for its manifestation. In particular, it is shown that
pulsed QZE merges smoothly into continuous QZE as the rate
of measurement increases, and an analytic result is obtained
extending the usual pulsed QZE result to finite measurement
strengths and durations.

APPENDIX

In the von Neumann measurement scheme, a measurement
interaction of a system and measurement apparatus results
in an entangled state |�〉 in the Hilbert space of the tensor
product of the system and measurement Hilbert spaces. If the
system and measurement spaces are spanned by bases |φi〉 and
|ϕj 〉, respectively, we have

|�〉 =
M∑
i=1

ai (t )|φi〉 ⊗
N∑

j=1

bj (t )|ϕj 〉.

An interaction Hamiltonian

Hm =
∑

(Hm)lnij |φl〉〈φi | ⊗ |ϕn〉〈ϕj |
representing a measurement entangles these two Hilbert
spaces. The system Hamiltonian Hs becomes Hs ⊗ 1 in the
total Hilbert space, where 1 = ∑

j |ϕj 〉〈ϕj | is the identity in
measurement space. We can expand |�〉 in terms of a new
one-dimensional basis |ηl〉,

|�〉 =
NM∑
l=1

cl (t )|ηl〉,

with |ηl〉 = |φi〉|ϕj 〉, cl (t ) = ai (t )bj (t ), and index l defined,
for example, by l = i + Mj . The measurement Hamiltonian
in the new basis is then a two-dimensional matrix coupling
states |ηl〉,

Hm ≡
∑
ln

(Hm)ln|ηl〉〈ηn|.

Such a representation of measurement is used in [4].
As a simple example, let M = 3 and N = 2, so

the total Hilbert space is six-dimensional, with basis
{|φ3〉|ϕ1〉, |φ2〉|ϕ1〉, |φ1〉|ϕ1〉, |φ3〉|ϕ2〉, |φ2〉|ϕ2〉, |φ1〉|ϕ2〉}. Let
the system Hamiltonian Hs be the Rabi Hamiltonian of Eq. (6)
and the measurement Hamiltonian generate transitions be-
tween system states |φ2〉 and |φ1〉 correlated to transitions
between |ϕ1〉 and |ϕ2〉 in the measurement system, Eq. (4).
Then, the total Hamiltonian H = Hs + kHm couples the
states {|φ3〉|ϕ1〉, |φ2〉|ϕ1〉, |φ1〉|ϕ2〉} ≡ |ηl〉, which are decou-
pled from the remaining states. If only states |ηl〉 are initially
populated, we can write the total state |�〉 as a sum over
the amplitudes of these three states, |�〉 = ∑3

l=1 cl|ηl〉. In the
new basis |ηl〉, the total Hamiltonian H is represented by a
two-dimensional matrix acting on a three-component vector
consisting of the amplitudes of the three basis states cl ,

Hs + kHm1 ≡

⎛
⎜⎝

0 α 0

α 0 k

0 k 0

⎞
⎟⎠.

The solution to the Schrödinger equation for the initial occu-
pation of state |φ3〉|ϕ1〉 is then given by Eq. (8).

However, not all interactions Hm generating QZE-like
effects produce entanglement between the system and the
measurement apparatus, in which case such effects cannot be
attributed to measurement. Consider a system with M = 2
coupled to a measurement apparatus with N = 2, resulting
in a four-dimensional Hilbert space. The system Hamiltonian
generating Rabi oscillations is

Hs = α(|φ1〉〈φ2| + |φ2〉〈φ1|) ⊗ (|ϕ1〉〈ϕ1| + |ϕ2〉〈ϕ2|),
and two states decouple if the interaction Hamiltonian affects
only the self-energy of a single state

Hm2 = 2 |φ1〉〈φ1| ⊗ |ϕ1〉〈ϕ1|.
In the basis {|φ2〉|ϕ1〉, |φ1〉|ϕ1〉}, the total Hamiltonian is rep-
resented by

Hs + kHm2 ≡
(

0 α

α 2k

)
.

The initial state |φ2〉|ϕ1〉 is an eigenstate of Hm2 and therefore
becomes stable in the limit k → ∞, which is confirmed by the
no-decay probability

|c1(t )|2 = k2 + α2 cos2 ωt

k2 + α2
,

where ω = √
k2 + α2. This exhibits the same qualitative fea-

tures as Eq. (8), but in the absence of entanglement.
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