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Violation of Bell inequality is a prominent detection method for quantum correlations present in composite
quantum systems, both in finite and infinite dimensions. We investigate the consequence of the violation of local
realism based on pseduospin operators when photons are added or subtracted in a single mode or in both the
modes of the two-mode squeezed states of light in the presence of noise. In the noiseless situation, we show that
for addition (subtraction) of photons in a single mode, there is an overall enhancement in the maximal violation,
although we observe an interplay between monotonicity and nonmonotonicity in the violation of Bell inequality
depending on the squeezing strength. Moreover, we report that for low squeezing or low number of photons
added or subtracted, subtraction in both the modes can lead to higher violation of local realism than that in the
case of addition. For any choice of parameters, such ordering is not seen if one compares their entanglement
contents. In the event of a faulty twin-beam generator, we obtain a lower than expected squeezing in the state. In
such a case, or in imperfect photon addition (subtraction) or under local noise, we find that the violation of local
realism by the noise-affected two-mode squeezed states always decreases. Interestingly, however, we notice that
photon addition (subtraction) can in general help to conquer the ill effects of noise by enhancing the violation of
local realism or by transforming nonviolating states to violating ones, thereby acting as an activating agent.

DOI: 10.1103/PhysRevA.98.052131

I. INTRODUCTION

Entangled quantum states [1] shared between multiple and
distant partners have the potential of revolutionizing com-
munication and computation schemes [2–9]. Historically, the
existence of quantum entanglement was first pointed out in the
seminal paper of Einstein, Podolsky, and Rosen (EPR) [10],
which questioned whether the theory of quantum mechanics
was “incomplete,” based on the assumptions of “locality”
and “reality.” Bell formulated a mathematical inequality to be
satisfied by any physical theory that is local and realistic and
which can be violated by entangled quantum states [11]. With
the development of quantum information science, violation of
the Bell inequality turned out to be an experimental-friendly
detection criterion for entangled states. Apart from its funda-
mental importance, violation of the Bell inequality has been
proven to be the crucial ingredient in certain proofs of security
of quantum cryptography [2,3].

Quantum information protocols like entanglement-based
quantum key distribution [2], quantum dense coding [4],
and quantum teleportation [5] were originally proposed for
discrete variable systems and have been implemented, e.g.,
by using the polarization degree of freedom of photons [12].
However, the success probability of preparing entangled states
in this way is very low, and at the same time, Bell-basis mea-
surement, if required for certain processes, is not possible with
linear optical elements [13], thereby making the overall suc-
cess probability of protocols using photonic qubits even lower.
It turns out that continuous-variable (CV) systems [14,15] can
overcome certain difficulties, like Bell-basis detection, and

hence implementing quantum information processing tasks
by using CV states in infinite-dimensional systems can be
important. Specifically, they can be prepared with almost unit
probability by using nonlinear interaction of a crystal with
laser and can have only imperfections due to the varying inten-
sity of laser light, resulting in a low squeezing parameter [14].
Therefore, studying the quantum nature of such CV systems
plays a significant role in quantum information science and is
the main goal of this article.

Gaussian states, having positive Wigner functions [16],
are one of the most prominent examples of CV states and
are advantageous for quantum communication and computa-
tion schemes [17]. Although the performance of these states
clearly shows their nonclassical nature, Bell argued [18,19]
that states with positive Wigner functions are naturally en-
dowed with a hidden variable theory and hence would not vi-
olate a Bell inequality. Later, Banaszek and Wódkiewicz [20]
pointed out that the positivity or negativity of Wigner function
has a weak connection to violation of local realism and
managed to construct a Bell expression out of parity-based
operators to obtain violations for two-mode squeezed vacuum
(Gaussian) states with positive Wigner functions. However,
their technique had intrinsic optimization problems [21], and
so even the EPR state, having maximal quantum correlation,
does not violate the inequality maximally. In Ref. [22], an
alternate approach was proposed using pseudospin operators
(that are closely related to the parity operators), which is
free from such optimization difficulties and can give the
maximal violation in the case of EPR state (for a nice survey,
see Ref. [23]). Bell inequality for two- and three-mode CV
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systems were also analyzed in Ref. [24]. The pseudospin
operators were later generalized [25,26] to calibrate the vio-
lation of local realism for other types of quantum correlated
states of continuous variables. Moreover, the violation of
Bell inequality for squeezed vacuum states have been tested
experimentally using parity-type operators [27], which further
motivates the study in this direction.

On the other hand, there exist several quantum information
protocols, like entanglement distillation and quantum error
correction [28,29], which cannot be performed by Gaussian
states with Gaussian operations [30,31]. Therefore, over the
past few years, active research has been carried out to inves-
tigate properties of non-Gaussian states. One of the simple
methods to generate such states is to add or subtract photons
[32,33] to or from the Gaussian states. These processes have
also been demonstrated experimentally [34,35]. Moreover,
it was shown that entanglement content of the two-mode
photon-added (-subtracted) state is much higher than the
corresponding two-mode squeezed vacuum states (TMSV)
[32], thereby showing enhancement of entanglement due to
photon addition or subtraction. Moreover, “degaussification”
via photon addition and subtraction has also been proven to be
useful in a variety of situations, like engineering of quantum
states to attain hybrid entanglement [36] and for tackling
boson sampling problems [37].

In this article, we investigate the violations of Bell in-
equality for photon-added and photon-subtracted two-mode
squeezed vacuum states, both in noiseless and noisy scenarios,
where violations of local realism are tested using the pseu-
dospin operators. Before considering the imperfection, we
first present the results in the case of single-mode operations
without noise, specifically photon addition (subtraction) from
a single mode of TMSV, and apart from some instances of
diminution, we report an overall enhancement in the maximal
violation of Bell inequality with added (subtracted) number of
photons. However, we report some interesting nonmonotonic
features, when odd or even numbers of photons are added
(subtracted) to a single mode. The response of maximal
violation of Bell inequality is also examined, when a given
number of photons to be added or subtracted is distributed
between the two modes. In particular, in a distributed scenario,
we find that unlike entanglement, for a certain squeezing and
a small number of added or subtracted photons, subtraction is
better than addition according to their quantumness in terms
of violation of local realism with pseudospin operators. More-
over, we compare the effect of distribution to single-mode
operations and observe that for sufficiently high squeezing or
number of added (subtracted) photons, the maximal violation
for distributed operations displays a monotonic enhancement
compared to that in case of single-mode operations.

An important aspect, which turns out to be crucial exper-
imentally, is the role of the inevitable noise that creeps in
the TMSV states [38] during preparation, transmission, and
protocol implementation. We investigate the effects of noise
on the violation of Bell inequality in two prototypical realistic
scenarios: The states are affected by noise or the state gener-
ator is itself faulty, i.e., when instead of a TMSV state with
certain squeezing, it prepares a state with lower squeezing. As
expected, noise reduces the amount of quantum correlations
present in these states and hence the amount of violation of

local realism. Interestingly, however, we show that the process
of photon addition (subtraction) can enhance and in some
cases activate the violations (cf. Ref. [24]). Specifically, we
find that photon addition can transform certain nonviolating
states to Bell-inequality-violating states, which we call the
activation of violation of Bell inequality, as the word “acti-
vation” has been used in the literature for different processes
[39]. In realistic scenarios, even the addition (subtraction)
schemes of photons can be faulty due to mechanisms like
dark counts [40,41] of the photodetectors. We also study the
reaction of the pseudospin operator-based Bell inequality in
the presence of both noisy and faulty scenarios and show
that activation of violation due to the process of addition
(subtraction) of photons is also possible even in the presence
of two types of noise.

The paper is organized as follows. In Sec. II, we discuss
about the two-mode squeezed vacuum states and the effect of
photon addition or subtraction on it. The use of pseudospin
operators for analyzing violations of Bell inequality is also
explored here. In Sec. III, the case of single-mode operations
is examined. Following it, in Sec. IV, we discuss how dis-
tributed operations affect the maximal violation. Furthermore,
in Sec. IV A, we show that in contrast to single-mode opera-
tions, in the realm of distributed operations, photon addition
is inequivalent to photon subtraction. In Sec. V, violations
of Bell inequality are examined in more realistic scenarios,
namely, in the presence of noise in Sec. V A and when the
squeezed state generator is faulty in Sec. V D. Finally, in Sec.
V E, we deal with the scenario of dark counts in the photon
addition and subtraction mechanism, making them erroneous.
In Sec. VI contains a conclusion. An appendix provides the
proof of the maximization of the Bell expression.

II. FORMALISM

Study of Gaussian states lies at the heart of investigations
with CV systems. In the state space of Gaussian states, the
most general pure states are the displaced squeezed states
[14,15]. Since we are interested in studying the quantum
correlations of quantum states in CV system, and we know
that the displacement operator does not alter the nonlocal
properties of a state, in this article, without loss of generality,
we consider the (undisplaced) two-mode squeezed vacuum
(TMSV) state for our investigations. For squeezing strength
r , the TMSV state can be represented as

|ψr〉 =
∞∑

n=0

cn|n, n〉, (1)

where cn = (1 − x)
1
2 x

n
2 with x = tanh2 r , and {|n〉} is the

Fock basis consisting of the photon number states. The TMSV
state, in the limit of infinite squeezing (r → ∞), reduces to
the well-known EPR state.

We can degaussify the TMSV state by simply adding (sub-
tracting) photons locally in its two modes. It was shown that
this degaussification process (photon addition or subtraction)
leads to monotonic enhancement of entanglement [32]. In this
paper, we analyze the effects of photon addition or subtraction
on the violation of Bell inequality. The normalized state after
adding k photons to the first mode and l photons to the second
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mode of the TMSV state reads as

∣∣ψ (k,l)
r

〉 = ∞∑
n=0

c(k,l)
n |n + k, n + l〉, (2)

where

c(k,l)
n = x

n
2√

2F1(k + 1, l + 1, 1, x)

√(
n + k

k

)(
n + l

l

)
. (3)

Here, 2F1 is the Gauss hypergeometric function. Note that
c(0,0)
n = cn in Eq. (1). On the other hand, the normalized state

after subtracting k and l photons from first and second modes
respectively is given by

∣∣ψ (−k,−l)
r

〉 = ∞∑
n=k

c(−k,−l)
n |n − k, n − l〉, (4)

where

c(−k,−l)
n = x

n−k
2√

2F1(k + 1, k + 1, 1 + k − l, x)

√√√√(
n

k

)(
n

l

)
(
k

l

) . (5)

Without any loss of generality, in this paper, we assume that
k � l. If we restrict operations to a single mode, say, the first
mode, the coefficients involved in |ψ (±k,0)

r 〉 simplifies as

c(k,0)
n = x

n
2 (1 − x)

1+k
2

√(
n + k

k

)
(6)

and

c(−k,0)
n = x

n−k
2 (1 − x)

1+k
2

√(
n

k

)
. (7)

We consider Bell inequalities by using the following pseu-
dospin operators [25], given by

Sz
q =

∞∑
n=0

2n+q�0

|2n + q + 1〉〈2n + q + 1| − |2n + q〉〈2n + q|,

S−
q =

∞∑
n=0

2n+q�0

|2n + q〉〈2n + q + 1| = (S+
q )†, (8)

where q is an integer. The correlation functions for an ar-
bitrary state ρ, in terms of the pseudospin operators, are
given by

E(θa, θb ) = Tr
[
ρSθa

q1
⊗ Sθb

q2

]
, (9)

where S
θj

qi
= cos θjS

z
qi

+ sin θj (S−
qi

+ S+
qi

), j = a, b, with θj s
being the settings of the measurements performed by both
the parties, viz. a and b. Like the Clauser-Horne-Shimony-
Holt (CHSH) version [42] of Bell inequality (Bell-CHSH
inequality) in finite dimension, the Bell-CHSH expression

in this case based on the correlation functions, E(θa, θb ), in
Eq. (9), also reads as

χ
q1,q2

θa,θb,θ ′
a ,θ

′
b
= E(θa, θb ) + E(θa, θ

′
b ) + E(θ ′

a, θb ) − E(θ ′
a, θ

′
b ).

(10)

Our task is to maximize χ
q1,q2

θa,θb,θ ′
a ,θ

′
b

(which we refer to as
χ without subscripts and superscripts) with respect to the
settings specified by θa, θb, θ

′
a, θ

′
b, and the pair (q1, q2). Note

that, in the correlation function, constructed out of the pseu-
dospin measurements [see Eq. (9)], we neglect any phase
factors since they do not provide any additional information
in the maximization of the Bell expression for the states
considered here. Therefore, we are finally interested to study
the properties of a physical quantity, given by

χmax = max
θa,θb,θ ′

a ,θ
′
b,q1,q2

χ
q1,q2

θa,θb,θ ′
a ,θ

′
b
. (11)

It turns out that the optimization over the q values can be
performed easily by looking at the structure of the concerned
state. Settling with the values of (q1, q2), we are left with the
optimization over the measurement settings {θa, θb, θ

′
a, θ

′
b}.

The correlation function in Eq. (9), for the states considered
in this article, typically is of the form

E(θa, θb ) = ± cos θa cos θb + K sin θa sin θb, (12)

where 0 � K � 1. For a TMSV state with squeezing param-
eter r , K = tanh 2r , and depending on the number of photons
added or subtracted to the TMSV state, the K(±k,±l) changes
accordingly. Here, the subscript of K denotes the number of
photons added or subtracted from each mode of the TMSV
state. The optimal measurement settings, which maximizes
the violation of pseudospin-based Bell inequality considered
in Eq. (10), is given by

θa = 0, θa′ = π/2, θb = −θb′ = −θ, (13)

where

cos θ = 1√
1 + K2

and sin θ = K√
1 + K2

, (14)

such that the maximal Bell-CHSH quantity, χmax, reduces to

χmax = 2(cos θ + K sin θ ) = 2
√

1 + K2. (15)

The details of the optimization procedure are given in the ap-
pendix. Note that for two-qubit systems, the CHSH inequality
constructed out of the usual spin operators (Pauli matrices)
provides a necessary as well as sufficient condition for the
violation of local realism with two settings of measurements
having two outcomes. In the present paper, the pseudospin-
operator-based CHSH inequality provides us a sufficient con-
dition for the violation of local realism for CV systems. It is,
however, not a necessary condition.

The reason is that for two-qubit states, the Pauli spin
operators form a basis for all the operators in that space. In the
two-qubit case, following the prescription given in Ref. [43]
by Horodecki et al., the maximization can be performed over
all possible two-qubit operators, and hence the obtained max-
ima is the optimal among all the two-setting Bell inequalities.
However, the pseudospin operators do not form a basis for all
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dichotomic operators in the space of two-mode continuous-
variable states. Therefore, the maximization involved here
gives the maximal violation of Bell inequality for all possi-
ble dichotomic measurements in the subspace of pseudospin
operators (all two-mode dichotomic operators which can be
expanded in terms of the pseudospin operators), making the
conditions of violation sufficient but not necessary.

Moreover, we want to mention here that the extraction of
the necessary condition involves the maximization over all
possible dichotomic observables in the continuous variable
case, which is practically impossible since in this case, even
the basis for constructing dichotomic observables is infinite.
So, unlike two-qubit systems, for two-mode CV systems, to
date there is no unique optimal inequality which can detect
EPR-type nonlocality. However, there exist several results in
the literature that strongly suggest that pseudospin operator-
based inequality is one of the best options to detect non-
locality in two-mode CV systems. For example, the viola-
tion of Bell inequality for the two-mode squeezed vacuum
state was studied in Ref. [20] using a Wigner-function-based
CHSH inequality. In their analysis, even for the EPR state,
their bound is not saturated to the Tsirelson’s bound. Later
it was shown that Tsirelson’s bound by the EPR state can
be achieved by the pseudospin operator-based inequality as
shown in Ref. [22]. These operators were later generalized
in various works [25,26] to find out the violation of other
two-mode and multimode CV states [24].

In our work, we have used generalized pseudospin
operator-based Bell inequalities which we believe to be suf-
ficiently good for obtaining violation of local realism. The
maximal violation obtained in this paper is in the pseudospin-
operator space and provides a lower bound of the maximal
violation which can be obtained by constructing all the Bell
inequalities in CV systems.

The amount of enhancement in maximal violation of Bell
inequality in the photon addition and subtraction process can
be quantified as

G = χmax(|φ〉) − χmax(|η〉)

χmax(|η〉)
. (16)

Here, we compute the enhancement in the maximal violation
of local realism for |φ〉 with respect to a given state |η〉. Typi-
cally, |η〉 is the TMSV state, while |φ〉 is the same TMSV state
after adding (subtracting) photons. Using these techniques, we
first set out to investigate the effects of maximal violation of
Bell inequalities due to single-mode operations.

III. SINGLE-MODE OPERATIONS

Let us first concentrate on the response of maxi-
mal violation of Bell inequality of TMSV states sub-
ject to addition and subtraction of photons in a sin-
gle mode. We first note that, for single-mode operations,
photon addition in one mode is equivalent to the pho-
ton subtraction from the other mode, as it can be eas-
ily shown that |ψ (k,0)

r 〉 = |ψ (0,−k)
r 〉 by using Eqs. (2)–(5).

Moreover, since χmax(|ψ (k,0)
r 〉) = χmax(|ψ (0,k)

r 〉), we can eas-
ily see χmax(|ψ (k,0)

r 〉) = χmax(|ψ (−k,0)
r 〉). Therefore, without

any loss of generality, we only consider addition of photons
in a single mode, say, the first mode, of the TMSV state in

this section. However, from an experimental point of view,
subtraction is easier to realize than addition [34], since the
latter process essentially requires an additional photon pump-
ing apparatus. So, even if both processes are equivalent in
terms of the maximal violation, experimentally, subtraction
is preferred. Furthermore, in situations where addition and
subtraction yields inequivalent maximal violation of Bell in-
equality, it would be noteworthy to find out regions in the
relevant parameter space where photon subtraction gives a
higher violation than photon addition. We will address this
point in the succeeding section.

A. Addition and subtraction of arbitrary number of photons

The maximal violation of Bell inequality for the photon-
added TMSV state, |ψ (k,0)

r 〉, in the first mode, has the form

χmax
(∣∣ψ (k,0)

r

〉) = 2
√

1 + K2
(k,0), (17)

where

K(k,0) = 2
∞∑

n=0

c
(k,0)
2n c

(k,0)
2n+1, (18)

by using Eqs. (2), (3), and (15). The (q1, q2) pair which yields
this maximal value is (k mod 2, 0).

Note that the structure of K(k,0) remains same for both even
and odd numbers of photon-added TMSV states. For k � 2,
we obtain the expression for K(k,0) as

K(k,0) = 2(1 − x)1+kx
1
2

∞∑
n=0

x2n

k∏
i=2

(2n + i)

×
√

(2n + 1)(2n + k + 1). (19)

On the other hand, for the k = 0 case, i.e., for the TMSV state,
K(0,0) = 2x1/2/(1 + x) = tanh 2r , while if a single photon is
added, it takes the form as

K(1,0) = 2(1 − x)2x
1
2

∞∑
n=0

x2n
√

(2n + 1)(2n + 2). (20)

Apart from the TMSV case, K(k,0) and consequently χmax

cannot be computed analytically for any k � 1, due to the
presence of a square root in the sum involved. Therefore,
we resort to approximate methods like series expansion and
numerical techniques to compute these summations. For nu-
merical calculations, we first evaluate the above summations
up to n = N terms. We then check whether the difference
between χmax with partial sums up to N and N + 1 terms
falls below 10−10. If this is the case, we conclude that the
summation with N terms is sufficient.

Before presenting the results with series expansion, let us
discuss the findings with the numerical method. Our analysis
reveals an overall enhancement of the maximal violation of
Bell inequality in terms of pseudospin operators of the TMSV
state with moderate number of added photons (see Fig. 1). To
put the amount of enhancement in a quantitative perspective,
we calculate the gain, G, as in Eq. (16), for some typical values
of r and added number of photons, k, in the first mode, and
it is summarized in Table I. As is clearly depicted in Fig. 1,
there exists a critical value of the squeezing parameter, r ,
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FIG. 1. Maximal violation of Bell inequality with respect to
added (subtracted) number of photons, k, in the first mode. In panels
(a) and (b), different values of the squeezing parameter, r , have been
considered. In panel (a), we choose those values of r where χmax

decreases when two or more than two photons are added, while in
panel (b), whenever χmax shows decreasing nature, it occurs after an
addition of a single photon. Clearly, such values of r are above 1.66
as found in Theorem 1. All quantities plotted are dimensionless.

beyond which photon addition may lead to a decrement in
the maximal violation of Bell inequality, when either a single
photon or more is added [comparing Figs. 1(a) and 1(b)].
Even when we are unable to compute χmax analytically, the
approximate method helps us to obtain the critical value of r ,
rc, where the violation decreases with addition of photons. In
this respect, let us state the following theorem, which shows
the special status of a single-photon addition.

Theorem 1: The maximal violation of Bell inequality
based on pseudospin operators shows diminution in compar-
ison to the TMSV state after the addition (subtraction) of a
single photon for any finite squeezing parameter, r , beyond a
critical value, rc ≈ 1.66.

Proof. We start by approximating the square root term√
(2n + 1)(2n + 2) in K(1,0), given in Eq. (20). Let X =

2n + 1 and Y = 2n + 2. Now, using the identity, (X + Y )2 −
(X − Y )2 = 4XY and putting (X − Y )2 = 1, we get

√
XY = X + Y

2

√
1 − 1

(X + Y )2

≈ X + Y

2

[
1 − 1

2(X + Y )2
− 1

8(X + Y )4

]
. (21)

Substitution of the value of (X + Y ) in Eq. (21) gives√
(2n + 1)(2n + 2) ≈

(
2n + 3

2

)
− 1

4(4n + 3)

− 1

16(4n + 3)3
. (22)

Under this approximation, K(1,0) possesses a closed form in
terms of known standard functions, given by

Kapprox
(1,0) = 2

x1/2

1 + x

[
3 + x2

2(1 + x)
− (1 − x)2(1 + x)

×
(

2F1(3/4, 1, 7/4, x2)

12
+ �(x2, 3, 3/4)

210

)]
, (23)

where 2F1 denotes the Gauss hypergeometric function [44]
and � denotes the Lerch transcendent [45]. Note that
the approximation used in Eq. (22) always leads to an

TABLE I. Percentage of gain, G × 100, for some typical values
of the squeezing parameter, r , and added number of photons, k, with
respect to the TMSV state.

�������r ↓
k →

2 5 10 15

0.2 9.5 18.4 25.7 29.6
0.5 10.0 10.9 10.7 11.4
0.8 3.2 3.1 3.4 3.7
1.2 0.4 0.6 0.73 0.76

overestimation of
√

(2n + 1)(2n + 2) and therefore Kapprox
(1,0) >

K(1,0). Now the quantity Kapprox
(1,0) − K(0,0), and consequently

K(1,0) − K(0,0) and χmax(|ψ (1,0)
r 〉) − χmax(|ψr〉), become neg-

ative when x � 0.86, i.e., r � 1.66 (≈rc) and asymptoti-
cally approach zero from below when x → ∞. Since the
process of approximation gives an upper bound of K(1,0)

( or χmax(|ψ (1,0)
r 〉)), the diminution of maximal violation on

adding a single photon persists even without the approxi-
mation. Furthermore, keeping up to second-order terms is
justified, since the next term in the sum near r = 1.66 only
makes a contribution of O(10−6) to the sum. Such observation
remains true for all the propositions in this and succeeding
sections, and hence the proof.

Note that by numerical simulations, we find the above
critical value rc to be ≈1.66. Although in Theorem 1 we have
found the critical value of r , beyond which addition of a single
photon always leads to diminution of the maximal violation
of Bell inequality, increasing the number of added photons
results in an overall enhancement of the maximal violation, as
mentioned previously. However, the enhancement of the vio-
lation is accompanied by a seemingly generic nonmonotonic
behavior with respect to the squeezing parameter, r . We find
that there exists a range of the squeezing parameter, 1.42 <

r < 1.66, for which the maximal violation of local realism
demonstrates a monotonic enhancement with respect to the
added number of photons (see Fig. 1). Apart from the above
specified range of the squeezing parameter, χmax displays a
nonmonotonic behavior with the number of added photons
(Fig. 1). Note however that the nonmonotonicity obtained for
r < 1.42 with k is different than that of the photon-added
state with r > 1.66. It is important to stress here that such
a feature is absent in the case of entanglement [32]. We now
ask whether the critical value of the squeezing parameter for
which nonmonotonic to monotonic transition occurs in the
behavior of the maximal violation can be found using the
series expansion method.

We observe from our numerical results that when the
squeezing parameter r is close to the critical value, 1.42, the
transition is dictated by both the values of χmax(|ψ (1,0)

r 〉) and
χmax(|ψ (2,0)

r 〉). The value of χmax(|ψ (1,0)
r 〉) has been calcu-

lated in Eq. (23) while the evaluation of χmax(|ψ (2,0)
r 〉) leads

to the following proposition:
Proposition 2: Maximal violation of local realism based

on pseudospin operators undergoes a transition from non-
monotonic to monotonic behavior with respect to added num-
ber of photons in a single mode for r ≈ 1.42.
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Proof. By substituting k = 2 in Eq. (19), we obtain

K(2,0) = 2(1 − x)3x
1
2

∞∑
n=0

x2n(2n + 2)
√

(2n + 1)(2n + 3).

(24)

We approximate
√

(2n + 1)(2n + 3) in the same lines as in
Eq. (21) and get

√
(2n + 1)(2n + 3) ≈ 2(n + 1) − 1

4(n + 1)
− 1

8(n + 1)3
.

(25)

Using the above expression, we get the approximate value of
K(2,0) as

Kapprox
(2,0) = (1 − x)3x1/2

2

[
8x4

(1 − x2)3
− 12x2

(1 − x2)2

− 7

2(1 − x2)
− 1

32x2
Li2(x2)

]
, (26)

where Li2 is the polylogarithmic function of order 2.
Now, Kapprox

(2,0) − Kapprox
(1,0) , and consequently χmax

approx(|ψ (2,0)
r 〉) −

χmax
approx(|ψ (1,0)

r 〉) becomes positive for x � 0.79, i.e., r � 1.42.
Remark 1. The nonmonotonic to monotonic transition and

vice versa in maximal violation of local realism with the added
number of photons happens because χmax first decreases and
then starts increasing before saturating to a certain value with
addition.

Remark 2. The criticalities in r are obtained by keeping up
to the second-order terms in a series [Eqs. (22) and (25)]. We
find that such approximations nicely match with the values
obtained from the numerical simulations.

Remark 3. The critical squeezing parameters obtained in
the above cases can, in principle, be observed in laboratories,
as all the critical values of the squeezing parameter are below
the maximal amount of experimentally generated squeezing,
i.e., r ≈ 1.73 [46].

Therefore, by combining the results from Theorem 1 and
Proposition 2, we zero in on the squeezing parameter window
for which the maximal violation shows monotonic enhance-
ment on adding (subtracting) photons from a single mode
using the series expansion method, which clearly agree with
Fig. 1. To get more intuitive insights, we now look at the cases
of addition (subtraction) of even or odd number of photons
separately in the next subsection.

B. Even-odd dichotomy

To find out the reason behind such dependence on squeez-
ing parameter of maximal violation, we now study separately
the TMSV states when even (odd) number of photons are
added. The intuition for such investigation comes from the
fact the χmax depends on the (q1, q2) pair, which is different
for odd and even numbers of photons. Let us first restrict
ourselves to addition of even number of photons from the first
mode and study violations of Bell inequality with respect to
the number of photons added for fixed values of the squeezing
parameter. From numerical simulations, we find when only
even numbers of photons are added from a particular mode

FIG. 2. Even vs odd. (Upper panel) χmax against even number of
added photons in a single mode and (lower panel) χmax with odd k.
All quantities plotted are dimensionless.

[Figs. 2(a) and 2(b)], the maximal violation shows monotonic
enhancement for r � 0.94. We now show the same by using
the series expansion method.

Proposition 3: The maximal violation of Bell inequality
undergoes a transition from nonmonotonic to monotonic be-
havior with respect to an even number of photons added in a
single mode when r � 0.92.

Proof. The insight, obtained from numerical simulation, as
reflected in Fig. 2(a), tells us that when r is close to 0.92, the
nonmonotonicity can be observed in the diminution of χmax

after adding at least four photons to the system. Hence, unlike
Theorem 1 and Proposition 2, the quantity of interest now
becomes χmax(|ψ (4,0)

r 〉) − χmax(|ψ (2,0)
r 〉). The approximation

of χmax(|ψ (2,0)
r 〉) has already been done in Eq. (26), and

hence we are left with the approximation of χmax(|ψ (4,0)
r 〉).

Expression of χmax(|ψ (4,0)
r 〉) is obtained by substituting k = 4

in Eq. (19), where the square root term
√

(2n + 1)(2n + 5)
can be approximated as

√
(2n + 1)(2n + 5) ≈ (2n + 3) − 2

(2n + 3)
− 2

(2n + 3)3
.

(27)

This approximation allows K(4,0) and thereby χmax(|ψ (4,0)
r 〉)

to be written in terms of known functions. Using Eqs. (26)
and (27), we find that Kapprox

(4,0) − Kapprox
(4,0) and consequently

χmax
approx(|ψ (4,0)

r 〉) − χmax
approx(|ψ (2,0)

r 〉) � 0, which implies x �
0.51 or r � 0.92.

We now move to the situation where odd numbers of pho-
tons are added. Interestingly, a qualitatively different picture
emerges in this case compared to the even-photon addition
[Figs. 2(c) and 2(d)]. In particular, there exists only a region in
the squeezing parameter, namely 1.23 < r < 1.66, where we
get monotonic behavior of χmax with odd numbers of added
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photons, k. Here, we should also comment that the natures
of nonmonotonicity for r < 1.23 and r > 1.66 are different,
as also seen in Fig. 1. When r > 1.66, the nonmonotonicity
is reflected by a decrement in the maximal violation of Bell
inequality after addition of a single photon, as already men-
tioned in Theorem 1, while for r < 1.23, the nonmonotonicity
is observed after addition higher number of photons [see
Fig. 2(c)]. However, the feature of overall enhancement of the
violation for higher values of k compared to the TMSV state
persists both for even as well as odd k. We again employ the
series expansion method for obtaining the lower bound on r .

Proposition 4: When only odd numbers of photons are
added (subtracted) to a single mode of the TMSV state, the
maximal violation undergoes a transition from nonmonotonic
to monotonic behavior at r ≈ 1.23.

Proof. Again our numerical results help us to identify
k in K(k,0) relevant to prove this proposition. In this case,
we notice that the quantity χmax(|ψ (3,0)

r 〉) − χmax(|ψ (1,0)
r 〉)

is appropriate. The square root term
√

(2n + 1)(2n + 4) in
K(3,0) [see Eq. (19)] can be approximately written as

√
(2n + 1)(2n + 4) ≈ (2n + 5/2) − 9

8(2n + 5/2)

− 81

27(2n + 5/2)3
. (28)

This approximation allows K(3,0) to be written in terms of
known hypergeometric and transcendental functions. We find
r � 1.23, for which χmax

approx(|ψ (3,0)
r 〉) − χmax

approx(|ψ (1,0)
r 〉) � 0.

Remark. There exists a region, 1.23 < r < 1.42, where
both additions of even and odd numbers of photons lead to
monotonic enhancement of maximal Bell violation, although
the combined curve shows nonmonotonicity. This can be
understood by noting the following fact. Even if both even and
odd operations give monotonic violation of Bell inequality,
it does not guarantee that their combined effect would be
monotonic. Hence, individual monotonicity is a necessary
but not a sufficient condition for combined monotonicity.
However, nonmonotonic maximal Bell violation in individual
cases ensures the violation for the state with arbitrary number
of added photons to be nonmonotonic.

We know that the violation of Bell inequality by quantum
states quantifies the content of quantum correlations present
in these states. Another way to quantify quantum correlation
is the amount of entanglement possessed by these states. By
comparing the results obtained here with the entanglement
content [32] of photon-added (photon-subtracted) TMSV
states, we observe that the monotonic relationship of these
quantities for pure two-qubit states in finite dimension is no
longer true for pure states in the continuous variable case
provided the Bell test is performed with pseudospin operators.

IV. DISTRIBUTED PHOTON ADDITION AND
SUBTRACTION

In this section, we go beyond the realm of single-mode
operations and analyze the effect of local operations on
both modes. Specifically, for a given number of photons to
be added, instead of dumping them in a single mode, we
distribute them in two modes and examine the effects of

distribution on violations of Bell inequality based on pseu-
dospin operators. Similar operations are considered in case of
photon subtraction, which in this case is different from photon
addition. For addition, the correlation function of the state
given in Eq. (3), in terms of pseudospin operators, also takes
the form as in Eq. (12) with

K(k,l) = 2 × max

[ ∞∑
n=0

c
(k,l)
2n c

(k,l)
2n+1,

∞∑
n=0

c
(k,l)
2n+1c

(k,l)
2n+2

]
, (29)

where c(k,l)
n are given in Eq. (3). Note that the maximiza-

tion in the above equation arises due to the optimization
involved in the (q1, q2) duo. In the case of photon subtraction,
we can rewrite the state given in Eq. (5) as |ψ (−k,−l)

r 〉 =∑∞
n=0 c

(−k,−l)
n+k |n, n + k − l〉. For this case,

K(−k,−l) = 2 × max

[ ∞∑
n=0

c
(−k,−l)
2n+k c

(−k,−l)
2n+1+k,

∞∑
n=0

c
(−k,−l)
2n+1+kc

(−k,−l)
2n+2+k

]
,

(30)

where c(−k,−l)
n are represented in Eq. (5). The corresponding

maximal violation of Bell inequality for both addition and
subtraction reads as

χmax(∣∣ψ (±k,±l)
r

〉) = 2
√

1 + K2
(±k,±l). (31)

Note that in general K(k,l) �= K(−k,−l) and hence χmax(|ψ (k,l)
r 〉)

and χmax(|ψ (−k,−l)
r 〉) are typically different. However, when

k = l, we notice that |ψ (k,k)
r 〉 and |ψ (−k,−k)

r 〉 have the same
Schmidt coefficients [32], and consequently, χmax(|ψ (k,k)

r 〉) =
χmax(|ψ (−k,−k)

r 〉). Therefore, when k �= l (k �= 0), there exists
a disparity in the maximal violation of Bell inequality for
distributed photon-added and photon-subtracted states (see
Figs. 3 and 4). We discuss this inequivalence in this section.

A. Inequivalence of addition and subtraction

In Sec. III, we argued that both addition and subtraction
of photons from a single mode yields the same maximal
violation. As pointed out earlier, this equivalence breaks down
in the case of distributed photon addition and subtraction
(Figs. 3 and 4). This inequivalence prompts a natural question:
In terms of maximal violation under distribution, which one is
better, addition or subtraction?

To answer the above question, for a fixed squeezing
pararmeter r and for fixed total number of photons added
(subtracted) in both the modes, k + l, with k and l being the
added (subtracted) photons from the first and second modes
respectively, we investigate the behavior of χmax with respect
to k. Extensive numerical analysis reveals the following qual-
itative trends of χmax under distributed operations (certain
exemplary scenarios are depicted in Figs. 3 and 4).

(1) In cases of both addition and subtraction, for low
values of squeezing parameter r and the total number of added
(subtracted) photons, k + l, we observe that the maximal
violation usually decreases with the number of photons added
in the first mode, k, which sometimes leads to the non-
monotonicity of χmax against k. Moreover, in the distributed
case, the value of χmax occasionally turns out to be smaller
compared to that of the single-mode operations.
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FIG. 3. Inequivalence of distributed addition and subtraction
of photons. Here r = 0.5. The abcissa represents the number of
photons added or subtracted from the first mode for a given total
number of photons, k + l, where k and l represent the photons
added (subtracted) in the first and the second modes, respectively.
Furthermore, it highlights a relationship between nonmonotonicity
and the relative performance of distributed addition (subtraction) in
terms of their maximal violation of Bell inequality. Both the axes are
dimensionless.

(2) For low to intermediate values of r and k + l, interest-
ingly, we find that distributed subtraction gives more violation
compared to distributed addition for some specific values of r

and k + l.
(3) The traits of diminution and nonmonotonicity get com-

pletely washed away to monotonic enhancement of maximal
violation for sufficiently high r or by increasing the total
number of added or subtracted photons k + l or both. In
this parameter regime, distributed addition typically yields a
higher violation compared to distributed subtraction.

(4) For distributed addition, the transition from nonmono-
tonicity and diminution to monotonic enhancement of maxi-
mal violation usually requires higher values of squeezing, r ,
or, total number of photons, k + l, compared to the distributed
subtraction case.

The observations are in sharp contrast to the results ob-
tained in the case of entanglement [32], where distribution
always leads to monotonic enhancement of entanglement
for both addition and subtraction. Furthermore, distributed
addition is shown to ubiquitously outperform distributed sub-
traction in terms of the entanglement content (cf. Ref. [47]).
As argued above, this is no more true in the case of violation
of the Bell inequality. Moreover, a careful survey in the space
of squeezing parameter and total number of photons added
or subtracted indicates that the outcome of this duel (addition
vs subtraction) has a one-to-one correspondence with mono-
tonicity of maximal violation upon distribution of the added
or subtracted photons. The general trend being when maximal

FIG. 4. Washing away of diminution and nonmonotonicity in the
maximal violation with increasing squeezing parameter. The total
number of photons added (subtracted) is always fixed to 10. Here, the
abcissa, k, is the added number of photons in the first mode. Other
details are the same as in Fig. 3.

violation for distributed addition shows nonmonotonicity or
diminution, subtraction prevails, which as pointed out earlier
occurs for low to intermediate values of r and k + l.

V. VIOLATIONS OF BELL INEQUALITY IN REALISTIC
SITUATIONS

The cases considered so far are ideal, as the TMSV
states were not reckoned to be tampered by any noise due
to environmental interactions and the twin beam generator
was assumed to be without any imperfections. However, in
laboratories, the presence of noise and faulty machines are
generic [38]. In this section, we address these issues, and focus
on imperfect (noisy and faulty) scenarios which reduce the
maximal violation of Bell inequality, and in some cases, even
makes the system nonviolating. We show how even single-
mode operations, namely addition or subtraction of photons,
can enhance violation of Bell inequality in these scenarios
and sometimes can even activate violation for states which
ceased to violate Bell inequalities in the presence of noise or
imperfections.

Here we consider two major sources of imperfections
that can have detrimental effect on the maximal violation of
Bell inequality: (1) We consider the case of a general local
noise model and examine its effect on the violation of Bell
inequality for TMSV states. We then analyze enhancement
and/or activation of the violation via photon addition or sub-
traction, giving examples for specific cases of local thermal
and Gaussian noise. We also repeat the same analysis for a
classically correlated noise model. (2) We assume that there
is a faulty twin beam generator, resulting a TMSV state with
squeezing different than the desired one and perform the same
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investigations, like effects on violation on local realism due
to states with defects, as in the case of noisy states. (3) We
consider the situation where the photon addition and subtrac-
tion procedures are themselves faulty because of features like
dark counts [40,41] of the photodetectors employed during the
photon addition and subtraction procedures.

A. Noise in states

We now look at the TMSV states, tampered by noise, and
study their robustness against such mixing in terms of its
ability to violate the Bell inequality based on the pseudospin
operators. The violation is computed in two distinct scenarios:
(i) when the probability with which the noise gets mixed
with the TMSV state is known and (ii) when the information
about the mixing probability is absent. In the first case, for
a given p, the maximal violation of the Bell inequality is
evaluated, while in the second one, the settings chosen for
optimizing the violation of the Bell inequality is same as the
one with vanishing p. In both the cases, we analyze the effects
of photon addition and subtraction on the violation of Bell
inequality.

B. Local noise

We consider a general local noise model, where the noisy
state reads as

ρ = (1 − p)|ψr〉〈ψr | + p

( ∞∑
n=0

μn|n〉〈n| ⊗
∞∑

m=0

νm|m〉〈m|
)

,

(32)

where 0 � p � 1, |ψr〉 is the TMSV state with squeezing
parameter r , and

∑∞
n=0 μn = ∑∞

m=0 νm = 1. The correlation
function for ρ, following Eq. (9), in terms of the pseudospin
operators is given by

E(θa, θb ) = A

(
cos θa cos θb + B

A
sin θa sin θb

)
, (33)

with

A = (1 − p) + p

( ∞∑
n=0

(−1)nμn

)( ∞∑
m=0

(−1)mνm

)
,

B = (1 − p) tanh 2r. (34)

In practical situations, the knowledge of p, i.e., whether
any error have acted or not, may be elusive. Therefore, two
situations may arise: (i) the value of p is known and (ii) it is
unknown. The maximum value of the Bell expression for the
state ρ, when the mixing probability, p, is known, is given by
[see Eqs. (14) and (15)]

χmax
p (ρ) = 2

√
A2 + B2. (35)

When the knowledge about p is absent, one might proceed
with the optimal measurement setup for the TMSV state, |ψr〉,
and calculate the violation. Bell expression for such a setting
of the state given in Eq. (32) reads as

χmax

�p
(ρ) = 2

⎛
⎝A + K(0,0)B√

1 + K2
(0,0)

⎞
⎠ = 2

(
A + B tanh 2r√

1 + tanh2 2r

)
. (36)

When the value of p is known, we have χmax
p (ρ) > 2, when

p < 1 − 1

a2 + b2
[a(a − 1) +

√
a(a − ab2 + 2b2)], (37)

where a = 1 − [
∑∞

n=0(−1)nμn][
∑∞

m=0(−1)mνm] and b =
tanh 2r . When the knowledge about the value of p is absent,
then χmax

�p
(ρ) > 2, if

p <

√
1 + b2(

√
1 + b2 − 1)

2 + b2 − a
. (38)

We now explore the possibilities of enhancement and/or
activation of the violation via addition (subtraction) of pho-
tons to one of the modes of such noisy states. We assume,
without any loss of generality, that the single-mode operations
are performed in the first mode. The normalized state when k

photons are added in the first mode of ρ, given in Eq. (32),
can be represented as

ρ̃k = (1 − p)
∣∣ψ (k,0)

r

〉〈
ψ (k,0)

r

∣∣
+p

( ∞∑
n=0

μ̃k
n|n + k〉〈n + k| ⊗

∞∑
m=0

νm|m〉〈m|
)

. (39)

where

μ̃k
n = μn

(
n+k

k

)
∑∞

t=0 μt

(
t+k

k

) . (40)

When k photons are subtracted from ρ, we have

ρ̃−k = (1 − p)
∣∣ψ (−k,0)

r

〉〈
ψ (−k,0)

r

∣∣
+p

( ∞∑
n=0

μ̃−k
n |n〉〈n| ⊗

∞∑
m=0

νm|m〉〈m|
)

,

= (1 − p)
∣∣ψ (0,k)

r

〉〈
ψ (0,k)

r

∣∣
+p

( ∞∑
n=0

μ̃−k
n |n〉〈n| ⊗

∞∑
m=0

νm|m〉〈m|
)

(41)

with

μ̃−k
n = μn+k

(
n+k

k

)
∑∞

t=0 μt+k

(
t+k

k

) . (42)

Here, the forms of |ψ±k,±l〉 are given in Eqs. (2) and (4). The
correlation functions corresponding to states in Eqs. (39) and
(41) have the same structure as Eq. (34), and the correspond-
ing maximal Bell inequality violation, when p is known, is
given by

χmax
p (ρ̃±k ) = 2

√
A2

±k + B2
±k. (43)

For addition of photons in the first mode, with the optimal
(q1, q2) pair, A+k and B+k take the following forms,

A+k = (1 − p) + p

( ∞∑
n=0

(−1)nμ̃k
n

)( ∞∑
m=0

(−1)mνm

)
,

B+k = (1 − p)K(k,0), (44)
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and in the case of photon subtraction,

A−k = (1 − p) + (−1)kp

[( ∞∑
n=0

(−1)nμ̃−k
n

)

×
( ∞∑

m=k mod 2

(−1)mνm

)]
,

B−k = (1 − p)K(−k,0). (45)

When the knowledge about p is absent, the measurement
settings which are optimal for the k photon-added TMSV state
are employed. The maximal Bell expression for such a setting
for the photon-added and photon-subtracted noisy state, ρ̃±k ,
is as follows:

χmax

�p
(ρ̃±k ) = 2

⎛
⎝A±k + K(±k,0)B±k√

1 + K2
(±k,0)

⎞
⎠

= 2

⎛
⎝A±k + K(k,0)B±k√

1 + K2
(k,0)

⎞
⎠. (46)

Note that unlike in the noiseless scenario, in the presence of
local noise, the maximal violations for single-mode addition
and subtraction are structurally different [see Eqs. (44) and
(45)]. We now consider two special cases where the local
noises considered in Eq. (32) are thermal and Gaussian.
In both these cases, the system ceases to violate the Bell
inequality after a critical value of p, even when the value of p

is known.

1. Local thermal noise

Let us first consider the scenario of local thermal noise.
In this situation, the resulting state, ρβ1β2 , is the admixture
of TMSV state with the thermal noise having inverse temper-
atures, β1 = 1

kBT1
and β2 = 1

kBT2
, for first and second modes

respectively with kB being the Boltzman constant and ti , i =
1, 2 being the temperature of the ith mode. The local thermal
noise parameters are given by

μn = (1 − e−β1 )e−β1n,

νm = (1 − e−β2 )e−β2m. (47)

For these choices of noise parameters, we obtain

A = (1 − p) + p tanh
β1

2
tanh

β2

2
, (48)

while B remains the same as in Eq. (34). The maximal
violation, when the value of p is known, reduces to [see
Eq. (35)]

χmax
p (ρβ1β2 )

= 2

√
(1 − p)2 tanh2 2r +

{
(1 − p)+p tanh

β1

2
tanh

β2

2

}2

.

(49)

The range of mixing probability, p, for which ρβ1β2 violates
Bell inequality, is given in Eq. (37), where a and b are now as

follows:

a = 1 − tanh
β1

2
tanh

β2

2
,

b = tanh 2r. (50)

When the value of p is unknown, following Eq. (36), the
violation is given by

χmax

�p
(ρβ1β2 ) = 2√

1 + tanh2 2r

[
(1 − p)(1 + tanh2 2r )

+p tanh
β1

2
tanh

β2

2

]
. (51)

Using Eqs. (38) and (50), we have χmax

�p
(ρβ1β2 ) > 2 when

p <

√
1 + tanh2 2r (

√
1 + tanh2 2r − 1)

1 + tanh2 2r − tanh β1

2 tanh β2

2

. (52)

Clearly, the parameter space, in which violation of Bell in-
equality occurs in the p-unknown scenario, is smaller com-
pared to the case when p is known. For example, if β1, β2,
and r are taken to be 3,5, and 1.25 respectively, we obtain
violation for p < 0.633 when p is known and for p < 0.526
with p being unknown. The distinction becomes more pro-
nounced in the low-temperature limit of the noise. When
β1, β2 → ∞, knowledge of p guarantees that the state keeps
violating Bell inequality for all values of p < 1. On the
contrary, when the knowledge of the value of p is absent,
the state in the above limit violates Bell inequality only when

p <

√
1+tanh2 2r (

√
1+tanh2 2r−1)

tanh2 r
. For the EPR state, this bound

reduces to p < 2 − √
2. On the other hand, in the high-

temperature limit (β1, β2 → 0), the violation becomes insen-
sitive to the knowledge of p, and in both the cases, the state
violates Bell inequality for p < 1 − 1/

√
1 + tanh2 2r , which

reduces to p < 1 − 1/
√

2 for the EPR state. This is rem-
iniscent of the result involving continuous-variable Werner
state in Ref. [48]. Note here that although the properties of
states with known p have been studied before, the situation
when p is unknown, although very relevant, has hardly been
investigated before.

Let us first analyze how the photon addition and subtrac-
tion processes affect the violation of Bell inequality when p

is known. When k photons are added to these states, A+k in
Eq. (44) becomes

(1 − p) + p tanhk+1 β1

2
tanh

β2

2
, (53)

while B+k is same as given in Eq. (44). When an even
number of photons are subtracted, k, we have A−k = A+k and
B−k = B+k , leading to the same χmax for photon-added and
photon-subtracted states. However, for the case of subtracting
an odd number of photons, B−k remains same but A−k =
(1 − p) − p tanhk+1 β1

2 {tanh β2

2 − (1 − e−β2 )}. The above ex-
pressions clearly indicate that in the presence of local thermal
noise, addition and subtraction of photons are equivalent.
However, when odd numbers of photons are involved, addi-
tion performs better than subtraction in terms of the maximal
violation. Therefore, we restrict ourselves to single-mode
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FIG. 5. Variation of the maximal violation of Bell inequality
for photon-added TMSV states mixed with local thermal noise
against number of added photons k. We choose different values of
(r, p, β1, β2) to make the observation more prominent. Both axes are
dimensionless.

operations only involving photon addition. Nevertheless, sim-
ilar analysis can also be carried out for photon subtraction.

Note that when photons are added to ρβ1β2 , Bk (∼K(k,0))
shows overall enhancement, while Ak monotonically de-
creases following the decrement of the term tanhk+1 β1

2 with
k in its expression. Therefore, the maximal value of Bell

expression, χmax
p = 2

√
A2

k + B2
k , is not guaranteed to increase

after adding photons and is determined by the competing
enhancement and decrement of Bk and AK respectively. In
Fig. 5, we plot χmax

p for various values of system parameters
for known p, which encapsulates the following patterns:

(1) For low values of p, the noisy state is essentially close
to the TMSV state, and therefore we get enhancement in the
Bell expression on addition of photons (see the curve with
(r, p, β1, β2) = (0.2, 0.15, 3, 5) in Fig. 5).

(2) For low values of the squeezing parameter, r , the
overall gain G(|ψ (k,0)

r 〉) on addition of photons to the TMSV
state is large (see Table I). Now, in the low- to intermediate-

temperature regime, when p is small, the increase of K(k,0)

(due to the high gain) dominates, and therefore the overall
violation increases and ultimately saturates for high values
of k.

(3) There exists regions in the parameter space where we
can have activation of violation of the Bell inequality, i.e., the
state which is originally non-Bell-violating violates local real-
ism after adding k photons. See the plot with (r, p, β1, β2) =
(0.3, 0.5, 5, 3) in Fig. 5. Also note that, in this situation,
the value of the Bell expression initially increases with the
number of added photons, but it starts decreasing after some
time, as the decrement of the term tanhk+1 β1

2 in Ak becomes
dominating.

(4) For high values of the squeezing parameter, r , the
value of K(k,0) does not change substantially. It is reflected
in the low gain percentages for highly squeezed TMSV states
in Table I. Therefore, the Bell expression decreases mono-
tonically with k. Similarly, for high values of p, the Bell
expression can decrease, as tanhk+1 β1

2 in Ak dominates.
For the case of unknown p, we observe qualitatively the

same features as in the scenario for which p is known but
with reduced values of the maximal violation.

2. Local Gaussian noise

We now admix the TMSV state with local Gaussian noise,
denoted by ρσ1σ2 having coefficients

μn = 2

1 + ϑ3
(
0, e−σ−2

1
)e−n2/σ 2

1 ,

νn = 2

1 + ϑ3
(
0, e−σ−2

2
)e−n2/σ 2

2 (54)

where σ1 and σ2 are the relevant noise parameters, and ϑn

denotes the Jacobi θ function of order n [49]. In this case,

A = (1 − p) + p
1 + ϑ4

(
0, e−σ−2

1
)

1 + ϑ3
(
0, e−σ−2

1
) 1 + ϑ4

(
0, e−σ−2

2
)

1 + ϑ3
(
0, e−σ−2

2
) , (55)

and B remains the same as in Eq. (34).
Like in the case of thermal noise, for a given p, the

maximal violation of Bell inequality using Eq. (35), takes the
form as

χmax
p (ρσ1σ2 ) = 2

√√√√(1 − p)2 tanh2 2r +
{

(1 − p) + p
1 + ϑ4

(
0, e−σ−2

1
)

1 + ϑ3
(
0, e−σ−2

1
) 1 + ϑ4

(
0, e−σ−2

2
)

1 + ϑ3
(
0, e−σ−2

2
)
}2

. (56)

In the case of local Gaussian noise, when p is unknown, the violation, following Eq. (36) reads as

χmax

�p
(ρσ1σ2 ) = 2√

1 + tanh2 2r

[
(1 − p)(1 + tanh2 2r ) + p

1 + ϑ4
(
0, e−σ−2

1
)

1 + ϑ3
(
0, e−σ−2

1
) 1 + ϑ4

(
0, e−σ−2

2
)

1 + ϑ3
(
0, e−σ−2

2
)
]
. (57)

In such a situation, χmax

�p
(ρσ1σ2 ) > 2 holds for

p <

√
1 + tanh2 2r (

√
1 + tanh2 2r − 1)

1 + tanh2 2r − 1+ϑ4(0,e
−σ

−2
1 )

1+ϑ3(0,e
−σ

−2
1 )

1+ϑ4(0,e
−σ

−2
2 )

1+ϑ3(0,e
−σ

−2
2 )

. (58)

C. Classically correlated noise

Instead of uncorrelated noise considered in Eq. (32), we
now move to classically correlated local noise model and
examine Bell inequality violations for these states. Such a
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state can be represented as

ρ̃ = (1 − p)|ψr〉〈ψr | + p

∞∑
n=0

Cn|n, n〉〈n, n|. (59)

The correlation functions for ρ̃, from Eq. (9), in terms of the
pseudospin operators are given by

E(θa, θb ) = cos θa cos θb + K̃(0,0) sin θa sin θb, (60)

with K̃ = (1 − p)K(0,0) = (1 − p) tanh 2r . For known p,

χmax
p (ρ̃) = 2

√
1 + K̃2. In this situation, it is easy to see that

χmax
p > 2 for any values of p < 1, and for any finite values of

the squeezing parameter, r .
On the other hand, the maximal Bell expression takes the

form

χmax

�p
(ρ̃) = 2

⎛
⎝1 + K(0,0)K̃(0,0)√

1 + K2
(0,0)

⎞
⎠

= 2

(
1 + (1 − p) tanh2 2r√

1 + tanh2 2r

)
(61)

with unknown p. Under this assumption about the uncertainty
in the error estimation and detection, we observe criticalities
in the values of r and p, beyond which the system ceases to
violate the Bell inequality based on pseudospin operators. For
r → 0, we find that χmax

�p
(ρ̃) � 2 for p � 1/2. Therefore, for

p < 1/2, the noisy state violates the Bell inequality for any
finite squeezing, even when the value of p is not known. How-
ever, if p > 1/2, the state given in Eq. (59) starts violating the
Bell inequality only when

2r � tanh−1

√
1 − 2(1 − p)

1 − p
. (62)

Note that if p � 2 − √
2, even the EPR state, i.e., the TMSV

state with r → ∞, does not violate a Bell inequality in this
setting. So we get a criticality in the squeezing parameter, r ,
given by the above equation, when 1/2 � p � 2 − √

2.
When we add or subtract photons to a single mode of the

state given in Eq. (59), we have K̃(±k,0) = (1 − p)K(k,0) =
(1 − p)K(−k,0) = K̃(k,0). Now, if p is known, the maximal
violation of Bell inequality simply reads

χmax
p (ρ̃±k ) = 2

√
1 + K̃2

(k,0). (63)

From the above expression, it is clear that photon addition
(subtraction) always leads to an overall enhancement in the
violation of Bell inequality, which will be dictated by the
change in K(k,0) with respect to k. In the absence of any
knowledge about p, the violation is given by

χmax

�p
(ρ̃±k ) = 2

⎛
⎝1 + K(k,0)K̃(k,0)√

1 + K2
(k,0)

⎞
⎠. (64)

Again, upon addition (subtraction) of photons in one mode,
the above expression can be increased. Specifically, for 1/2 �
p � 2 − √

2 and r < tanh−1 [
√

1 − 2(1 − p)/(1 − p)], the
violation can be activated via photon addition or subtraction
in a single mode.

Interestingly, note that for any noise with the same struc-
ture (

∑
Cn|n, n〉〈n, n|) as given in Eq. (59), the Bell expres-

sions for known or unknown values of p do not depend of the
values of Cn.

D. Faulty twin beam generator

Up to now, we consider the scenario where the state is af-
fected by noise. There can be a situation where the twin beam
generator is typically imperfect, and as a result of internal
imperfection and losses, it may end up in generating TMSV
states with less squeezing than it is ought to. To put things
in a quantitative perspective, we assume that a twin beam
generator which is labeled to produce states with squeezing r

does so with an unknown r ′. Of course, r ′ < r . The correlators
are calculated via measurements performed with pseudospin
operators oriented in the optimal direction for the TMSV state
with squeezing parameter r . The maximal violation obtained
in such a situation, following Eqs. (14) and (15), is given by

χmax
r (|ψr ′ 〉) = 2(cos θ + tanh 2r ′ sin θ ),

= 2
1 + tanh 2r ′ tanh 2r√

1 + tanh2 2r
. (65)

We have χmax
r (|ψr ′ 〉) � 2 when

tanh 2r ′ � 1

tanh 2r
(
√

1 + tanh2 2r − 1). (66)

The equality holds when r ′ = rc, where rc is the critical
value of r ′ for a given r , below which the state fails to
show any violation. For the EPR state, the critical value of
r ′ saturates to a finite value r∞

c = 1
2 arctanh(

√
2 − 1) ≈ 0.22.

Although rc might seem to be a small value even for the EPR
state, for experimentally relevant squeezing parameters, rc is
comparable to r . For example, rc for r = 0.75 approximately
reads 0.203172. We want to analyze the effects of adding or
subtracting photons from a single mode when r ′ falls below
rc, i.e., when the state does not violate Bell inequality based
on pseudospin operators.

Let us check whether the range of squeezing parame-
ter which shows nonviolation can be changed if one adds
(subtracts) photons even in a single mode. In this case, for
single-mode operations, photon addition remains equivalent
to subtraction, since the fault in the generator just reduces
the squeezing parameter of the TMSV state, and thus the
equivalence argument goes through. So we add k photons to
the first mode of the obtained squeezed state with squeezing
r ′. As before, we use the optimal measurement settings for k

photon-added TMSV state with squeezing parameter r . Note
that r is the labeled value of squeezing that the twin beam
generator is intended to produce. The maximal violation, so
obtained in this scenario, is given by

χmax
r

( ∣∣ψ (±k,0)
r ′

〉 ) = 2

⎛
⎝1 + Kr ′

(k,0)K(k,0)√
1 + K2

(k,0)

⎞
⎠, (67)

where K(k,0) is in Eq. (17), and is calculated for the TMSV
state with squeezing parameter r , while Kr ′

(k,0) represents the

same thing for the state |ψ (k,0)
r ′ 〉. We consider some repre-

sentative states for which r ′ falls below the critical value as
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FIG. 6. Activation of the violation of pseudospin operator-based
Bell inequality. We choose r = 0.75, such that the corresponding
critical value of r ′ is rc = 0.203172. (a) Activation via deterministic
addition (subtraction) of photons in single mode for three values of
r ′ < rc. (b) The dual effects of imperfect addition (subtraction) of
photons in single mode and faulty TMSV state for r ′ = 0.13, and for
different values of λ and σ (see discussions in Sec. V E). Both the
axes are dimensionless.

given in Eq. (66). We show that it is possible to activate the
violation for these states by using single mode operations. See
Fig. 6(a).

In the entire analysis, we have assumed that the addition
or subtraction process is error free. In the next subsection, the
same situations will be re-examined, when the photon addition
or subtraction process is itself imperfect.

E. Imperfections in photon addition and subtraction mechanism

The indeterminacy in addition (subtraction) of photons can
be attributed to variety of reasons, like dark counts [40,41]
of the detector, etc., and hence can lead to decrement in
violation of local realism. In this subsection, we consider
two distinct models of imperfections in the added or sub-
tracted number of photons. First, for a given k number of
added (subtracted) photons, we assume that the state is to
be mixed with k − 1, k − 2, . . . , k − m (m � k) number of
photon-added (photon-subtracted) states with probabilities
which follows the exponential suppression (ES). Hence, such

0 2 4 6 8 10 12 14 16 18 20
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1.7
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1.9
2.0
2.1
2.2
2.3
2.4

χmax

(a)
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ES, λ = 0.4
GS, σ = 0.4
ES, λ = 0.6
GS, σ = 0.6
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1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

χmax

(b)

Perfect case
ES, λ = 0.4
GS, σ = 0.4
ES, λ = 0.6
GS, σ = 0.6

FIG. 7. Effects of imperfect photon addition process on
TMSV states with local thermal noise, (a) with (r, p, β1, β2) =
(0.2, 0.15, 3, 5) and (b) with (r, p, β1, β2) = (0.3, 0.5, 5, 3). See
Fig. 5 for the perfect photon addition case for these choices of
system-noise parameters. We chose these two values to highlight the
consequences of imperfect photon addition on situations of enhance-
ment (a) and activation (b) of χmax. Both the axes are dimensionless.

that the effective state becomes

ρ̄±k =
m∑

i=0

piρ±|k−i|. (68)

Here, m is the cutoff on the maximal discrepancy in the photon
number during the addition (subtraction) procedure, ρ±l rep-
resents a state with l number of added (subtracted) photons,
and pi are the mixing probabilities, which decrease according
to exponential law. The second scenario considered in this
paper is where the probabilities are Gaussian. Specifically, the
exponential probabilities, for a given m, are given by

pi = e−i/λ∑m
i=0 e−i/λ

, (69)

whereas for Gaussian suppression (GS), the probabilitie takes
the form as

pi = e−i2/σ 2∑m
i=0 e−i2/σ 2 . (70)

Here, λ and σ give the measures of dispersion for these
imperfect additions (subtractions).

1. Noisy states

In Sec. V A, we have discussed the effects of noise on the violation of Bell inequality for the TMSV states and the role of
photon addition and subtraction to improve the situation. Specifically, we have discussed the cases of local noises (thermal and
Gaussian) and a classically correlated noise. In this subsection, we study the effects of faulty addition (subtraction) of photons
on the Bell expression, when the noise probability, p, is known.

When the photon addition scheme on TMSV states with local noise suffers exponential suppression, and when we know the
value of p, the violation of Bell inequality is given by

χmax
ES = 2

(∑m
n=0 e−n/λ

)−1√
A2

k + B2
k

⎡
⎣ ∑

i=0,2,4,...�m

e−i/λ(AkAk−i + BkBk−i ) −
∑

j=1,3,5,...�m

e−j/λAkAk−j

⎤
⎦. (71)

The corresponding violation for GS reads as

χmax
GS = 2

(∑m
n=0 e−n2/σ 2)−1√
A2

k + B2
k

⎡
⎣ ∑

i=0,2,4,...�m

e−i2/σ 2
(AkAk−i + BkBk−i ) −

∑
j=1,3,5,...�m

e−j 2/σ 2
AkAk−j

⎤
⎦. (72)
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Here, Ak and Bk are given in Eqs. (44). In this imperfect addition scenario, for low values of noise parameters, the enhancement
[Fig. 7(a)] and activation [Fig. 7(b)] in the maximal violation persists, with lower values compared to the perfect addition scenario
(see Fig. 5). The domain of activation also naturally shrinks in this imperfect case, see Fig. 7.

2. Faulty twin beam generator

We now study the response on violation of Bell inequality under coupled imperfect scenario. In particular, along with
imperfect photon addition, the twin beam generator produces the TMSV state with r ′, instead of r . In the case of ES,

χmax
ES = 2

(∑m
n=0 e−n/λ

)−1√
1 + K2

(k,0)

⎡
⎣ ∑

i=0,2,4,...�m

e−i/λ(1 + Kr ′
(k−i,0)K(k,0)) −

∑
j=1,3,5,...�m

e−j/λ

⎤
⎦, (73)

while for GS, we get

χmax
GS = 2

(∑m
n=0 e−n2/σ 2)−1√
1 + K2

(k,0)

⎡
⎣ ∑

i=0,2,4,...�m

e−i2/σ 2
(1 + Kr ′

(k−i,0)K(k,0)) −
∑

j=1,3,5,...�m

e−j 2/σ 2

⎤
⎦. (74)

To take one concrete example, we restrict m to be equal to k, choose different values of λ and σ , and examine the consequence
of faulty photon addition procedure on the Bell expression [see Fig. 6(b)]. We observe that for low values of dispersions (λ and
σ ), the Bell expression, which initially does not violate, always increases with varying numbers of added photons, k, leading
to activation of the violation. However, if the dispersions are large, in both exponential and Gaussian cases, the Bell expression
initially shows a decrement in its value and can finally be enhanced or activated after adding sufficiently high number of photons.
There can also exist scenarios where this activation is not possible at all, even after adding a large number of photons [see
Fig. 6(b)].

VI. CONCLUSION

Violation of Bell inequalities by quantum systems estab-
lishes the existence of correlations beyond the classical ones.
For finite-dimensional quantum systems, violation of Bell
inequalities have been studied more thoroughly in compari-
son to the same for continuous-variable (infinite-dimensional)
systems. In the field of continuous-variable systems, there was
a long-standing debate, started by John Bell, as to whether
states with positive Wigner functions would violate a Bell
inequality. It was resolved conclusively by constructing Bell
expressions using parity operators, later using pseudospin
operators, and demonstrating violation for certain entangled
states with positive Wigner function. In this paper, we used
pseudospin operators to examine the violation of Bell in-
equality for photon-added and photon-subtracted two-mode
squeezed vacuum (TMSV) states, where addition and sub-
traction are performed either in a single mode or in both
modes. We found that unlike entanglement, the amount of
violation of pseudospin operator-based Bell inequality by
photon-subtracted state can be higher than that of the photon-
added ones.

We have further studied the effects of local noise (specifi-
cally, local thermal and local Gaussian noise) on the maximal
violation of Bell inequality for the TMSV states and computed
the parameter ranges for which the noisy TMSV state abstains
from violating the considered Bell inequality. We demon-
strated that under such circumstances, single-mode operations
like photon addition can activate violation. We repeated the
same drill of investigations with the goal of activation in the

case of a faulty twin-beam generator for generating TMSV
states and imperfections in photon addition or subtraction
process. We reported here that in both the scenarios, the
answer is affirmative, i.e., the activation is possible, thereby
transforming nonviolating states to violating ones.
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APPENDIX: MAXIMIZATION OF BELL EXPRESSION

Let us now discuss the method for obtaining χmax, by
performing maximization over the settings, i.e., θa, θb, θ

′
a, θ

′
b.

The correlation matrix, Tij = 〈Si
q1

⊗ S
j
q2〉, where i, j = x, y, z

and q1 and q2 are chosen appropriately depending on the
structure of the state. Sx

q and S
y
q are simply given by S+

q +
S−

q and −i(S+
q − S−

q ) respectively, where S+
q and S−

q are
given in Eq. (8). The T (correlation) matrix for photon-
added (subtracted) TMSV states can be expressed as T =
diag(K,−K, 1). The two highest eigenvalues of the matrix
T †T are 1 and K2 respectively. Now, following the argument
as given in Ref. [43], the maximal violation of Bell inequality
is given by 2 ×

√
M(T †T ), where M(T †T ) represents the

sum of the two largest eigenvalues of T †T . The same in
this case reads 2

√
1 + K2. This completes the proof of the

expressions in Eqs. (15) and (35).
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