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We construct a quantum Markovian master equation for a driven system coupled to a thermal bath. The
derivation utilizes an explicit solution of the propagator of the driven system. This enables the validity of the
master equation to be extended beyond the adiabatic limit. The nonadiabatic master equation (NAME) is derived
employing the weak system-bath coupling limit. The NAME is valid when a separation of timescales exists
between the bath dynamics and the external driving. In contrast to the adiabatic master equation, the NAME
leads to coupled equations of motion for the population and coherence. We employ the NAME to solve the
example of an open driven time-dependent harmonic oscillator. For the harmonic oscillator the NAME predicts
the emergence of coherence associated with the dissipation term. As a result of the nonadiabatic driving the
thermalization rate is suppressed. The solution is compared with both numerical calculations and the adiabatic

master equation.
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I. INTRODUCTION

All physical systems in nature, small or large, are affected
to some extent by an external environment. The theory of
open quantum systems incorporates the influence of the envi-
ronment on the dynamics of a quantum system in a concise
manner. In this framework the aim is to find the reduced
dynamical description of the primary system while tracing out
the environment. The dynamical map describing the system’s
evolution is required to be completely positive and trace
preserving (CPTP). This mathematical property is required
to allow a consistent physical interpretation of the quantum
dynamics. The most general form of a CPTP dynamical
reduced description of divisible maps is given by the Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) Markovian master
equation [1-3]. There are several options for deriving the
GKLS equations from first principles. In this study we will
follow the path of the Born-Markov weak system bath cou-
pling derivation originally derived by Davies [4].

The GKLS form fulfills the thermodynamical requirements
such as the first and second laws of thermodynamics [5-8].
This master equation is a template in many fields, such as in
quantum optics [9,10], quantum measurement [11], quantum
information [12] and quantum thermodynamics [6].

The original Davies construction assumes a static system
Hamiltonian leading to a master equation, where the envi-
ronment is expressed through its second-order correlation
functions and bath modes matching the system’s intrinsic
frequencies. This Davis approach has been generalized for
the dissipative dynamics of periodically driven systems using
the Floquet theory [13-17] and adiabatic driving [18-22].
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Recently, Yamaguchi et al. generalized the master equation
beyond the adiabatic regime [23], where the final form of
the master equation was identical to the adiabatic equation
of Albash er al. [19]. In this paper we derive a nonadiabatic
master equation (NAME) going beyond the approximations
of Albash and Yamaguchi.

In the derivation of the NAME a Lie algebraic structure
of the driven system evolution operators is employed. The
outcome is a time-dependent GKLS operator structure with
time-dependent decay rates. Unlike the case of the adiabatic
GKLS equation, the equations of motion of the population
and coherence are coupled and this leads to generation of
coherence associated the dissipative term.

One of the most well-studied examples of open quan-
tum systems is the master equation of the quantum har-
monic oscillator. The same equation is employed in many
physical disciplines such as quantum optics, ions in a Paul
trap, optomechanical oscillators, and vibrational modes of
molecules in solution. We would like to extend such scenarios
to processes with an explicit time-dependent Hamiltonian.
A quantum harmonic oscillator with a varying frequency,
coupled to a bosonic bath, is employed to demonstrate the
NAME. The results for this model predict nonvanishing co-
herence due to the inhomogeneous terms in the equations
of motion. These terms define the instantaneous attractor,
which provides insight into the relation between the system
and bath for nonadiabatic processes. The NAME construction
enables a thermodynamically consistent study of driven sys-
tems coupled to the environment, such as isothermal strokes
in a quantum Carnot engine [24], and quantum control of open
systems [25-27].

We begin by presenting in Sec. II a general derivation of the
NAME, study the asymptotic limits of the equation (Sec. III),
and present an analysis of the approximations in Sec. V. In
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Sec. IV we study a specific example of a driven harmonic
oscillator and verify the validity of the NAME by numerical
methods (Sec. VI). This paper is accompanied by detailed
appendixes that include the explicit derivation of the NAME
and the numerical simulation details.

II. DERIVATION OF THE GENERAL NONADIABATIC
MASTER EQUATION

The starting point of the derivation of the NAME is a
system coupled to a single bath. We assume that the dynamics
of the composite system is closed and follows a unitary
evolution generated by the composite Hamiltonian [28,29]:

H(t) = Hs(t)+ Hp + Hy. (1)

In (1) A s(t) and Hp are the system and bath Hamiltonians
and H; is the system-bath interaction term, which can be
expressed as

A =Y A ® Bi. )
k

Here, Ay and By are the Hermitian operators of the system and
bath, respectively, and g are the coupling strength parame-
ters. Following the standard perturbation expansion, the first
step is a transformation to the interaction picture with respect
to the H s(t) and bath Hamiltonians,

A = U0 A0 O5(1)0s(1), 3)

where the free bath propagator is Upt,0)= Up(t) =
e" s/t and Us(r,0) = Us(t) = Texp (=L [3 Hs(t))dt').
Here, 7 is the time-ordering operator and the tilde symbol
is assigned to operators in the interaction picture. The system
propagator Us(t) is the solution of the Schrodinger equation
for a time-dependent Hamiltonian,

dUs(1)
ot

In the interaction picture, the interaction Hamiltonian takes
the form

ih

= Hs(t)Us(t), Us(0) = 1. 4)

H(t)=Hi(1) =) &A1) ® Bi(0), ©)
k

where the interaction picture operators of the bath and system
are By (1) = /% Be= st/ and Ay (t) = O5(t)AcUs(1).

To obtain a master equation of the GKLS form, the
Liouville-von Neumann equation is expanded up to second
order in the coupling strength g;, relying on the weak-
coupling limit. Furthermore, the Born-Markov approximation
is employed involving three main assumptions [29]:

(1) The quantum system and the bath are uncorrelated,
such that p(¢) = ps(t) ® pp.

(2) The bath correlation functions decay much faster than
the system’s relaxation rate and internal dynamics.

(3) The state of the bAath is as§umed to be a thermal
stationary state, pg = e PH5 /tr(e=FHr),

These assumptions with the second-order perturbation the-
ory lead to the Markovian quantum master equation

d

—ps(t) =

1 [~ S i i
7 _F/o dstrp[H (1), [H(t — 5), ps(t) ® pgll.

(6)

This equation has also been derived using the time-
convolutionless technique [30,31].

To reduce Eq. (6) from an integrodifferential to a differen-
tial form, we introduce the set of time-independent eigenop-
erators {F} of the propagator Us(¢). The eigenoperators are
defined by the equation

Fi(t) = UL F;(0)Us(1) = ;1) F(0), (7)

which is an eigenvalue equation in terms of operators, where
A1) =2, i(1)]e'®™ are complex eigenvalues. The unitarity
of Us(1) and the algebraic properties guarantee the existence
of operators F;, see Appendix A. The set {F} forms a com-
plete basis of the system’s Lie algebra, allowing expansion of
A (1) in terms of the eigenoperator basis

Aty = Y EK 0O Fy(0), (8)
j

where 9;‘ (t) includes the time-dependent phase ¢; of F;(t)
and any phase associated with A (¢). Similarly, &% is a func-
tion of |A;(#)| and any explicit time dependence of the system
interaction operator. The time-dependent coefficients satisfy
é (1), Gk(t) € R and E (t) > 0 (see Appendix B). In the
followmg we omit the tlme dependence of the eigenoperators
at initial time, F = F 0).
Inserting Eq. (8) in Eq. (6) we obtain after some algebra

d
< s Z/ ds £t — )

—ps(t) =
kK, j.j'

N o
x &% Ot} Vevgk(F;ps(t)Fy — Fy Fjps(t))
x trp{ By (1)Bi(1 — 5)pg} + Hec., ©)

where H.c. denotes the Hermitian conjugated expression.
Equation (9) describes dynamics influenced by the past
history of the driving protocol, incorporated by SJ'?(t —)

and 01'? (t — 5). The analytical solution for such an integrod-
ifferential equation presents a challenge [32-35] and is not
guaranteed to be completely positive; therefore further ap-
proximations are required. We assume that the bath dynamics
is fast compared to the driving rate which determines the
adiabatic parameter u. In general, the adiabatic parameter is
defined as

(k(1)|Hsll(1)) ] (10)

=Mt k| Tm o = o |
f [|Ek<z>—E/<t>|2

where E;(t) and |j(¢)) are the instantaneous eigenenergies
and eigenstates of the Hamiltonian H s(t) [36]. A slow change
of the driving protocol relative to the bath dynamics will
lead to a slow change of £(¢) and 6% (z) relative to the bath
decay rate. This translates to a relation between the typical
timescales: The bath correlation decay time tp should be
much shorter than the nonadiabatic timescale t;, an additional
timescale which emerges in the derivation, associated with
the change in the driving protocol, cf. Sec. V. For s € [0, 73]
and s < t, & Jk (t — 5) can be approximated by a polynomial
expansion in orders of s,

d
£t =)~ E[(1) = & (D5, (11)
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The amplitudes are influenced directly by the driving; hence,
it can be assumed that in the regimes s ~ 75 and s < 75 (for
slow change in the driving) the second term on the right-
hand side (RHS) is negligible relative to the amplitude S_;‘(t),
obtaining S_f (t—s)~ ?;_f(t). It is possible also to include the
first-order terms in s, leading to a small correction of the
decay rates. (See Appendix D on higher-order corrections.)
For s > tp the bath correlation functions decay rapidly, and
therefore the contribution to the integral can be neglected.

A similar approximation is performed for the phases by
expanding 91’? (t — s) around 7 up to first order. This order is the
dominant contribution to the dynamics, and hence it included
in the derivation,

d
05t — ) ~ 05 (1) — E@f(z)s =0f(1)+aof)s,  (12)

where the second term in the expansion is defined as oe’;(t) =

—%Gj'?(t — §)|s=0. Inserting the expansions, Eq. (12), into

Eq. (9) leads to

d L
Shs = Y sl sl (e Ve
k', j,j'

X Fkk'(aﬁ(f))(ﬁjﬁs(f)ﬁj/ — FyFips(t)) + He.,
(13)

where the Fourier transform of the instantaneous bath corre-
lation function is given by

1 [ ; A A
Pue () (D) = = / dse™) Pt (B (1) Bt — 5)ps) . (14)
0

To simplify, we decompose I" to a real and pure imaginary
part,

T (@) = 5V (@) + i S (@). (15)

Here, yuw(o) can be written as yu (o) = # ffooo dse'®s
(Bi(s)Bi(0)pp)p, where Siw(a) = 5:[Tiw (@) — Ty (@),
and ( )p is the average over the bath’s thermal state.

In order to obtain a master equation in the GKLS form
the secular approximation is required. The approximation
neglects fast oscillating terms in the master equation, which
average to zero in the time resolution of interest. In such a
regime, assuming no degeneracy in the Bohr frequencies, the
terms for which 6% (1) # —6%(1) oscillate rapidly relative to
the relaxation dynamics and average to zero.

Performing the secular approximation leads to the NAME
in the interaction representation:

d [~
ZBs(0) = =21 ALs(0). ps(0)]

+ Z (Sf (t))2g,fykk (Ol?(t))
k.j

A N 1 .44
x <Fjﬁs(t>Fj — SUFIE;, ﬁs(t)}>- (16)

Here, H;g(t) is the time-dependent Lamb-type shift
Hamiltonian in the interaction representation, Hyg(t) =

Yy iSO P EyL 1F; = Fi(0).

The decay rates in (16) are all positive; hence, the equation
has a GKLS form, guaranteeing a CPTP map for the system’s
state. Equation (16) has a very similar form to the quantum
Markovian adiabatic equation of Albash et al. [19] and the
generalization of Yamaguchi et al. [23]. The differences which
arise are the scalar rate coefficients and the dissipative gen-
erator operators F ;. As will be shown in the next sections,
these differences result in different qualitative and quantitative
behavior.

III. ASYMPTOTIC LIMITS OF THE NAME

The stationary master equation as well as the adiabatic and
periodically driven master equations are asymptotic limits of
the NAME (16).

A. Periodic driving

The structure of the NAME, Eq. (16), also holds when the
system is driven by a periodic external field, see [15,37]. The
decomposition now reads

Ay =} gje" R, a7
J

where &% is time independent and 6} (1) = (w; + mQ)t. The
quasi-Bohr frequencies w; are the Floquet modes, Q = 27/t
with a period time 7, and m = 0, £1, 2, .... In this case, the
operator F ; is the part of A (1) that rotates with frequency
w; +m§2, and the summation in Eq. (15) is replaced by

Zj - ZmeZ Z{w_,-}'

B. Adiabatic limit

A quantum adiabatic process is such that an initial en-
ergy state, |¢,(0)), follows the corresponding time-dependent
eigenstate, |¢,(?)), of the instantaneous Hamiltonian, Hg(t):

Hs(t)]ea(t)) = e4(t)|ea(t)).

Following the derivation in [19], in the adiabatic limit, the
propagator can be represented in terms of the instantaneous
energy eigenstates as follows:

Us(t, 1)~ T8t 1) =Y le®))(e(t)le™ 0. (18)

The phase is given by A,(f, 1) = i~! ft dtle,(t) — ¢a(7)],
where {e,(¢)} are the instantaneous energies and ¢,(t) =
i(e,(t)|€4(t)) is the Berry phase [38,39].

The system operators in the interaction picture are calcu-
lated using U2%(z, 1'):

Aty = UMN(1,00A, U (2, 0)
=" (ea(®) Arles (D))e 0 Oe, (0)) (e5(0)] . (19)

a,b

We identify the expansion set operators as Fpy =
|£4(0))(e5(0)], the amplitude by &, (1) = (eq(1)|Axlen(1)),
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and the phases as
Aa(t, 1)

1 t
= z/ dr[(es(t) = £a(0)) = ($5(7) = Gu(D)].
(20)

Oba(t,1") = Apa(t, 1) = Ap(1, 1) —

Here, the indices b, a can be replaced by a single index j,
reconstructing Eq. (8). Similarly to the derivation in Sec. II,
we expand the phase 6, (¢ — s, 0) at the vicinity of ¢. The first-
order term becomes

d
Opa(t —5,0) = Opa(t,0) — E%(t, 0)s

= Opa(t, 0) — wpa(t)s + (p(1) — Pa(t))s , (21)
where wp, (1) = (e,(t) — €,(t))/h are the instantaneous Bohr
frequencies. The third term on the RHS is first order in the
adiabatic parameter p (10). The frequency ¢ is proportional
to u, and therefore in the adiabatic limit when u < 1, ¢ can
be neglected. The frequency oy, (#) becomes in this limit

Apg = Wpa(1). 22)

Inserting Eqgs. (19) and (22) into Eq. (16) we obtain the
quantum adiabatic master equation, Eq. (54) in [19]. The
static master equation can be obtained for a time-independent
Hamiltonian, Hs(7) = Hs(0).

IV. THE NAME FOR THE DRIVEN
HARMONIC OSCILLATOR

Next, we study the validity of the NAME for the driven
harmonic oscillator coupled to a bosonic bath. This model is
relevant for a wide range of applications, including atomic,
molecular, and optical physics [40,41]. Here we employ the
properties and structure of the SU(1,1) Lie algebra [42] to
derive the NAME.

The system is represented by the Hamiltonian

L P21,
Hy = — + smw™(1)0", (23)
2m 2

where Q and P are the position and momentum operators,
and m and w(t) are the mass and frequency of the system.
Closed-form solutions of the free evolution of the second-
order operators has been obtained for a constant adiabatic
parameter, u = 5 = const [43], Appendix E. In this case,
the driving protocol of a time duration 7, between frequencies
w(0) and w(t) is given by

)

The adiabatic parameter w is uniquely determined by
w(0), w(tr), and ¢, obtaining finite values for bounded fre-
quencies. The evolution of the isolated system is presented in
Appendix F and is used to expand the interaction term (5) in
terms of the eigenoperators (7).

A. Coupling to the bath

The harmonic oscillator is coupled linearly to a bosonic
thermal bath,

A A . Mmwy A A~
Hi=0®g) pi=ig) |5 0®b —b). @)
k

where py is the kth oscillator momentum operator and l;k, ISZ
are the corresponding annihilation and creation operators.
Other choices of linear system-bath coupling are possible as
in Ref. [44].

Following the derivation described in Sec. II, Q(t) is
decomposed into the set of eigenoperators (see Appendix F)

Q) =&)Yy F;e®, (26)

Jj=%

where F i = F 7(0) = F 7(0). The set of eigenoperators is a
linear combination of the position and momentum operators

FLt)=AQ0@)+ BP(t)=Fl (1), 27)

where A = 2(1— + 1) and B = lmw(o) The amplitude is
given by £(¢) = /1 — nw(0)t and the phases

Qi(l)z:f:%/() w(t)dt’ —iz—l <w((0))) (28)

where ¥ = /4 — 2. Notice that (1 — uw(0)t) is necessarily
positive for physical w(t), Eq. (24), leading to a real value for
the accumulated phases.

In order to perform the secular approximation we ana-
lyze the time dependence of 6.(¢). The approximation is
valid when |26, (¢)| oscillates rapidly relative to the decay
frequency r,;l. This adds a restriction on the range of 6. (¢)
and w(r) with respect to the driving protocol, leading to
the inequality |0.(¢)] > 1 for t < tg. A full analysis of the
approximation and regime of validity are presented in Sec. V.

Following the general derivation for a specific £(), 1:" is
and 6, the correlations’ one-sided Fourier transforms, I'y; in
Eq. (14), can be calculated, determining the dissipative rates
in the NAME, Eq. (16). By collecting Egs. (28), (26), and (16)
the NAME in the interaction representation becomes

d _
—ps(t) =

. —%[msm, Bs (D] + £y (@(1))

e 1A A .
X |:F+PS(I)F— - E{F_F+, ps(t)} 4 e~/ ksT

. P B
X (F_[)S(t)F+ - §{F+F_, ,55(t)}>:|, (29)

where kp is the Boltzmam} constant, T is the bath temper-
ature, a(t) = %w(r), and F, = F,(0). The time-dependent
rate coefficient has the form

y(a(r) = ?a(t)f(ot(t))[lv(ot(t)) + 11, (30)

where J(a) is the spectral density function determined by
the density of bath states f(«) and the coupling strength
x(a), J(a) = f(a)x(e) [9] (cf. Appendix D). The fac-
tor N(a) is the mean occupation number given by the
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Bose-Einstein statistics and e "*®/ksT g the instantaneous

Boltzmann factor related to the effective time-dependent fre-
quency o(t).

B. Solution for the NAME

For a time-independent problem it is convenient to trans-
form to the Heisenberg picture and obtain a set of coupled
linear differential equations for the operators [13,43]. For
Hilbert space of dimension N one obtains N> — 1 equations,
which can be solved analytically or by standard numeric
methods [45]. In contrast, the solution is more complicated
when the GKLS equation has an explicit time dependence.
For such a case the solution for the operator O is given by
[29]

d A

EOH(I) = Vi, (L1 (1)On (1)), (€29
where the subscript H designates operators in the Heisenberg
picture. The adjoint propagator takes the form

t
Vit 1) =T, exp/ dsLi(s), (32)
Iy
where 7, is the antichronological time-ordering operator
and V1(z, 1) satisfies the differential equation 2 V1(z, 1) =
Vi(t, 1)L (¢). In order to obtain an equation of motion for
On (1) [Eq. (31)], one first needs to apply the time-dependent
adjoint generator at time ¢ on the operator at initial time and
then propagate the solution in time with V'(¢, 0). In general,
this proves to be difficult as a result of the noncommutativity
of L1(s) at different times, requiring time ordering in Eq. (32).
To circumvent the problem of time ordering in the Heisenberg
representation, we solve the dynamics of the density matrix.
Solving the NAME in the interaction picture simplifies
the analysis. The equation is expressed in terms of normal-
ized creation and annihilation operators: b = /cF, and bt =
JeF_, where ¢ = 2RIm(A*B))~! for A and B introduced
in Eq. (27) b= 13(0)]. These operators satisfy the bosonic
annihilation and creation commutation relation [E, l;f] =1,
allowing the NAME to be cast in the simple form. Assuming
that the Lamb-shift term is negligible, we obtain

iﬁ t)=k,t)| bp (r)BT—l{BTB ps(t))
dt s v 5 2 e

~ N 1 ..
+k¢(r)<bT ps(t)b — E{bbT : ﬁsm}), (33)

where k(1) = "a(t)J (a(t))[N(a(t)) + 1] and k(1) =

=ea(t)J (e ()N (a()].

We assume an initial squeezed Gaussian state in terms of
the operator basis {BTE, b2 b2 i }, which is preserved under
the dynamics of the NAME [46],

1 i 5 LreBi2
ps(t) = Zese PO O
where Z(t) is the partition function,

e P

_.
(e — /1 - 5

Z)=ZB.y) =

(35)

For the general case of a finite Lie algebra, gs(7) can be
expressed in terms of a generalized Gibbs state (ensemble)
density operator [47,48], and the squeezed Gaussian is a
special case of such a state (see Appendix C).

Inserting Eq. (34) into Eq. (33) and multiplying the equa-
tion of motion by ,551 leads to (j—,ﬁs)ﬁg_l = (L’,ﬁs)ﬁs_l, where
L is the generator in the RHS of Eq. (33). Utilizing the
Baker-Housdorff relation the RHS is decomposed to a linear
combination of the algebra operators. By comparing both
sides of the equation, term by term, we obtain two coupled
differential equations for y (¢) and S(z):

B =kl —1)+ky(e?? —1+4efly?)
y =k, +kyp)y —2kyye®. (36)

(A detailed derivation appears in Appendix G.) Notice that the
rates k; and k4 are in general time dependent, increasing the
difficulty for obtaining an analytical solution. Once B(¢) and
y (t) are obtained the expectation values of the set of operators
can be retrieved from Eq. (34), thus circumventing the use
of the Heisenberg representation. Equation (36) was solved
numerically using the Runge-Kutta-Fehlberg method, and the
solutions of B(¢) and y (¢) are utilized to calculate expectation
values (see Appendix G).

In order to analyze the system dynamics we define two
additional time-dependent operators:

S P o) s s
L(t)z%—zmw(t)Q and C(t)= —=(QP + PQ).

2
(37)

The operators I:(t) and C (t) together with H s(t) and the
identity constitute a closed Lie algebra. These three operators
define the state of the system (Appendix G) [43]. L is the
difference between kinetic and potential energy, and C is
the position-momentum correlation, defining the squeezing
of the state. Both expectation values vanish at thermal equi-
librium. Since L(7) and €(¢) do not commute with Hg(7),

VAL H(CY?

they can be employed to define the coherence: C = ~—~ D
[43]. These operators can describe all thermodynamical equi-
librium and out-of-equilibrium properties and are employed
to reconstruct the generalized Gibbs state gg () [43].

Using the formulation above, the expectation values of the
operators (I:Is(t)), (i(t)), and (C’(t)) are solved as a function
of time. Figure 1 shows a comparison between the solution of
the NAME for different system-bath coupling strengths. The
vanishing system-bath coupling term g = 0 corresponds to the
isolated case. For u < O the oscillator frequency decreases
with time, leading to a reduction of the system’s energy as
seen in Appendix E. The expectation value of (C(r)) shows
damped oscillations; similarly, (L (1)) oscillates with an oppo-
site phase difference. These oscillations arise due to coupling
between population and coherence, Eq. (E1). When g > 0 the
system energy increases due to energy flow from the bath. The
observables (L(7)) and (C(r)) are suppressed at short time.
At later times (L(r)) and (C(r)) increase with the coupling
strength g, beyond the isolated case (see inset of Fig. 2).

Figure 2 shows the dynamics for an initial state which is
diagonal in the energy eigenbasis ((£(0)) = (C(0)) = 0). The
analytical result of the NAME is compared to the isolated
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50 (Hs) _ o0 ()

N
o

N
o

Energy [a.u.]

Time [a.u.]

Time [a.u.]

FIG. 1. System dynamics as generated from the NAME for dif-
ferent coupling strengths g (g = 0 represents isolated dynamics).
The left panel shows the expectation value of the energy as a
function of time, and the right panel shows the position momentum
correlation (€C) as a function of time. The chosen parameters are
n=—0.1, w(0) =40, and T = 20, where the initial conditions are
B(0) = —1 and y(0) =0.5. This corresponds to an initial state
described by (H(0)) ~ 55, (L(0)) ~ —20.5, and (C(0)) ~ 3.7.

dynamics and the adiabatic master equation. In the adiabatic
case the system remains diagonal in the energy eigenbasis
at all times, with no generation of coherence throughout
the dynamics, while nonadiabatic dynamics display a rise
in coherence which oscillates in time. The driving dresses
the system’s state, leading to a rise in coherence attributed
to both the unitary dynamics as well as to the dissipative
term. At short times (L(r)) and (C(¢)) are suppressed by the
system-bath interaction as seen in Fig. 2. However, at long
times for nonadiabatic driving, (C(1)) and (L(1)) converge to
anonzero value. This is demonstrated in Fig. 3, where we plot
the dynamics of the coherence.

Figure 3 shows the increase of coherence at later times
for increasing bath coupling. The state of the system is

(Hs) L
60!‘,\ —NAME —NAME 0.4W
i \ Isolated Isolated
—n \ X ) 6 . . 0.2
S \.\ ~-=Adiabatic ~-=Adiabatic ‘ |
8400 N :
> |
2
2
i 20
0
0 5 10 0 0.5 1

Time [a.u.] Time [a.u.]

FIG. 2. The system dynamics generated from the NAME (pink,
dark gray) is compared to the isolated quantum system (blue, dashed
light gray) and the instantaneous attractor (fixed point) of the
adiabatic solution (green, dashed gray) for a parametric harmonic
oscillator. The dynamics are represented by the system variables
(Hs(1)), (L(1)), and (C(¢)). Here the chosen parameters are p =
—0.1, w(0) =40, T =20, and g = 1, where the initial conditions
include no coherence (Hs) = 60, (L(0)) = (€(0)) = 0.
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FIG. 3. The dynamics of the coherence, C = % is pre-

sented for different system-bath coupling strengths. Increasing the
system-bath coupling induces an increase in coherence associated
with the nonadiabatic driving. Model parameters and initial condi-
tions are identical to Fig. 2.

mapped towards a direction which deviates from a direction
defined by the instantaneous energy. This deviation can be
understood from the structure of the jump operators F. (7).
The nonadiabatic driving modifies the jump operators, which
differ from the instantaneous (adiabatic) jump operators,

a() = \/"5” 0 + =P and a(1)". This deviation is a
general consequence of nonadiabatic driving, independent of
the model. Such generation of coherence, associated with the
bath, is a unique property of the NAME.

In the Schrodinger frame the contributions to the coher-
ence from the system-bath interaction are associated with the

equations for the parameters 8(¢) and y (¢) (see below).

C. Instantaneous attractor

The dynamics of the system, at each instant, can be imag-
ined as motion toward a moving target, denoted as the instan-
taneous attractor. The instantaneous attractor is defined as
the local steady state, obtained by setting the left-hand side
(LHS) of Eq. (36) to zero. This leads to

B S L D e (CIO) I
Yia =0 and B, = hl(ki) - IH(N((Y(t))+ 1) G

and
(b'h)ia = N(a(1)). (39)

The instantaneous attractor is the temporal fixed point of the
map and is an unattainable target as the system is continuously
driven.

The instantaneous attractor values for {(Hs), (L),
(C), (I} are calculated by substituting Eq. (38) in Eq. (34)
and utilizing (39). We present the results for the instantaneous
attractor, in Fig. 4, for different negative adiabatic parameters
. The harmonic oscillator’s frequency decreases for u < 0,
leading to a decrease in the target energy (Hs);,. Coherence
emerges via a nonvanishing (C);, arising from a finite driving
speed (nonadiabatic). Figure 4 shows that for vanishing u the
results coincide with the adiabatic solution, where the state
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FIG. 4. (a) The energy value of the instantaneous attractor
as a function of time for different values of the constant adia-
batic parameter w. (b) The difference between the initial and the
temporary value of the coherence of the instantaneous attractor,
A(C‘,a) = (C‘,a(r)) — (é,a(O)). (c) The time-dependent rate coeffi-
cient (atomic units are used). The initial frequency is w(0) = 40
and temperature of the bath 7 = 20, with initial values (H(0)) ~
{26.3,26.2,26.2} for u={10"',1072,1073} and similarly for
(C(0)) = 1.31 x {1,107, 1072},

follows the Hamiltonian and (€);, — 0. Similar generation
of coherence has been obtained for a system coupled to a
squeezed bath [49,50]. The instantaneous attractor solution
for (L) vanishes due to the independence of the steady state
on y. This result is independent of the parameter choice.

The dynamics can be viewed as motion in a time-
dependent reference frame relative to a static bath. In analogy
to special relativity, the bath observes a slowing down of the
system frequency as |u| is increased. This modifies the rates
which depend on the Fourier transform of the correlations,
with the system’s frequency. In addition, the nonadiabaticity
of the system is equivalent to a system coupled to a squeezed
bath. In the adiabatic limit (u — 0) this effect vanishes and
no coherence is generated.

D. The asymptotic limit of the NAME

The adiabatic limit is obtained when u — 0. In this
limit the operators Fy, Eq. (27), converge to (Fy, F_) —

m(&, a’) while &() — land a(t) = w(t). Thus, in the
adiabatic limit, Eq. (29) reproduces the adiabatic Markovian
master equation as obtained by Albash et al. [19],

d . .
Eﬁs(t) = U@) + y(o(t))D(@))ps(t), (40)
where ()6 = —L[A(t), 5] and

D)6 = at)sat(t) — %{af(t)&(z), 6}

+e—hw(l)/k37<&T(t)&(t)& — %{&(t)&T(l), 6}> .

When o is constant Eq. (40) becomes the standard master
equation of a thermalizing harmonic oscillator.

Comparing Eq. (33) to the adiabatic master equation (40),
we notice two differences. First, the decay rate is modified;

the nonadiabatic and adiabatic decay rates are related by

T J(500)[N(Jo®)) + 1]
Y J(w()N(o@) + 1

padi T (500N (50(1)) _
T J(@(@®)N(w(1))

For the case of Ohmic spectral density linear in the fre-
quency as well as higher powers, J(w) & " for n > 1, the
nonadiabatic rate will be smaller than the adiabatic rate due
to 5 < 1. It is important to note that the solution is valid
when || < 2and 61 € R. The point || = 2 is an exceptional
point representing the transition from damped to overdamped
dynamics [51,52]. Furthermore, © and w(t) are restricted by
the secular approximation.

The NAME also differs in the jump operators b, b vs a, af.
In the adiabatic case,

a(r)y = "G00 +i

case,

’

ky = (41)

> L__p, and in the nonadiabatic
mhaw(t)

b(t) = /c(AQ(0) + BP(0))e'®® (42)

where A and B are defined below Eq. (27), J/c is the factor
relating b and F,, and 6, is given by Eq. (28). When © — 0
Eq. (42) converges to the standard annihilation operator, a(z).

V. APPROXIMATION ANALYSIS AND REGIME
OF VALIDITY

We summarize the general derivation in Sec. II, emphasiz-
ing the approximations performed and their range of validity.
The relevant parameters of the composite system are the
system-bath coupling strength g, the bath’s spectral band-
width Av, the time-dependent quasi-Bohr frequencies {w(?)}
of the system, and the adiabatic parameter u, Eq. (10) [36].

These four parameters determine four different
timescales:

(1) The system’s typical timescale, 75 = maxi(ﬁ),
where w; are nondegenerate system Bohr frequencies

(2) The timescale of the bath defined by 75 ~ ﬁ

(3) The relaxation time of the system g, which is propor-
tional to the coupling strength Tz o< g=2 [19]

(4) The timescale characterizing the rate of change of the
system’s energies due to the external driving, defined as t,,
the nonadiabatic timescale

The microscopic derivation holds in the weak-coupling
limit; thus terms of the order O(g)3 and higher can be ne-
glected. (Practically, only the even powers of g will contribute,
giving a correction of the order O(g*) to the derivation.) The
Markov approximation is valid when the correlation decay
rate is very fast relative to the coupling strength, leading to

gtp K 1. (43)

The next step is the secular approximation, which neglects the
fast oscillating terms in Eq. (13). This approximation is valid
for min, [6;(¢) + 6;(t)] > 1 when 6; # —0;.

The nonadiabatic timescale t, is restricted by the timescale
of the bath’s correlations decay tg. The timescale in which the
driving field is changing should be slow relative to the bath’s
dynamics, i.e., T < 74. In addition, the correlations decay
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TABLE 1. Timescales.

Ts System intrinsic timescale max,, (1/w;(t))
Tp Bath correlation function decay time ~1/Av

Tk Relaxation towards equilibrium lifetime o« 1/g?

T4 Nonadiabatic timescale min; ,[60](t)/6] (1)]

fast relative to the system dynamics, g >> 75. Here, 7; can
be evaluated by expanding 6;(¢ — t) near the instantaneous
time ¢ (cf. 12):

ej(l—fg)ng(l)—e}(l)fg. 44)

Higher-order powers can be neglected if |6?j(."+1)(t)|(13 ytl «

0" (t)|7p. leading to |07(t)|zs < |0)(t)]. The typical
timescale of the driving can be identified as

7y = min;, [6](1)/6]'(1)). (45)

A summary of the timescales is presented in Table I.

A. Approximation analysis for the harmonic oscillator

For the harmonic oscillator example, tg ~ ﬁ In this

case, the adiabatic parameter becomes u = ﬁ and the nona-
diabatic timescale is calculated with the help of Egs. (45)
and (28) giving, 75 ~ w(1)/w(t) = (w(t)n)~". The adiabatic
parameter and nonadiabatic timescale are related; however,
the two differ in their physical implications. In contrast to
the adiabatic approximation, which requires u < 1, the con-
straint on the nonadiabatic timescale, t; > tp, is dependent
on the dynamics of the bath and allows for fast driving (large
W), beyond the adiabatic regime.

The Born-Markov approximation conditions, 75 <
75, Tg <K TR, leads to the following relations: w(t) < Av
and g < Av. Furthermore, the secular approximation leads

2
to minw(r) > £ and the driving protocol is restricted by
Av

pu < min <. Combining the inequalities above, we can
conclude that the relevant system’s frequency regime is

e

o <o) < Avmin[l, @71, (46)

In the weak-coupling limit for a bath with a constant and
unbounded spectrum (Av — 00), the bath is § correlated and
the master equation holds for any finite w(#). Such a bath
is hypothetical in practical scenarios, the bath’s spectrum is
finite, and the validity regime defined by Eq. (46).

VI. NUMERICAL ANALYSIS

We analyze the model by numerically simulating the sys-
tem and bath. The model is a driven harmonic oscillator
coupled to a bosonic bath. The bath consists of N oscillators
with an identical mass m represented by the Hamiltonian

N )

A P; 1 ~

Ap=Y" (ﬁ + Emw?q?)- (47
i=1

1038
S‘ .‘.Q i ~.\.\'~
S, . ~s
> 1036
oy .
(0] NAME e,
C .I
(1] e e numeric e,

- - adiabatic .°-.
isolated .
1034
0 25 5
Time [a.u.]

FIG. 5. The energy as a function of time for different solutions.
The frequency decreases for a negative u, leading to a decrease in
the energy. The initial state is of a Gibbs form: pg = exp (ﬂ(O)ISTl;).
The model parameters are shown in a table in Appendix H.

A linear system bath coupling is employed,

N
H=0®)0® ) g (48)
k=1

and a flat spectral density J(w) = const in the range w €
[Wmins ®max]- For the numerical compression we choose a
different linear interaction than that in the analytical deriva-
tion, Eq. (25), which simplifies the numerical calculations.
The matching analytical derivation for the new interaction is
modified accordingly.

The combined system, Eq. (23), and bath form a set of lin-
ear harmonic systems, leading to closed Heisenberg equations
of motion for the set of operators P , Q, pz’ QZ, PQ +
QP andforall 1 <i < N: py, §i, pF. 47, Pidi + i pi- We
solve for the expectation values of the operators, and the
solution for the system’s variables is translated to the set of
operators (Hs(1)), (L(1)), and (C(1)).

In the limit when the number of bath modes diverges, N —
00, Wmax —> 00, the numerical approximation converges to
the NAME’s solution. The equations of motion were solved
for the second moments by a Dormand-Prince Runge-Kutta
method (DP-RK4) with a constant time step. (See Appendix
H for more details.)

In Fig. 5, the energy as a function of time is compared
for the adiabatic, isolated, NAME, and numerical solutions.
The results show a good match between the NAME and the
independent numerical approach, while the adiabatic and iso-
lated solutions deviate substantially from the expected energy
change. Hence, the numerical result verifies the analytical
derivation and solution for the NAME. To see this effect in
the numerical simulation pe should be comparable to the
decay rate. In contrast, when p is large the free propagation
dominates.

VII. CONCLUSION

The nonadiabatic master equation (NAME) addresses the
issue of the environment’s effect on the dynamics of a
driven quantum system. This master equation generates a
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Markovian reduced description for a driven quantum sys-
tem going beyond the adiabatic framework. The equation is
cast into the form of a time-dependent Gorini-Kossakowski-
Lindblad-Sudarshan equation (GKLS) where both the opera-
tors and the kinetic coefficient are time dependent.

A condition necessary to derive the NAME is a Lie algebra
of operators which span both the driven and bare Hamilto-
nian and the system-bath coupling operators. This allows the
free propagator and the time-dependent jump operators to be
obtained. These are identified as the eigenoperators of the
propagator, Eq. (7). Furthermore, for the equation to be valid
we require a timescale separation between the system and
driving timescales, and the bath’s correlation time.

The NAME incorporates as limits the time-independent,
periodically driven, and the adiabatic master equations. In
comparison with the adiabatic [19] or postadiabatic [23] mas-
ter equations, the NAME mixes population and coherence.
The differences can be traced to the form of the jump opera-
tors, Eq. (16), composing the time-dependent GKLS equation.
In the adiabatic case the jump operators are eigenoperators of
the instantaneous Hamiltonian; in contrast, in the NAME the
jump operators are eigenoperators of the free propagator.

Using the NAME we are able to explicitly solve the
problem of a time-dependent harmonic oscillator coupled to
a bath, Sec. IV. The solution is facilitated by choosing a
driving protocol dictated by a constant adiabatic parameter
w. The SU(1,1) Lie algebra is employed to derive the master
equation and to represent the system as a generalized Gibbs
state in the operators of the algebra. This form is equivalent to
a squeezed thermal state and enables the explicit solution of
the dynamics. Such restriction of a constant x can be uplifted
by using a piecewise approach, decomposing an arbitrary
protocol to small time intervals with a constant (.

The driven harmonic oscillator model exhibits reduced
decay rates in the NAME compared to the rates obtained
from the adiabatic master equation. The reason is an effective
reduction of the system frequency «(f) < w(t) as seen by
the bath. The explicit solution demonstrates the mixing of
coherence and population in the equations of motion. Fur-
thermore, when solving the dynamics of the NAME in the
Schrodinger picture, the instantaneous attractor can be identi-
fied. At each instant, the dynamics directs the system towards
the instantaneous attractor. Coherence is generated since the
instantaneous attractor is not diagonal in the instantaneous
energy basis.

The dynamics of the NAME is compared to a numerical
simulation. The simulation converges to the analytical predic-
tion of the NAME.

The NAME addresses the problem of a driven open system
within the Markovian approximation. In any control prob-
lem of open quantum systems, this is the typical scenario
[25-27]. Such a control problem appears abundantly in an-
nealing approaches to quantum computing [53] and in quan-
tum gates [12,54-56].
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APPENDIX A: EIGENOPERATORS

We assume the system dynamics can be described by a
time-independent operator basis {G} including a finite number
of operators which are elements of a Lie algebra,

[, Gl :Zc Gr. (A1)

where ¢;’ are the structure constants.

If the Hamiltonian Hg(¢) at initial time is a linear combi-
nation of the operators {G}, it is a member of the algebra and
can be expressed as

N
Hg(t) =Y _h;t)G;. (A2)

j=1
With the help of the identity Eq. (A2) and the Heisenberg
equation one concludes that the equations of motion for the
system operators are closed under the Lie algebra. In addition,
for any closed Lie algebra the time evolution operator can be
written as [57]

N
Us([) = l_ler,(t)G,’

J

(A3)

where r(t) are time-dependent coefficients.

The eigenoperators can be found by representing the dy-
namics in Liouville space (known also as Hilbert-Schmidt
space). Such Hilbert space is a state space of system operators
{)A( }, endowed with an inner product defined by ()2 i X )=

tr(X; X ;) [58-60].

In the Liouville representation, the system’s dynamics are
calculated in terms of a chosen basis of operators spanning
the Liouville space (such as {G}). This basis of operators
constructs a vector v(¢) in observable space. For example,
the dynamics of a two-level system is described in the Bloch
sphere where the basis is constructed from the Pauli operators.

Employing the Heisenberg equation of motion, the dynam-
ics of ¥ is given by

d
Ev(t) = < [H®). 1+ — >v(t) (A4)
Here we consider a finite basis of size N, which also forms
a closed Lie algebra. This guarantees that the Heisenberg
equations of motion (A4) can be solved within the basis [57],
implying that Eq. (A4) can be represented in a vector matrix
form,
d . >
—o(t) = G()v(r), (AS)
dt
where G(¢) is an N x N matrix and v is an N-dimensional
vector. For a Hermitian Hamiltonian the algebraic properties

ensure that G(¢) is diagonalizable (see the following section).
Let {F(t)} be the eigenvector basis of G(¢) and F (t) e
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{I3 (¢)}, and then I3 j(t) satisfies the instantaneous eigenvalue
equation

GF;(t) = x;(OF;(1), (A6)
where x;(t) € C. Using Eq. (A6) and Eq. (A5) and solving
for F;(t) leads to

Fi(1) = Us(1)F;(0) = e F;(0), (A7)

where Ug(t) is the propagator in Liouville space. We define
Aj(t) = eX® and represent Eq. (A7) in the wave-function
Hilbert space to obtain

Fity = 0L F;0)05(1) = 2;()F;(0).  (A8)

This is the eigenvalue equation for the eigenoperators [identi-
cal to Eq. (7)].

Diagonalizability of G(¢)

The dynamics of the density matrix is given by the
Liouville-von Neumann equation, % = —;,l—'[I-AI s(1), ps(t)].
By performing a vec-ing procedure, the density matrix pdg
(N x N matrix) is represented as an N? vector, 7 [59-61].
This is equivalent to choosing the representation basis in
Liouville space as the set of matrices with all zero entries,
except one. Following the derivation presented in [59], the
Liouville-von Neumann superoperator can be represented as
a N? x N? matrix in Liouville space,

—%[ﬂsm, ps(t)] —

- %(1 ® Hy(t) — Hs(t)T @ )F = D(t)F , (A9)

where ® is the Kronecker direct product. The Hamiltonian
is in the diagonal form, implying that the matrix D(¢) is
diagonalizable. Transforming to a different basis (which can
be time dependent) in Liouville space involves transformation
matrices. The transformation to a time-dependent basis is only
a change in the representation, and therefore we assume that
also basis transformation matrices are diagonalizable. Thus,
the diagonalizability property is invariant to the change of
basis.

As a product of diagonalizable matrices leads to a diago-
nalizable matrix, the generator G(¢) in Eq. (AS5) is diagonaliz-
able.

APPENDIX B: EXPANDING THE INTERACTION
OPERATOR A, USING THE LIE ALGEBRA STRUCTURE

The jump operators are eigenoperators of the free evolution
obeying Eq. (7). They form a complete basis within the
system’s algebra. Equation (A3) implies that operators in
the interaction representation are also closed under the free
propagation.

If the operator Ak [Eq. (2)] is also an element of the Lie
algebra, it can be expanded in the interaction representation in
terms of the set {Fj (1)},

Aty =Y xS OF;(0). (B1)
J

The coefficients x;-‘ (¢) are in general complex and therefore
can be written in a polar representation, leading to the desired
form: Ax(1) =, gj’f(t)e"‘?f‘(’)Fj (0) [Eq. (8)]. Here, £5(1) =
|XJ’.‘(1) - Aj(t)| and af(t) = ¢;(t) + arg(x;(t)). The amplitude
& j’.‘(t) of a complex number is necessarily positive, leading to
positive decay rates in the NAME (16).

APPENDIX C: GENERALIZED GIBBS STATE

In Sec. IVB the NAME is derived for the open system
dynamics of a parametric harmonic oscillator employing a
solution that at all times can be described as a squeezed
Gaussian state (ensemble) [47,48]. This solution is a special
case obtained when the system can be described in terms of
a Lie algebra of operators. In such a case, the state of the
system at all times is represented as a generalized Gibbs state
(GGS). The GGS is determined by maximum entropy with

respect to the set of observables {(X)}, where the operators X
are members of the Lie algebra. The state has the form

ps(t) = eXi 0% (1)

where A ; are Lagrange multipliers.

To maintain this form, the set of operators {X} has to
be closed under the dynamics generated by the equation of
motion. Using the Lie algebra properties, the state can written
in a product form in terms of the set {f( } [43,57,62],

N
pse)=[Tev, (C2)

where d(t) are time-dependent coefficients.

The squeezed Gaussian state, assumed in Sec. IV B, is
a special case of a generalized Gibbs state. Accordingly,
a solution of the dynamics follows the derivation in IV B,
obtaining a set of coupled differential equations similar to
Eq. (36) which can be solved by analytical or numerical
methods.

APPENDIX D: DERIVATION OF THE MASTER EQUATION
UP TO FIRST ORDER IN THE BATH’S CORRELATION
DECAY TIME

In Sec. II the NAME, Eq. (16), is derived, assuming the
bath’s correlation decay timescale is shorter than the system
and driving timescale. The derivation involves the lowest
possible order which captures the effect of the nonadiabatic
driving and is exact for a §-correlated bath. However, in realis-
tic scenarios the bath is characterized by a finite spectral width
and therefore has a nonvanishing bath correlation time tp
which defines the range of validity. It is possible to go beyond
the lowest-order correction introduced in Eq. (16) and include
higher-order corrections in 7. In the following section we
present a derivation of the NAME for the harmonic oscillator,
including the first higher-order correction; an extension for the
general case is straightforward.

The starting point of the derivation of the NAME is the
Markovian quantum master equation [Ref. [29], Eq. (3.118),
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p. 132]:

d 1 o0 N N
S pst) == / ds sl A, 1A — 5). ps(t) ® pyll.

t h° Jo
1)

The Hamiltonian in the interaction picture is first decomposed
in terms of the set of eigenoperator:

~ P himawy
H@) = i&(t F.elfi®
(t) = i&( ); je ;gk,/ >

X (lsltei"’k’

— breTiewy, (D2)

where F i = F ;(0). Equation (D1) includes terms of the form
trg[H()H(t — 5)ps(t) ® pgl. Next, we demonstrate how
such a term is calculated explicitly using Eq. (D1). Contri-
bution of other terms to the master equation can be calculated
in a similar manner:

g H (1 = 5)(Bs(1) ® pp)H (1)]

h N .
=~ =)= Y Y Jarwwsige FibsF,

ij kK

x eiO;(t—s)eiGj(t) ZtrB[(E]JLeiwk[ _ l;ke—ia)kt)
k

x (l;lt/eiwk/(lfs) _ l;k/efiwk/(tfs))lb\B]. (D3)

We proceed by expanding 6;(¢ — s) near s = 0. In the range
of validity determined by the decay of the correlation s ~ 75
ors < tg, allowing to approximate s2 ~ s , then
/ 0/ (1)
0i(t —s)~0;(t) —0;(t)s + > TgS.
We define a(t) = —06/(t) + @73. The definition of @(z)
is similar to the definition in Eq. (12) for the first-order
expansion in s.

Substituting Eq. (D4) into Eq. (D3) and performing the
secular approximation terminates terms for which 6;(¢) #
—6;(¢). In addition, for a bosonic bath in thermal equilibrium
(biby) = (b}bl) = 0, (bxby) = 8 1, and Eq. (D3) is simpli-
fied to the form

trg[H(t — s)(Ps(t) ® pp)H ()]

h 2 A .=
= TmS(I)é(f — S)Z Fi[)s(t)FiTeza[(z)s

i=+

(D4)

x Y wrgi(bbi)e™ + (bbl)e ™). (DS)
k

The coefficients g; have units of inverse time. Thus, in the
continuum limit, the sum over g7 can be replaced by an
integral:

> g~ /0 f@0)x (@ )dax., (D6)
k

where f(w) is the density of states, such that f(w)dw gives
the number of oscillators with frequencies in the interval
[w, w + dw] [9], and x(w) is the coupling strength function.
On the LHS of Eq. (D6) the variable k is an integer, while on

the RHS it designates the wave number which is a continuous
variable in the continuum limit. The two functions define the
spectral density function J(w) = f(w)x (w), leading to

gl H(t — 5)(Ps(1) ® pp)H ()]
=&@)E(E — ) Z B ps(t) Bl ei® 0
i=+
) fm B [ ks NN —iwys
X / da)ka)k](a)k)T((bibk)ezwm + <bkb;£)e Y
0
+ similar terms.

(D7)

By inserting Eq. (D7) in the Markovian quantum master
equation we obtain the reduced dynamics

d N N o0
Ths(t) = ;Eﬁs(I)FJ /O dwkwkf(wk)f—hs(t)

o0 .
X / ds&(t — 5)e'% s
0

x ((bibi)e' ™ + (bibj)e™ )

+ similar terms. (D)

Assuming the change in & is slow relative to the decay of the
bath correlation functions, then

Et —s)~ &) — & ()Tp. (D9)

We define

_ m [
I'ie) = E_/O dwywyJ (wy)

x / dse' @ (bl b)e'™ + (bbl)ye ™). (D10)
0

Decomposing T'(¢) to a real and pure imaginary part and
using the identity [, dse™"® =mw8(e) —iPL (here 8(x) is
the Dirac § function and P is the Cauchy principle value) we
obtain

_ 1
') = <§V(5li(l)) +iS(5li(1))>, (D11)
where
mit —
y(a;(t)) = 75![(0!(5&([))[1\’(56;0)) + 1], (D12)
and
o * 1+ N(ax) N ()
Sy = P|:/0 d“”‘[ai(r) —o +a,»(r)”
(D13)

An identical derivation is carried out for the additional
terms in Eq. (D8). After some algebra the first-order correc-
tion to the NAME is obtained:

d
—ohs() = (&) — E(0)E (1)Tp] Z y(@(1))

A A | BN
x <F,-ﬁs<t>F,T — S{FE, ﬁs(t)})- (D14)

For the harmonic oscillator example, the derivatives of 6;

can be calculated from Eq. (28) 0/,.(t) = :F%(’) and 6/ (t) =
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2 .
:F%”), leading to

an =201 -

Notice here that this expression is the first-order correction to
o4 (¢) [introduced for the general case in Eq. (12) and derived
for the harmonic oscillator from 6., Eq. (28)].

The harmonic oscillator NAME, in the interaction repre-
sentation, including the first-order correction is of the form

“w(t)rg). (D15)

2

d
2 Ps() = (&P + ntp(0)/2)y (s (1))

PR I .
X [F+ﬁSF_ - E{F_F+, ps(t)) 4 e @O/ kT

AP T
(F sFy —§{F+F,ﬁs}>].

Two differences appear between Eq. (D16) and the lower-
order derivation: First, there is a small correction to the decay
rate in the order of wutp ~ w(t)% (where 13 <« t4). The
negligible correction justifies the approximation performed in
Eq. (13), in the main derivation, where only the zeroth order of
&(t — s) in s is kept. Second, a memorylike correction arises
due to the phase higher-order correction. The higher-order
term in &y, Eq. (D15), is proportional to —u and therefore
decreases or increases & depending on the sign of u. For
spectral density J o " where r > 1, this will lead to a decay
rate which is retarded in time. The effect can be understood
as a delay in the reaction of the bath to the system’s change
in time. This effect will increase when the correlation time
increases and vanishes for a §-correlated bath.

(D16)

APPENDIX E: FREE PROPAGATION

The unitary dynamics of the operators {I:IS(t), i(t), C (1)}
are given by [43]

4—ple  —pes  —2u(c—1) 0
Us(t) = L o@] —pks K*c —2ks 0
S - K2 a)(O) 2/1«(0 — 1) 2KS 4c — MZ ol
0 0 0 1
(ED)

where «k = /4 —u? and c = cos(k8(2)), s = sin(k6(1)).
The free propagation mixes coherence and populations due
to driving [43].

APPENDIX F: EXPANDING THE INTERACTION TERM
FOR THE HARMONIC OSCILLATOR MODEL IN TERMS
OF EIGENOPERATORS OF THE PROPAGATOR
o) =

P, leading to equations of motion

We define two new time-dependent operators,
Jo(t) Q and P(t) = m

which can be written in a matrix vector notation,

d[Q [ )
alel=enls B o

Diagonalizing the constant matrix leads to eigenoperators
which are associated with the left eigenvectors of the constant

matrix,
i = 5(uEiK)0+ P, (F2)
which propagate in time as fi4(¢) = i (0)e'%. Here, 0. =
Kk [t ’ ’
+5 [y di'o@)'. A
By defining F = m(o)u (0) and utilizing Eq. (F2) and
the definition of Q(z), we obtain the decomposition

O(t) = V1 — uw(0)(F_e'% + F ™). (F3)

Defining £(¢) = /1 — uw(0)t leads to the desired form.

APPENDIX G: CALCULATION OF THE EXPECTATION
VALUES FOR Hs(t), L(t), C(t)

We define a vector in Liouville space ¥(t)=

{Hg(t), L(t), C(¢), I}7 similarly to the derivation in [43].
The dynamics of the isolated system is given by
u(t) = Us(1)v(0), (GD)

where Ug(t) is given in Eq. (E1).
The operators of ¥(0) can be written in terms of the

basis 5(0) = {5%(0), b1h(0), 512(0)}7, and the transformation
is summarized in the matrix form by
5(0) = Mb(0), (G2)
where M = M (M,)~!, M, are given by
ime? L0 0
_le? L
M, = M 0 0 ’ (G3)
0 0 % 0
0 0 0 1
A2 B2 2Re(A*B) 0
My — [A|> |B|*> 2Re(A*B) 2Im(A*B)ik
2=C A*2 B*2 A*B* 0 )
0 0 0 1

with & = 2AIm(A*B))~.
Inserting Eq. (G2) into Eq. (G1) and defining 7 = Us M
we obtain

(1) = Th(0) (G4)

and for the expectation values

(U(t)) = T (b(0)). (GS)

TABLE II. Numerical values.

% —107°
w(0) 40
(H(0)) 1.0375 x 10°
(L(0)) —5.625 x 107
(C0)) 6 x 102
Bath’s spectral width Av [0.6, 1000]
Number of oscillators 103
Oscillator mass m 2
Time step 5x 107
Coupling strength g 2.5x 1072
Toam 4
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The expectation values of the basis E(O) are calculated using Eq. (34):

(e —4yP-1) 1
2P —12—4yP) 2

(b'h) = tr(b'b(0)ps(t)) = (G6)

and
*

~ ~ 2y
2\ T2y«
R e TIER

(G7)

APPENDIX H: NUMERIC MODEL

For a time-dependent oscillator coupled to N bath oscillators with an identical mass m, the composite Hamiltonian has the
form

P2 1 Noop?o1 al
H=_— 14 mo’(1)Q* 4 omwlg; | + 0 s H1
g+ 00+ 3 (1 Jmetd?) + 0 Y )

where p;, §;, and w; are momentum position and frequency of the ith bath oscillator. The Heisenberg equations of motion are
written in a vector-matrix form. For the vector v the set of coupled differential equations is given by v(t) = Mu(t), where

A D D A AA AA T
i< {00 2L 041 0. Pa. Ppraf g LD L ()
0o 0 2 0 0 o 0 0 0 0 |
0 0 —2me* 0 0 —2¢ 0 0 0 0
-mo? L 0 —g1 0 o 0 0 0 0
0 0 0 0 L L0 0 o0 0
-g 0 0 —-mw} 0 o L 0 o0 0
M=| 0 0 0 —-mw?* 0 0 L —g 0 0 (H3)
0 0 —g1 0 —mw?* —mw? 0 0 0 —g1
0 0 0 0 0 o 0 0 0 2
0 0 0 0 —2¢ 0 0 0 0 —2maof
0 0 0 -8 0 0 0 -mo! + 0

The number of bath oscillators used to simulate the bath was N = 103, which translates to ~ 7 x 103 degrees of freedom
(defining generalized Gaussian states, equivalent to the covariance matrix). This leads to a set of ~ 7 x 10° coupled differential
equations for the expectation values of the operators of v(¢), which describe the dynamics of the composite system. The set of
differential equations is solved numerically using the Runge-Kutta-Fehlberg method with a time step fyep, = 5 x 10™* (atomic
units). Table II shows the numerical values, given in atomic units.
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