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Testing nonclassicality with exact Wigner currents for an anharmonic quantum system
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Phase-space features of the Wigner flow for an anharmonic quantum system driven by the harmonic oscillator
potential modified by the addition of an inverse square (one-dimensional Coulomb-like) contribution are
analytically described in terms of Wigner functions and Wigner currents. Reporting about three correlated
continuity equations which quantify the flux of quantum information in the phase space, the nonclassicality
profile of such an anharmonic system can be consistently obtained in terms of the fluxes of probability, purity,
and von Neumann–like entropy. Considering that quantum fluctuations can be identified from distortions over
the classical regime, they can be quantified through the above-mentioned information fluxes whenever some
classically bounded volume of the phase space is selected. Our results suggest that the Wigner flow approach
works as a probe of quantumness and classicality for a large set of anharmonic quantum systems driven by
quantum wells.
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I. INTRODUCTION

The Weyl-Wigner [1] representation of quantum mechan-
ics encompasses the phase-space dynamics of quantum sys-
tems so as to provide the straightforward access to several
of their quantum information features without affecting the
predictive power of quantum mechanics. Even being much
more appealing in the quantum scenario of optical physics [2],
quite general aspects that circumvent the frontiers between
classical and quantum descriptions of nature can be more
properly comprehended from such a phase-space formulation
of quantum mechanics [3–7].

In this context, for the Weyl transform of a generic quan-
tum operator Ô, defined by

OW (q, p) =
∫ +∞

−∞
ds exp [2 i p s/h̄] 〈q − s|Ô|q + s〉

=
∫ +∞

−∞
dr exp [−2 i q r/h̄] 〈p − r|Ô|p + r〉,

(1)

the Wigner function W (q, p) can be described as the Weyl
transform of a density matrix operator ρ̂ = |ψ〉〈ψ | as

h−1ρ̂ → W (q, p)

= (πh̄)−1
∫ +∞

−∞
ds exp [2 i p s/h̄]

×ψ (q − s) ψ∗(q + s), (2)

which can also be read as the Fourier transform of the off-
diagonal terms of the associated density matrix that, by the
way, exhibits the properties of a real-valued quasi-probability
distribution, since it can assume local negative values. Of
course, the phase-space formulation of quantum mechanics
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is not exclusively described by the Weyl-Wigner formalism.
If, on one hand, it can be subsidized by the Moyal’s picture
of quantum mechanics [8], where the noncommutative nature
of coordinate and momentum operators supports the Moyal
star-product definition through which the Weyl-Wigner for-
malism is recovered, on the other hand, the Wigner distri-
bution negative values restrict its meaning as a probability
distribution, so that alternative phase-space frameworks are
admitted [9–14] either to circumvent or even to elucidate such
a negative probability (mis)interpretation (cf., for instance,
the optical tomographic probability representation of quantum
mechanics [15–17] where the Weyl-Wigner-Moyal equation is
always positive, even for Wigner functions assuming negative
values).1

Pragmatically, the Weyl transform and the Wigner function
connect quantum observables Ô with their respective expec-
tation values by means of the trace of the product of the two
operators ρ̂ and Ô, evaluated according to the integral of
the product of their Weyl transforms over all the phase-space
volume [1,6],

Tr{q,p}[ρ̂Ô] → 〈O〉 =
∫ +∞

−∞

∫ +∞

−∞
dq dp W (q, p) OW (q, p),

(3)

which is indeed consistent with a probability distribution
interpretation supported by the normalization condition of ρ̂,
Tr{q,p}[ρ̂] = 1. Once that such statistical aspects related to
the nature of the density matrix quantum operators are es-
tablished, the Weyl-Wigner formalism also admits extensions
from pure states to statistical mixtures where, for example, the

1In the context of entropy and information dynamics, the associated
symplectic tomographic probability form of the Weyl-Wigner-Moyal
equation works as a classical approach to quantum systems [17].
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purity Tr{q,p}[ρ̂2] is read as

Tr{q,p}[ρ̂2] = 2π

∫ +∞

−∞

∫ +∞

−∞
dq dp W (q, p)2, (4)

with the 2π introduced so as to satisfy the constraints:
Tr{q,p}[ρ̂2] = Tr{q,p}[ρ̂] = 1, for pure states, which shall be
relevant in the context of entropy and information dynamics.

More importantly, some Wigner related quantifiers of non-
classicality measure, for instance, how far from each other
are the quantum and classical descriptions of nature. In par-
ticular, it has been demonstrated that such quantifiers can
be constructed in terms of probability, entropy, and purity
fluxes, through their respective continuity equations expressed
in terms of Wigner functions and Wigner currents [18–20]. To
test such quantifiers and verify their efficiency in describing
quantum fluctuations from a departing classical regime, the
anharmonic Hamiltonian quantum system, driven by

H (q, p) = p2

2m
+ m ω2

2
q2 + 4α2 − 1

8 m

h̄2

q2
− αh̄ω, (5)

will be investigated along with the Weyl-Wigner framework,
where the above-introduced constant coefficients have been
chosen in order to anticipate a simplifying dimensionless
analysis of the problem. The above Hamiltonian is partic-
ularly relevant in discussing the one-dimensional reduction
of the hydrogen atom Schrödinger equation, as well as for
implementing typical scenarios of quantum cosmology [21].
From (5), the evinced nonlinear deviation from the harmonic
oscillator profile, and its corresponding Wigner eigenfunc-
tions, shall be discussed along this work in order to provide a
singular tool kit for quantifying quantum from classical distor-
tions and to test the general formalism for Wigner information
fluxes [18].

Our work is thus organized as follows. In Sec. II, the fluid
analog of the phase-space information fluxes associated with
quantum entropy and purity quantifiers are recovered from
the Weyl-Wigner formalism for quantum mechanics. In par-
ticular, the recently discussed quantifiers for nonclassicality
(non-Liouvillian fluidity) [18] are recast in a dimensionless
framework so as to be more workable for a larger prospect
of Hamiltonian quantum systems. In Sec. III, the classical
profile for the anharmonic Hamiltonian system supported by
Eq. (5), and the exact expressions for quantum fluctuations,
given in terms of Wigner functions and Wigner currents, are
all obtained. In addition, a bouncelike model extension of
the formalism is also considered. The quantum distortions
on the classical background, and the corresponding classical
reduction, both quantified in terms of the Wigner information
flux continuity equations, are discussed in Sec. IV. The results
are shown to support the properties of the Wigner flow frame-
work from Sec. II as an effective quantifier for nonclassicality.
Our conclusions are drawn in Sec. V and they emphasize the
complementary aspects of the Wigner formalism in discussing
boundaries between quantum and classical regimes.

II. PHASE-SPACE FLOW ANALYSIS
AND CONTINUITY EQUATIONS

The dynamics of a (time-dependent) Wigner function
W (q, p; t ) can be cast in the form of a vector flux J(q, p; t )

that describes the flow of W (q, p; t ) in the phase space
[7,22–24]. With the flow field J(q, p; t ) expressed by J =
Jq q̂ + Jp p̂, where p̂ = p̂q , the quantum equivalent Liouville
equation is given by the continuity equation [6,7,9,18],

∂W

∂t
+ ∂Jq

∂q
+ ∂Jp

∂p
≡ ∂W

∂t
+ ∇ · J = 0, (6)

with

Jq (q, p; t ) = p

m
W (q, p; t ), (7)

and

Jp(q, p; t ) = −
∞∑

ν=0

(
i h̄

2

)2ν 1

(2ν + 1)!

[(
∂

∂q

)2ν+1

V (q )

]

×
(

∂

∂p

)2ν

W (q, p; t ), (8)

where V (q ) is the potential, and the contributions from
j � 1 in the series expansion depict the distortion due to the
quantum features on the classical Liouvillian pattern. For the
generic discussion of nonrelativistic quantum Hamiltonians
like

H (q, p) = p2

2m
+ V (q ), (9)

where m is the particle’s mass, tremendously simplified re-
sults can be obtained when H (q, p) is put into a dimen-
sionless form, H(x, k) = k2/2 + U (x), with the introduc-
tion of the dimensionless variables, x = (m ω h̄−1)

1/2
q and

k = (m ω h̄)−1/2p, and the identification of H = (h̄ω)−1H

and U (x) = (h̄ω)−1V ((m ω h̄−1)
−1/2

x), where ω−1 is a time
scale. In this case, the Wigner function and its Wigner current
components can be mapped into dimensionless quantities
given by

W (x, k; τ ) ≡ (mωh̄)1/2 W (q, p; t ), (10)

Jx (x, k; τ ) ≡ m Jq (q, p; t ), (11)

Jk (x, k; τ ) ≡ ω−1 Jp(q, p; t ), (12)

explicitly written as

W (x, k; τ ) = π−1
∫ +∞

−∞
dy exp [2 i k y] ϕ(x − y; τ )

×ϕ∗(x + y; τ ), with y = (m ω h̄−1)1/2s,

(13)

Jx (x, k; τ ) = kW (x, k; τ ), (14)

Jk (x, k; τ ) = −
∞∑

ν=0

(
i

2

)2ν 1

(2ν + 1)!

[(
∂

∂x

)2ν+1

U (x)

]

×
(

∂

∂k

)2ν

W (x, k; τ ), (15)
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where τ = ωt is the dimensionless time, ϕ(x, τ ) is consistent
with the normalization condition given by∫ +∞

−∞
dx |ϕ(x; τ )|2 =

∫ +∞

−∞
dq |ψ (q; t )|2 = 1, (16)

and Eq. (6) can be multiplied by (mh̄/ω)1/2 so as to return the
dimensionless continuity equation,

∂W
∂τ

+ ∂Jx

∂x
+ ∂Jk

∂k
= ∂W

∂τ
+ ∇ξ · J = 0, (17)

where the phase-space coordinate vector ξ = (x, k) is iden-
tified. Once the framework has been established, the phase-
space information flux extensions of the above continuity
equation can then be obtained through some elementary math-
ematical manipulations [18].

Departing from the subliminar properties of locally and
globally conservative systems—which are, respectively, as-
sociated with a point in the phase space ξ , and to a phase-
space volume integral bounded by a comoving closed surface
V = ∫

V
dx dk—a substancial derivative [7,25] operator can

be defined by

D

Dτ
≡ ∂

∂τ
+ vξ · ∇ξ , (18)

with vξ = dξ/dτ = (vx, vk ) corresponding to the phase-
space velocity (not necessarily the classical one) along a two-
dimensional path which encloses an element of volume V .
Through Eq. (18), an equivalent version of the rate of change
theorem [cf. Eq. (10.811) in Ref. [25]] can be established for
the Wigner function as

D

Dτ

∫
V

dV W ≡
∫

V

dV

[
DW
Dτ

+ W∇ξ · vξ

]
, (19)

with dV ≡ dx dk. If vξ is identified with the classical phase-
space vector velocity, vξ (C) = (k, −∂U/∂x), through which a
two-dimensional classical path C can be delineated, one has
from Eq. (18),

DW
Dτ

= −W ∇ξ · vξ (C), (20)

which implies a conservation law DW/Dτ = 0, given that
the divergenceless (Liouvillian) behavior of the classical fluid
analog of the flow of the Wigner function is identified by ∇ξ ·
vξ (C) = 0. Otherwise, for the quantum scenario, one has an
ansatz for J , J = wW , with the Wigner phase velocity w
satisfying the constraint given by

∇ξ · w = W ∇ξ · J − J · ∇ξW
W2

�= 0, (21)

which is translated into a non-Liouvillian behavior [7,18], and
for which it has been noticed that ∇ξ · J = W ∇ξ · w + w ·
∇ξW .

The above elements, as established in [18], can be help-
ful in discussing the quantum nature of Hamiltonians that
describe periodic motions (driven by some kind of potential
well). The periodic motion, in this case, is mapped into

a phase-space two-dimensional volume enclosed by a clas-
sical path C for which the phase-space volume integrated
probability flux enclosed by C, σ(C) can be identified by

σ(C) =
∫

VC

dV W . (22)

From a straightforward manipulation involving
Eqs. (18)–(20), using the properties of w, one also obtains

D

Dτ
σ(C) = D

Dτ

∫
VC

dV W

=
∫

VC

dV [∇ξ · (vξ (C)W ) − ∇ξ · J ], (23)

which allows for identifying the role of the quantum correc-
tions given in terms of �J = J − vξ (C)W , which effectively
drives the rate of change of σ(C) and the outward flux of J
(through C), both in terms of a path integral given by

D

Dτ
σ(C) = −

∫
VC

dV ∇ξ · �J

= −
∮
C
d�J · n ≡ −

∮
C
dJ · n, (24)

where the unitary vector n is defined by n =
(−dkC/dτ, dxC/dτ )|vξ (C)|−1, such that, in the last step,
one has noticed that n · vξ (C) = 0. Therefore, for the line
element , set as d ≡ |vξ (C)|dτ , one has a parametric integral
given by

D

Dτ
σ(C)

∣∣∣∣
τ=T

= −
∮
C
d�J · n

= −
∫ T

0
dτ �Jk (xC (τ ), kC (τ ); τ )

d

dτ
xC (τ ),

(25)

where xC (τ ) and kC (τ ) are typical solutions of the classical
Hamiltonian problem, T = 2π is the dimensionless period of
the classical motion, and �Jk (x, p; τ ) is identified by the
piece of the series expansion from Eq. (8) with ν � 1. Of
course, the integral from Eq. (24) vanishes in the classical
limit, i.e., for J ∼ vξ (C)W . Therefore, Eq. (25) works as
an optimized quantifier of nonclassicality for a plethora of
Wigner functions.

In order to extend the range of applicability of the above
result, one identifies the Wigner-related von Neumann entropy
and quantum purity, respectively, by [18]

SvN = −
∫

V

dV W ln |W|, (26)

and

P = 2π

∫
V

dV W2, (27)
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such that their temporal rate of change are, respectively, given
by

DSvN

Dτ
= − D

Dτ

(∫
V

dV W ln(W )

)

= −
∫

V

dV

[
D

Dτ
(W ln(W )) + W ln(W )∇ξ · vξ (C)

]

= −
∫

V

dV

[
∂

∂τ
(W ln(W ))+∇ξ · (vξ (C)W ln(W ))

]
,

(28)

and

1

2π

DP
Dτ

= D

Dτ

(∫
V

dV W2

)

=
∫

V

dV

[
D

Dτ
W2 + W2∇ξ · vξ (C)

]

=
∫

V

dV

[
∂

∂τ
W2 + ∇ξ · (vξ (C)W2)

]
, (29)

from which, after noticing that ∂W/∂τ = −∇ξ · J = −∇ξ ·
(wW), and using Eq. (21), one obtains, respectively,

DSvN

Dτ
=

∫
V

dV [W ∇ξ · w + ∇ξ · (J ln(W )

− vξ (C)W ln(W ))]

=
∫

V

dV W ∇ξ · w +
∮

d ln(W )(�J · n),

V →∞ = 〈∇ξ · w〉, (30)

and

1

2π

DP
Dτ

= −
∫

V

dV [W2 ∇ξ · w + ∇ξ · (JW − vξ (C)W2)]

=
∫

V

dV W2 ∇ξ · w +
∮

dW (�J · n),

V →∞ = 〈W∇ξ · w〉, (31)

where 〈. . . 〉 = Tr{x,k}[ρ̂(. . . )], and the surface terms have
been suppressed in the limit where V → ∞, so as to recover
the results from [18].2

For a finite volume VC , identified by that one enclosed by
the classical surface C, the surface term must be reconsidered
in the above calculation. Given that, for parity symmetric po-
tentials, U (x) = U (−x), driving periodic [(an)harmonic] os-
cillations, the above-obtained averaged contributions vanish,

2After suitable mathematical manipulations involving the defini-
tions from Eqs. (13)–(15), it is possible to verify that ∇ξ · w is
proportional to

∞∑
ν=1

(
i

2

)2ν 1

(2ν + 1)!

[(
∂

∂x

)2ν+1

U
]

∂

∂k

(
(1/W )

∂

∂k

)2ν

W,

from which one notices that symmetric potentials and parity-defined
Wigner distributions both lead to vanishing values for the above-
obtained time derivatives.

the corresponding continuity equations can be, respectively,
recast in the form of

D

Dτ
SvN (C)

∣∣∣∣
τ=T

=
∮
C
d ln(W )(�J · n)

=
∫ T

0
dτ ln(W (xC (τ ), kC (τ ); τ ))

×�Jk (xC (τ ), kC (τ ); τ )
D

Dτ
xC (τ ), (32)

and

D

Dτ
P(C)

∣∣∣∣
τ=T

= −
∮
C
dW �J · n

= −
∫ T

0
dτ W (xC (τ ), kC (τ ); τ )

×�Jk (xC (τ ), kC (τ ); τ )
D

Dτ
xC (τ ), (33)

with �J · n ≡ J · n, through which one can quantify the
quantum fluctuations that distinguish quantum from classical
regimes whenever some classical boundary trajectory in the
phase space is specified. For quantum systems which account
for all the order corrections from Eq. (15), quantumness and
classicality can thus be quantified through the above-obtained
continuity equation framework in terms of the results from
Eqs. (25), (32), and (33).

III. WIGNER FUNCTION AND WIGNER CURRENTS FOR
THE 1-DIM HARMONIC OSCILLATOR PLUS INVERSE

SQUARE POTENTIAL

For the quantum system from Eq. (5), the dimensionless
Schrödinger equation is written as

Hϕα
n (x) = 1

2

{
− d2

dx2
+ x2 + 4α2 − 1

4x2
− 2α

}
ϕα

n (x)

= εn ϕα
n (x), (34)

where k ≡ −i (d/dx), α is a continuous value parameter, and
one identifies the quantum number n as related to the self-
energy, En = h̄ω εn, through εn = 2n + 1 [cf. Eq. (5)]. The
exact solution for the above quantum mechanical problem is
given by

ϕα
n (x) = 21/2 �(x) N (α)

n xα+ 1
2 exp(−x2/2) Lα

n (x2), (35)

where �(x) is the step-unity function that constrains the result
to 0 < x < ∞, Lα

n are the associated Laguerre polynomials,
and N (α)

n is the normalization constant given by

N (α)
n =

√
n!

�(n + α + 1)
, (36)

where �(n) = (n − 1)! is the gamma function. An approx-
imated bounce model [21] corresponding to an even sym-
metrization of the above solution, which should be valid for
−∞ < x < +∞, can be obtained by simply suppressing the
step-unity function �(x) from Eq. (35).
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By substituting the stationary states ϕα
n (x) into the dimensionless form of the Wigner function from Eq. (13), one obtains

Wα
n (x, k) = 2

(
N (α)

n

)2
π−1

∫ +∞

−∞
dy �(x + y)�(x − y) (x2 − y2)

1
2 +α exp (2 i k y), exp[−(x2 + y2)]Lα

n ((x + y)2) Lα
n ((x − y)2)

= 2

π

∫ +x

−x

dy exp(2 i k y) exp[−(x2 + y2)]
n∑

j=0

L
α+2j

n−j (2(x2 + y2))

�(α + j + 1)

(x2 − y2)
1
2 +α+2j

j !
, (37)

where it has been noticed that

Lα
n (x) Lα

n (y) = �(n + α + 1)

n!

n∑
j=0

L
α+2j

n−j (x + y)

�(α + j + 1)

xjyj

j !
. (38)

Given that the generating function of Lα
n (x) is given by

1

(1 − z)α+1
exp

[
− x z

1 − z

]
=

∞∑
n=0

Lα
n (x) zn, (39)

for n ∈ integers, one can simply write

L
α+2j

n−j (2(x2 + y2)) = 1

�(n − j + 1)

(
d

dz

)n−j{ 1

(1 − z)α+1+2j
exp

[
−2z(x2 + y2)

1 − z

]}∣∣∣∣
z=0

, (40)

which can then be substituted into Eq. (37) as to return

Wα
n (x, k) = 4

π

n∑
j=0

{
x2(α+1+2j )

(α + j )! (n − j )! j !

(
d

dz

)n−j{ 1

(1 − z)α+1+2j
exp

[
−x2 1 + z

1 − z

]
G (z)

j (x)

}∣∣∣∣
z=0

}
, (41)

with

G (z)
j (x) =

∫ 1

0
dw cos(2 k x w) exp

[
−x2 1 + z

1 − z
w2

]
(1 − w2)α+2j+1/2.

Considering only the semi-integer values of α into the above expression, written as α = 1/2 + υ, with υ = 0, 1, 2, . . . , one
has the finite sum,

(1 − w2)α+2j+1/2 = (1 − w2)1+υ+2j =
1+υ+2j∑

=0

(−1)
w2(1 + υ + 2j )!

(1 + υ + 2j − )! !
, (42)

which returns an expression for G (z)
j (x) resumed by

G (z)
j (x) =

υ+1+2j∑
=0

x−(2+1)(υ + 1 + 2j )!

(υ + 1 + 2j − )! !

(
d

dμ

){∫ 1

0
dw cos(2 k x w) exp[−μx2w2]

}∣∣∣∣
μ= 1+z

1−z

=
√

π

2

υ+1+2j∑
=0

x−(2+1)(υ + 1 + 2j )!

(υ + 1 + 2j − )! !

(
d

dμ

){ 1√
μ

exp

(
−k2

μ

)
�

[
Erf

(√
μx + i

k√
μ

)]}∣∣∣∣
μ= 1+z

1−z

. (43)

It provides a complete analytic expression for Wα
n (x, k) given in terms of two finite series expansions.

Now turning our attention to the computation of the dimensionless Wigner currents, the expression for the x component is
straightforwardly obtained from Eq. (14) as

J n(α)
x (x, k) = kWα

n (x, k). (44)

Correspondingly, from Eq. (15), the k component,

J n(α)
k (x, k) = −

∞∑
ν=0

(
i

2

)2ν 1

(2ν + 1)!

[(
∂

∂x

)2ν+1

U (x)

] (
∂

∂k

)2ν

Wα
n (x, k), (45)

provides quantum and nonlinear corrections to the Liouvillian profile (cf. ν � 1 contributions). By following a careful
manipulation partially reproduced from Ref. [21], one first notices that the contribution from ν = 0, even if it includes nonlinear
terms, drives the classical (Liouvillian) behavior of the anharmonic system. For the Hamiltonian system from Eq. (5), one thus
should have

J n(α)
k(Cl)(x, k) = −

(
x + 1 − 4α2

4x3

)
Wα

n (x, k), (46)
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for the classical limit. Naturally, the potential proportional to x2 does not contribute to the quantum fluctuations since its
contribution vanishes for ν � 1. Therefore, quantum fluctuations arise from the contribution due to the inverse square potential
1/x2. In order to account for this contribution, one preliminarily notices that(

∂

∂x

)2ν+1 1

x2
= −(2ν + 2)

(2ν + 1)!

x2ν+3
, (47)

and that (
∂

∂k

)2ν

Wα
n (x, k) = 1

π

∫ +∞

−∞
dy (2 i y)2ν exp(2 i k y) ϕα∗

n (x + y) ϕα
n (x − y). (48)

One can then work out the sum in Eq. (45) for the term proportional to 1/x2 in U (x) as to obtain

−
∞∑

ν=0

(
i

2

)2ν 1

(2ν + 1)!

[(
∂

∂x

)2ν+1 1

x2

] (
∂

∂k

)2ν

Wα
n (x, k)

= 2

πx3

∫ +∞

−∞
dy

[ ∞∑
ν=0

(−1)2ν (2ν + 1)!

(2ν + 1)!
(ν + 1)

(y

x

)2ν

]
exp(2 i k y) ϕα∗

n (x + y) ϕα
n (x − y)

= 2

πx3

∫ +∞

−∞
dy

d

dκ

( ∞∑
ν=0

κν+1

)
exp(2 i k y) ϕα∗

n (x + y) ϕα
n (x − y)

= 2x

π

∫ +∞

−∞
dy (x2 − y2)−2 exp(2 i k y) ϕα∗

n (x + y) ϕα
n (x − y), (49)

where κ = y2/x2, from which there is no restriction about considering κ < 13 such that, for the last step, it has been noticed that

d

dκ

( ∞∑
k=0

κk+1

)
= d

dκ

( ∞∑
k=1

κk

)
= (1 − κ )−2.

The final form of J n(α)
k (x, k) is thus given by

J n(α)
k (x, k) = −x

(
Wα

n (x, k) + 1 − 4α2

4
Yα

n (x, k)

)
, (50)

with Wα
n (x, k) given by Eq. (41), and with

Yα
n (x, k) = 4

π

n∑
j=0

{
x2(α−1+2j )

(α + j )! (n − j )! j !

(
d

dz

)n−j{ 1

(1 − z)α+1+2j
exp

[
−x2 1 + z

1 − z

]
K(z)

j (x)

}∣∣∣∣
z=0

}
, (51)

where

K(z)
j (x) =

√
π

2

υ−1+2j∑
=0

x−(2+1)(υ − 1 + 2j )!

(υ − 1 + 2j − )! !

(
d

dμ

){ 1√
μ

exp

(
−k2

μ

)
Re

[
Erf

(√
μx + i

k√
μ

)]}∣∣∣∣
μ= 1+z

1−z

.

Through the above results, the quantum fluctuations can
be identified by the Wigner flow stagnation points at which
J n(α)

x (x, k) = J n(α)
k (x, k) = 0, as they are depicted in Fig. 1,

identified by orange-green crossing lines. The quantum por-
trait can be compared with the classical one4 for which the
quantum features are completely suppressed by truncating
the series expansion, Eq. (45), at ν = 0. Of course, the
quantum fluctuations have increasing relevant amplitudes for

3Since the step-unity function contributions set y ∈ (−x,+x ).
4Given by a collection of black lines describing the normalized field

equation driven by the vectorial current,

J n(α) = (
J n(α)

x ,J n(α)
k

) ∝
(

k, −x − 1 − 4α2

4x3

)
,

which of course does not depend on the quantum number n.

increasing values of n. Otherwise, the increasing value of the
parameter α suppresses the quantum effects and approaches
the system to the classical profile. It can be evinced by the
behavior of the external (red) fringes of the corresponding
Wigner functions which, in this case, correspond to the tran-
sition of quantum into classical trajectories. The contributions
from stagnation points are identified by (anti)clockwise vor-
tices with winding number equal to (−) + 1, and by sep-
aratrix intersections and saddle flows, both with vanishing
winding numbers. As it has been discussed in the literature
[18,20,21], a set of contra-flux fringes with a domain de-
fined by green and orange lines emerges as a compensating
effect which contra-balances the evolution of the quantum
flux. Given that the classical profile does not exhibit such
topological fluctuations, the quantifiers of nonclassicality pro-
posed in Sec. II can quantitatively account for these effects
along a classical domain delimited by some total energy
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FIG. 1. (First and third rows) Features of the Wigner flow for Wα
n (x, k) in the x-k plane, for quantum numbers n = 0, 1, and 2 (from

left to right). Green contour lines are for J n(α)
x (x, k) = 0 and orange contour lines are for J n(α)

k (x, k) = 0. The contour lines are bounds for
the reversal of the Wigner current x and k components. Their intersections are stagnation points. The background thermometer color scheme
[from minimal (blue) to maximal (red) values] describes the modulus of the Wigner current profiles |J n(α)

k (x, k)| with the domains of quantum
fluctuations bounded by green and orange lines. (Second and forth rows) Corresponding Wigner function profile (solid red contour lines) and
the classical background trajectories (dashed black lines). The sets of plots are for α = 3/2 (first two rows) and α = 5/2 (last two rows).
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FIG. 2. Right section (x > 0) of the quantum bounce model related to Wα
n (x, k), in correspondence with Fig. 1, for quantum numbers

n = 0, 1, and 2 (from left to right). Again, the contour lines are bounds for the reversal of the Wigner current x and k components, the color
scheme follows the same one from Fig. 1, and the plots are for α = 3/2 (first two rows) and α = 5/2 (last two rows).
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associated with a classical trajectory C, as one shall verify in
the following.

Quantum effects for bounce models

Before proceeding, one could pay attention to a modified
bounce model version of the above-discussed problem. In
fact, some fundamental questions in quantum mechanics are
reflected onto the discussion of discontinuities and singular-
ities. In quantum cosmology, for instance, it is related to
the formulation and circumvention of the initial singularity
problem [26–29]. Discontinuities on the derivative of quantum
potentials also affect the exact resolution of wave packet
scattering and quantum tunneling subtleties at the standard
quantum mechanics. Through the analytic continuation of
the coordinate x from (0,∞) to (−∞,∞), the presence of
an infinity potential barrier at x = 0 constrains the mirror
solution so as to exhibit an identical behavior of the above-
resolved problem. The attenuation of such an infiniteness of
the potential barrier, at x = 0, means that the wave functions
from left to right (and vice versa) should be probabilistically
connected. A realistic approach for describing such a bounce
model scenario can be implemented on the results from
Eqs. (51) and (52) by suppressing the error functions from the
final results by setting Erf[. . . ] → 1. This is equivalent to the
elimination of the step functions �(x) from the corresponding
preliminary integrations.

In the above context, the bounce model introduces largely
suppressed quantum tunneling fluctuations, whose influence
can be computed from such a redefined Wigner function, as it
can be seen from Fig. 2. The quantum tunneling from left to
right (and vice versa) results into quantum fluctuations near to
|x| ∼ 0.

Of course, the inclusion of an artificial (finite) potential
barrier at x = 0 affects the quantumness of the problem
due to the stagnation points that emerge at x = 0. Although
the above qualitative prescription can be provided, such a
bounced quantum configuration does not fit the (classical)
boundary conditions for the application of the flux equations,
since a typical classical trajectory cannot be obtained for the
approximated bounce model.

IV. CLASSICAL VERSUS QUANTUM PORTRAITS

For the dimensionless Hamiltonian,

H(x, k) = 1

2

(
k2 + x2 + 4α2 − 1

4x2
− 2α

)
, (52)

the classical trajectories are resumed by HC = ε, where ε is
the dimensionless classical energy.

The evaluation of the Poisson brackets thus yields

k̇C = {kC , H }PB = −
(

x2
C

+ 4α2 − 1

4x2
C

)
, (53)

ẋC = {xC , H }PB = kC , (54)

where “dots” denote time derivatives. The resolution of the
corresponding equations of motion for xC ∈ (0,∞) results

into

xC (τ) =
√

α + ε +
√

ε2 + 2αε + 1/4 cos(τ + ϑ ), (55)

kC (τ) =
√

ε2 + 2αε + 1/4 sin(τ + ϑ )√
α + ε +

√
ε2 + 2αε + 1/4 cos(τ + ϑ )

, (56)

FIG. 3. Quantifiers of decoherence (black), entropy flux (blue),
and purity flux (red) for the periodic anharmonic system driven the
Hamiltonian Eq. (5) as a function of the total energy parameter ε

for quantum states described by n = 0 (first plot), n = 1 (second
plot), and n = 2 (third plot), for α = 3/2 (small dots) and α = 5/2
(large dots). The results correspond to the rates of local transference
of information throughout the boundary surface C, respectively, ex-
pressed by D

Dτ
σ(C )|τ=T (black), D

Dτ
SvN (C )|τ=T (blue), and D

Dτ
P(C )|τ=T

(red) along a period of motion T = 2π .
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where ϑ depends on the initial conditions. The coordinates
xC (τ) and kC (τ) define the classical trajectory C that drives the
path integrals for the Wigner information flux quantifiers.

Given that

�J n(α)
k (x, k) = J n(α)

k (x, k) − J n(α)
k(Cl)(x, k)

= −1 − 4α2

4

(
xYα

n (x, k) − x−3Wα
n (x, k)

)
,

(57)

for the periodic motion along C defined by a fixed energy ε

[cf. Eqs. (54)–(56)], the local features of nonclassicality can
be computed in terms of integrated periodic probability fluxes
enclosed by the two-dimensional boundary surface C obtained
from Eqs. (25), (32), and (33), respectively, written as

D

Dτ
σ(C)

∣∣∣∣
τ=2π

= −
∫ 2π

0
dτ �J n(α)

k (xC (τ), kC (τ)) kC (τ),

(58)

D

Dτ
S(C)

∣∣∣∣
τ=2π

=
∫ 2π

0
dτ ln[W (xC (τ), kC (τ))]

×�J n(α)
k (xC (τ), kC (τ)) kC (τ), (59)

1

2π

D

Dτ
P(C)

∣∣∣∣
τ=2π

= −
∫ 2π

0
dτ W (xC (τ), kC (τ))

×�J n(α)
k (xC (τ), kC (τ)) kC (τ), (60)

for which the results are depicted in Fig. 3. Given that in-
creasing values of α approach Wigner to classical profiles,
as one can notice from Fig. 1, it should be natural to expect
such a correspondence with the results from Fig. 3, where the
overall averaged amplitude of the nonclassicality fluxes are
suppressed for larger values of α.

The above triplet describing the fluxes of information are
totally consistent with each other. Their associated integrated
quantifiers all depict the equivalent rates of quantum discrep-
ancies from classical regimes parametrized by C. One also
notices that the associated energy parameter ε, in correspon-
dence with the quantum energies εn = 2n + 1, reproduces a
kind of Bohr-Sommerfeld quantization scheme identified for
the fluxes of information. For increasing values of ε (and n),
such that the quantum distortions are homogenized according

to the phase-space volume considered, the quantum regime
is identified by the mutual crossing (at zero nodes) of all
quantifiers at ε = εn = 2n + 1 largest value. As preliminarily
reported for anharmonic Pöschl-Teller quantum potentials
[18,30–32], phase-space classical trajectories only accommo-
date (without yielding quantum distortions) the corresponding
n-quantized version of the quantum system. The nodes indi-
cate that the sum of winding numbers related to the quantum
stagnation points enclosed by C average out to zero. Of course,
the deviations from quantizing trajectories for arbitrary values
of ε have an evident correspondence with the flux of quantum
information through the classical boundary C properly quan-
tified in Fig. 3.

V. CONCLUSIONS

A fluid analog of the phase-space information flux related
to purity and von Neumann entropy, once driven by Wigner
functions and Wigner currents, has been associated with the
already known quantum decoherence and non-Liouvillian
aspects of quantum systems [7,18,22–24]. In this work, this
framework has been extended to the investigation of the
quantum system driven by the harmonic oscillator potential
modified by an inverse square (one-dimensional Coulomb-
like) contribution, for which exact expressions for Wigner
functions and Wigner currents have been obtained. In this
context, quantumness and classicality given in terms phase-
space quantum decoherence, purity, and von Neumann en-
tropy fluxes have been again investigated in order to extend
a preliminary discussion recently introduced for hyperbolic
quantum wells [18] and quantum cosmological scenarios [21].
Also relevantly, considering that some mathematical manip-
ulability of the Weyl transform associated with (arbitrary)
quantum states has been identified, and that the corresponding
quantum potentials support a periodic motion which defines
an enclosing phase-space classical path, our results are consis-
tent with the assertion that this Wigner flow framework can be
universally applied to any one-dimensional periodic physical
system, in order to evaluate how quantum regimes are far from
classical ones.
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