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Decoherence dynamics of qubits coupled to systems at quantum transitions
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We study the decoherence properties of a two-level (qubit) system homogeneously coupled to an environmen-
tal many-body system at a quantum transition, considering both continuous and first-order quantum transitions.
In particular, we consider a d-dimensional quantum Ising model as environment system. We study the dynamic
of the qubit decoherence along the global quantum evolution starting from pure states of the qubit and the
ground state of the environment system. This issue is discussed within dynamic finite-size scaling frameworks.
We analyze the dynamic finite-size scaling of appropriate qubit-decoherence functions. At continuous quantum
transitions, they develop power laws of the size of the environment system, with a substantial enhancement of
the growth rate of the qubit decoherence with respect to the case in which the environment system is in normal
noncritical conditions. The enhancement of the qubit decoherence growth rate appears much larger at first-order
quantum transitions, leading to exponential laws when increasing the size of the environment system.
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I. INTRODUCTION

Decoherence generally arises when a quantum system in-
teracts with an environmental many-body system S. This issue
is crucially related to the emergence of classical behavior in
quantum systems [1,2], quantum effects such as interference
and entanglement [3,4], and it is particularly relevant for the
efficiency of quantum information protocols [5]. The deco-
herence dynamics has been investigated in some paradigmatic
models, such as two-level (qubit) systems interacting with
many-body systems, in particular the so-called central spin
models; see, e.g., Refs. [6–17], where the qubit is globally,
or partially, coupled to the environmental system S.

A typical problem concerns the coherence loss of the qubit
during the entangled quantum evolution of the global system,
starting from pure states of the qubit and the ground state
of S. The decoherence rate may significantly depend on the
quantum phase of S, and, in particular, whether S develops
critical behavior arising from quantum transitions. Indeed,
the response of many-body systems at quantum transitions
is generally amplified by critical quantum fluctuations. At
quantum transitions, small variations of the driving parameter
give rise to significant changes of the ground state and low-
excitation properties of many-body systems [18]. At first-
order quantum transitions the ground-state properties appear
discontinuous in the infinite-volume limit, generally arising
from level crossings. Continuous quantum transitions show
continuous change of the ground state at the transition point,
and correlation functions develop a divergent length scale.

Environmental systems at quantum transitions may sig-
nificantly drive the dynamics of the qubit decoherence. An
enhanced quantum decoherence has been put forward [10] in
the case of continuous quantum transitions. In this paper we
return to this issue, providing a quantitative scaling framework
to support the enhancement of the growth rate of the quantum
decoherence and extend the analysis to the case in which the
environmental system is at a first-order quantum transition.

We consider a qubit homogeneously coupled to a d-
dimensional many-body system S of size L (or equiv-
alently with N ∼ Ld degrees of freedom). In particular,
as environmental systems we consider the paradigmatic d-
dimensional quantum Ising models, whose quantum phase di-
agrams present both continuous and first-order quantum tran-
sitions [18]. The two-level qubit system is equally coupled to
all Ld spins of S. We consider the standard out-of-equilibrium
protocol in which the initial global state is a product of pure
states of the qubit and S. We study the quantum decoherence
dynamics during the quantum evolution of the global system,
as measured by its density matrix, which is obtained by tracing
out the S states.

We investigate the quantum decoherence dynamics when
the environmental Ising system experiences a quantum transi-
tion. The decoherence properties are analyzed within dynamic
finite-size scaling frameworks. At both continuous and first-
order quantum transitions, dynamic finite-size scaling behav-
ior arises from the interplay between the coupling of the qubit
with S, the Hamiltonian parameters of S close to the quantum
transition, and the size L of S. We show that the critical
conditions of the environmental system at quantum transitions
give rise to a substantial enhancement of the growth rate of the
decoherence dynamics with respect to noncritical systems. In
particular, the decoherence growth rate at continuous quantum
transitions turns out to be characterized by power laws Lζ of
the size L, with exponents ζ that are larger than that of the
volume (Ld ) law expected for systems in normal conditions.
The rate enhancement of the qubit coherence loss is even
more substantial at first-order quantum transitions. Indeed, the
corresponding dynamic finite-size scaling theory predicts an
exponentially large decoherence growth rate, related to the
exponentially suppressed difference of the lowest levels in
finite-size many-body systems at first-order quantum transi-
tions.

The paper is organized as follows: In Sec. II we present
the general setting of the out-of-equilibrium problem that we
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consider. In Sec. III we discuss the decoherence proper-
ties when the environmental system is critical at a continu-
ous quantum transition, within a dynamic finite-size scaling
framework, and show the enhanced growth rate of decoher-
ence with respect to normal conditions. Section IV extends
this analysis to first-order quantum transitions, showing that
the decoherence growth-rate enhancement is even more pro-
nounced, leading to exponential laws. Finally, in Sec. V, we
summarize and draw our conclusions.

II. GENERAL SETTING OF THE PROBLEM

We consider a d-dimensional quantum many-body system
S of size Ld with Hamiltonian

HS (v) = Hc + vPv, (1)

where Pv is the spatial integral of local operators, and
[Hc, Pv] �= 0 and the parameter v drives the quantum transi-
tion located at v = 0. Then we consider a further two-level
system globally coupled to the many-body system by the
Hamiltonian term

Hq = w�(3)Pv, (2)

where the Pauli operator �(3) is associated with the two states
|±〉 of the qubit, so that �(3)|±〉 = ±|±〉. Therefore the global
Hamiltonian reads

HqS (v,w) = Hc + (v + w�(3) )Pv. (3)

We are interested in the quantum evolution of the global
system starting from the initial t = 0 condition:

|�qS (t = 0)〉 = |q0〉 ⊗ |Gv〉, (4)

where |q0〉 is a generic pure state of the qubit,

|q0〉 = c+|+〉 + c−|−〉, |c+|2 + |c−|2 = 1, (5)

and |Gv〉 is the ground state of the system with Hamiltonian
HS (v). Then the global wave function describing the quantum
evolution for t > 0 must be a solution of the Schrödinger
equation

i
∂

∂t
|�qS (t )〉 = HqS (v,w)|�qS (t )〉. (6)

It can be written as

|�qS (t )〉 = c+|+〉 ⊗ |φv+w(t )〉 + c−|−〉 ⊗ |φv−w(t )〉, (7)

where

|φv±w(t )〉 = e−iHS (v±w)t |Gv〉, (8)

i.e., they are solutions of the Schrödinger equation for the
system S only,

i
∂

∂t
|φv±w(t )〉 = HS (v ± w)|φv±w(t )〉, (9)

with |φv±w(t = 0)〉 = |Gv〉. Note that the expectation value
〈�qS (t )|�(3)|�qS (t )〉 = |c+|2 − |c−|2 does not change along
the quantum evolution, thus it is fixed by the initial condition
of the qubit.

The quantum decoherence behavior can be inferred from
the qubit density matrix,

ρq (t ) = TrSρqS (t ), ρqS (t ) = |�qS (t )〉〈�qS (t )|, (10)

where TrS is the trace over the S states. The purity of the qubit
during its quantum evolution can be quantified by the trace of
the square density matrix ρq , i.e.,

Trρq (t )2 = 1 − 2|c+|2|c−|2FD (t ), (11)

where

FD (t ) = 1 − |〈φv−w(t )|φv+w(t )〉|2, (12)

and 0 � FD (t ) � 1. The function FD measures the quantum
decoherence, quantifying the departure from a pure state. In-
deed FD (t ) = 0 implies that the qubit is in a pure state, while
FD (t ) = 1 indicates that the qubit is maximally entangled,
corresponding to a diagonal density matrix

ρq = diag[|c+|2, |c−|2]. (13)

Of course, the time evolution of the decoherence function
FD (t ) ≡ FD (w, v,L, t ) depends on the parameters of the
global system, i.e., the v that measures the distance of the
many-body system from the quantum transition, the coupling
w between the qubit and the system, and the size L of the
system.

Note that the overlap

LD (t ) ≡ |〈φv−w(t )|φv+w(t )〉| (14)

entering the definition of FD can be interpreted as the fidelity
or Loschmidt echo (see, e.g., Ref. [10]) of the S states
associated with two different quench protocols involving the
isolated system S. For both of them the system S starts from
the ground state of the Hamiltonian HS (v) as t = 0; then one
considers, and compares using LD , the quantum evolutions at
the same t , arising from the sudden change of the Hamiltonian
parameter v to v − w and to v + w.

Noting that

〈φv−w(t )|φv+w(t )〉 = 〈Gv|eiHS (v−w)t e−iHS (v+w)t |Gv〉, (15)

one can easily show that FD is an even function of w. There-
fore, since FD (0, v, L, t ) = 0, and assuming an analytical
behavior around μ = 0 (at finite L and t), we expect

FD (w, v,L, t ) = w2

2
CD (v, L, t ) + O(w4) (16)

for small values of w. Thus the growth rate of the decoherence
in the limit of small qubit-S coupling w is described by the
growth-rate function

CD (v, L, t ) = ∂2FD/∂w2|w=0, (17)

for a given value v of HS . It measures the sensitivity of
the coherence properties of the subsystems to the qubit-S
coupling w.

The above setting can be straightforwardly extended to n-
level systems coupled to an environmental many-body system.
The scaling arguments we will report herein can be extended
as well.

We also note that the above considerations can be straight-
forwardly extended to the case in which the initial qubit state
is not pure, but a mixed state, and is thus described by a
nontrivial density matrix. Of course, the calculations become
more cumbersome; however, the function FD maintains its
crucial role to describe the coherence properties during the
evolution of the global system.
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As concrete examples of environmental systems S, we con-
sider the paradigmatic d-dimensional quantum Ising model
defined on an Ld lattice,

HI = −J
∑
〈x,y〉

σ (3)
x σ (3)

y − g
∑

x

σ (1)
x , (18)

where σ (k) are the Pauli matrices, the first sum is over
all bonds connecting nearest-neighbor sites 〈x, y〉, while the
other sums are over the sites. We assume h̄ = 1, J = 1, the
lattice spacing a = 1, and g > 0.

At g = gc > 0 (for one-dimensional quantum Ising sys-
tems gc = 1), the model undergoes a continuous quantum
transition belonging to the (d + 1)-dimensional Ising univer-
sality class [18–20], separating a disordered phase (g > gc)
from an ordered (g < gc) one. For any g < gc, the presence
of a longitudinal external field v coupled to

P� = −
∑

x

σ (3)
x (19)

drives first-order quantum transitions along the v = 0 line.
Then we consider a two-level qubit system, described by

the Pauli operator �(3) globally coupled to the Ising system
by the Hamiltonian term

Hq = w�(3)P�. (20)

We are interested in the coherence properties of the qubit
when the system S is a d-dimensional Ising model with
Hamiltonian

HS (v) = HI + vP�, (21)

cf. Eqs. (18) and (19), and the qubit coupling is described by
Hq given in Eq. (20).

In the following sections we show that, at both continu-
ous and first-order quantum transitions of the environmental
Ising system S, the interplay between the coupling with
the qubit, the Hamiltonian parameters, and the size L gives
rise to dynamic scaling behavior of the decoherence func-
tion FD (w, v,L, t ), and correspondingly of its growth-rate
function CD (v, L, t ). For this purpose we consider dynamic
finite-size scaling frameworks, which allows us to character-
ize the decoherence dynamics at both continuous and first-
order quantum transitions. We derive the general features of
the dynamic finite-size scaling of FD and CD , evidencing
the differences between continuous and first-order quantum
transitions.

III. THE DECOHERENCE DYNAMICS WITH
A CRITICAL ENVIRONMENTAL SYSTEM

The theory of finite-size scaling at quantum transitions
is well established; see, e.g., Refs. [21–24] and references
therein. The continuous quantum transition of the Ising
model (18) is characterized by two relevant parameters, r ≡
g − gc and v (such that they vanish at the critical point), with
renormalization-group dimension yr and yh, respectively. The
relevant finite-size scaling variables are

κr = Lyr r, κv = Lyhv. (22)

The finite-size scaling limit is obtained by taking L → ∞
keeping κr and κv fixed.

The equilibrium critical exponents yr and yh are those
of the (d + 1)-dimensional Ising universality class [18–20].
Therefore, for one-dimensional systems they are yr = 1/ν =
1 and yh = (d + 3 − η)/2 = (4 − η)/2 with η = 1/4. For
two-dimensional models the critical exponents are not known
exactly, but there are very accurate estimates; see, e.g.,
Refs. [25–29], and in particular [28] yr = 1/ν with ν =
0.629 971(4) and yh = (5 − η)/2 with η = 0.036 298(2). For
three-dimensional systems they assume mean-field values,
yr = 2 and yh = 3, apart from logarithms. The temperature
T gives rise to a relevant perturbation at continuous quantum
transitions, associated with the scaling variable τ = LzT ,
where z = 1 (for any spatial dimension) is the dynamic expo-
nent characterizing the behavior of the energy differences of
the lowest-energy states and, in particular, the gap � ∼ L−z.
In the following we assume T = 0.

A generic observable O in the finite-size scaling limit
behaves as

O(r, v, L) ≈ LyoO(κr, κv ), (23)

where the exponent yo is the renormalization-group dimen-
sion associated with O, and O is a universal finite-size
scaling function. The approach to such an asymptotic behav-
ior is characterized by power-law corrections, typically con-
trolled by irrelevant perturbations at the corresponding fixed
point [21]. The equilibrium finite-size scaling at quantum
transitions has been also extended to quantum-information
concepts [3,30–32], such as the ground-state fidelity and its
susceptibility, which measure the change of the ground state
when varying the Hamiltonian parameters around a quantum
transition [33].

Out-of-equilibrium time-dependent processes require also
an appropriate rescaling of the time t , encoded by the scaling
variable

θ = L−zt ∼ �(L)t. (24)

For example, we may consider the dynamic behavior of
an isolated system after a quench associated with a sudden
change of the parameter v, from v to v + w at t = 0 (keeping
g fixed), starting from the ground state |Gv〉. The resulting
quantum evolution of the state is

|φ(t )〉 = e−iHS (v+w)t |Gv〉. (25)

This problem can be studied within a dynamic finite-size
scaling framework [34]. The dynamic finite-size scaling limit
is defined as the infinite-volume L → ∞ limit, keeping the
scaling variables θ , κr , κv , and

κw = Lyhw (26)

fixed. Then a generic observable O in the dynamic finite-size
scaling limit is expected to behave as [34]

O(r, v,w,L, t ) ≈ LyoO(κr, κv, κw, θ ), (27)

where again yo is the renormalization-group dimension of
O, and O is a dynamic finite-size scaling function. The
equilibrium finite-size scaling behavior is recovered in the
limit w → 0.

An analogous dynamic finite-size scaling is developed by
the Loschmidt echo Le associated with quench protocols,
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when suddenly changing the driving parameter from v to
v + w. The Loschmidt echo, defined as

Le(w, v,L, t ) = |〈Gv|e−iHS (v+w)t |Gv〉|, (28)

quantifies the deviation of the postquench state at time t > 0
from the initial t = 0 ground state |Gv〉 associated with the
Hamiltonian HS (v). It is expected to approach the asymptotic
dynamic finite-size scaling [34]

Le(r, w, v, L, t ) ≈ Le(κr, κw, κv, θ ). (29)

This has been confirmed by numerical calculations within the
one-dimensional quantum Ising model around its continuous
quantum transition at gc = 1 [34]. We also mention that the
dynamic finite-size scaling framework has been exploited
to study the scaling properties of work fluctuations after
quenches at quantum transitions [35].

To derive the dynamic finite-size scaling behavior of the
decoherence function FD [cf. Eq. (11)], we exploit its close
relation with the Loschmidt echo LD defined in Eq. (14),
between quantum states of S, along the quantum evolutions
arising from two different quench protocols of the isolated
system S, starting from the same state |Gv〉 [cf. Eq. (15)].
Therefore, we expect that FD develops a dynamic finite-size
scaling analogous to that of the Loschmidt echo in Eq. (28)
associated with standard quench protocols, as reported in
Eq. (29).

To begin with, we consider quenches at the critical point
g = gc, corresponding to r = 0, driven by the parameter v.
According to the above scaling arguments, we expect that
the decoherence function FD [cf. Eq. (12)] develops the
asymptotic dynamic finite-size scaling

FD (r = 0, w, v, L, t ) ≈ FD (κw, κv, θ ), (30)

with

FD (κw = 0, κv, θ ) = 0, FD (κw, κv, θ = 0) = 0. (31)

Note that the above dynamic finite-size scaling requires that
also the coupling w between the qubit and S is sufficiently
small, indeed the dynamic finite-size scaling limit requires
that κw = Lyhw must be kept constant in the large-L limit. We
do not expect universal finite-size scaling behavior without
such a rescaling, i.e., for generic finite values of w.

Moreover, Eq. (30) implies that the decoherence growth-
rate function CD [cf. Eqs. (16) and (17)] behaves as

CD (r = 0, v, L, t ) ≈ L2yhCD (κv, θ ). (32)

This scaling equation characterizes the amplified O(L2yh ) rate
of departure from coherence of the qubit when the environ-
ment system S is at a continuous quantum transition. Indeed,
in the case of systems out of criticality one generally expects
CD ∼ Ld , and

2yh = d + 3 − η > d. (33)

We may also consider the more general case when the
parameter r = g − gc is not zero, but sufficiently small to
keep the system within the critical region. The effects of
a nonvanishing parameter r can be taken into account by
adding a further dependence on κr [cf. Eq. (22)] in the scaling

function CD (κv, θ ); i.e., we expect

CD (r, v, L, t ) ≈ L2yhCD (κr, κv, θ ). (34)

The scaling behavior in the thermodynamic limit can be
formally obtained by considering the limit L → ∞ keeping
fixed the scaling variables

ρv = κvκ
−yh/yr

r ≡ ξyh

r v, (35)

θv = θκz/yr

r ≡ ξ−z
r t, (36)

where ξr ∼ r−1/yr is related to the diverging length scale when
approaching the critical point r = 0 in the thermodynamic
limit. Therefore, simple manipulations of the finite-size scal-
ing equation (34) lead to the following scaling behavior in the
thermodynamic limit

CD (r, v, L → ∞, t ) ≈ ξ 2yh

r C∞(ρv, θv ), (37)

which is obtained by replacing the scaling variables κr , κv , and
θ with ρv , θv , and L/ξr , and considering the thermodynamic
limit L/ξr → ∞.

The asymptotic behavior described by the dynamic finite-
size scaling at continuous quantum transitions is expected
to be universal, i.e., independent of the microscopic features
of the system S. Its main features only depend on the uni-
versality class of the continuous quantum transition of S

and the general properties of the coupling between the qubit
and the system S. In the case at hand the qubit is coupled
to the order parameter of the magnetic transition. Note that
the dynamic finite-size scaling functions generally depend
on the boundary conditions and the geometry of the system,
while the power laws of the observables and the scaling
variables remain unchanged. The approach to the dynamic
finite-size scaling is expected to be generally characterized
by power-law-suppressed corrections, as it generally occurs
at continuous quantum transitions [21].

We may also consider the case in which the qubit is
homogeneously coupled to the transverse spin operators, i.e.,
we replace P� [cf. Eq. (19)] with Pt = −∑

x σ (1)
x , and the

qubit-S coupling (20) with

Hq,t = u�(1)Pt . (38)

For simplicity we assume that S is initially prepared in the
ground state for v = 0 and a given r = g − gc. By using
scaling arguments analogous to those leading to Eq. (30), we
arrive at the dynamic finite-size scaling

FD (u, r, L, t ) ≈ FD (κu, κr , θ ), (39)

with κr defined in Eq. (22), and κu = Lyr u. This also implies

CD (r, L, t ) ≈ L2yrCD (κr, θ ) (40)

for the corresponding decoherence growth-rate function. Note
again the enhancement of the decoherence dynamics, be-
cause 2yr > d. The decoherence dynamics of this central
spin model, with the qubit homogeneously coupled to the
transverse spin variables of a one-dimension Ising model,
was also considered in Ref. [10]; the scaling behavior of its
numerical results appears consistent with the dynamic finite-
size scaling prediction (39).
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IV. QUBIT DECOHERENCE WITH ENVIRONMENTAL
SYSTEMS AT FIRST-ORDER QUANTUM TRANSITIONS

In this section we extend the dynamic finite-size scaling
of the decoherence dynamics to the case in which the envi-
ronmental system S is at a first-order quantum transition, i.e.,
along the line g < gc of the phase diagram of a d-dimensional
Ising model. We again consider the quantum evolution of the
global system starting from pure states of both the qubit and
the environmental Ising system S.

As shown by earlier works [22,36–38], the finite-size
scaling behavior of isolated many-body systems at first-
order quantum transitions significantly depend on the type
of boundary condition; in particular, whether they favor one
of the phases or are neutral, giving rise to finite-size scaling
characterized by exponential or power-law behavior. In the
following we consider Ising systems with boundary condi-
tions that do not favor any of the two magnetized phases, such
as periodic and open boundary conditions, which generally
lead to exponential finite-size scaling laws.

The first-order quantum transition line for g < gc are re-
lated to the level crossing of the two lowest states |↑〉 and |↓〉
for v = 0, such that 〈↑|σ (3)

x |↑〉 = m0 and 〈↓|σ (3)
x |↓〉 = −m0

(independently of x) with m0 > 0. The degeneracy of these
states at v = 0 is lifted by the longitudinal field v. There-
fore, v = 0 is a first-order quantum transition point, where
the longitudinal magnetization M = L−d

∑
x Mx, with Mx ≡

〈σ (3)
x 〉, becomes discontinuous in the infinite-volume limit.

The first-order quantum transition separates two different
phases characterized by opposite values of the magnetization
m0, i.e.,

lim
v→0±

lim
L→∞

M = ±m0. (41)

For one-dimensional systems [39] m0 = (1 − g2)1/8.
In a finite system of size L, the two lowest states are

superpositions of two magnetized states |+〉 and |−〉 such that
〈±|σ (3)

x |±〉 = ±m0 for all sites x. Due to tunneling effects,
the energy gap � at v = 0 vanishes exponentially as L in-
creases [22,40],

�(L) ∼ e−cLd

, (42)

apart from powers of L. In particular, the energy gap �(L) of
the one-dimensional Ising system (18) for g < 1 is exponen-
tially suppressed as follows [39,41]:

�(L) = 2(1 − g2)gL[1 + O(g2L)] (43)

for open boundary conditions, and

�(L) ≈ 2(πL)−1/2(1 − g2)gL (44)

for periodic boundary conditions. The differences �i ≡ Ei −
E0 for the higher excited states (i > 1) are finite for L → ∞.

The emergence of a dynamic finite-size scaling after a
quench protocol is also expected along the first-order quantum
transition line for g < gc [34], which is associated with a
sudden change of the parameter v from v to v + w at t = 0,
starting from the ground state |Gv〉. Extending to generic
dimensions the arguments of Refs. [34,42], we identify the

following scaling variables:

κv = 2m0vLd

�(L)
, κw = 2m0wLd

�(L)
, θ = t�(L). (45)

In particular, the scaling variables κv and κw are the ra-
tios between the energy associated with the correspond-
ing longitudinal-field perturbations, which are approximately
given by 2m0vLd and 2m0wLd , respectively, and the energy
difference �(L) of the two lowest states at v = 0. Then,
the expected dynamic finite-size scaling of the magnetization
is [34]

M (w, v,L, t ) = m0M(κw, κv, θ ). (46)

This dynamic finite-size scaling is expected to hold for any
g < gc. The scaling function M is independent of g, apart
from trivial normalizations of the arguments. The dynamic
finite-size scaling at first-order quantum transitions has been
numerically confirmed in the case of the one-dimensional
Ising model [34]. The approach to the asymptotic dynamic
finite-size scaling is expected to be exponential when increas-
ing the size of the system. An analogous dynamic finite-size
scaling applies to the Loschmidt echo defined as in Eq. (28),
we expect Le(w, v,L, t ) ≈ Le(κw, κv, θ ), which is formally
identical to Eq. (29).

Then, using the same arguments of the previous section,
i.e., noting that the decoherence function FD can be written in
terms of quench-like amplitudes related to the environmental
system only, we conjecture an analogous dynamic finite-size
scaling for the decoherence function

FD (w, v,L, t ) ≈ FD (κw, κv, θ ). (47)

Correspondingly, matching the expansion of the FD in powers
of w and that of FD in powers of κw, we obtain the decoher-
ence growth-rate function

CD (v, L, t ) ≈ 4m2
0L

2d

�(L)2 CD (κv, θ ). (48)

Therefore, when the environment system S is at a first-order
quantum transition, the decoherence growth rate gets signifi-
cantly enhanced, increasing exponentially with L. Indeed the
prefactor of Eq. (48) behaves as

4m2
0L

2d

�(L)2
∼ exp(bLd ), (49)

apart from powers of L.
In the case of the quantum Ising systems with periodic

or open boundary conditions, the dynamic finite-size scaling
functions can be exactly computed, exploiting a two-level
truncation of the spectrum [22,42]. As shown in Ref. [42],
in the long-time limit and for large systems, the scaling
properties in a small interval around v = 0, more precisely for
m0|v| 
 �2 = O(1), are captured by a two-level truncation,
which only takes into account the two nearly degenerate
lowest-energy states. The effective evolution is determined by
the Schrödinger equation [42]

i
d

dt
�(t ) = H2(v)�(t ), (50)
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where �(t ) is a two-component wave function whose compo-
nents correspond to the states |+〉 and |−〉, and

H2(v) = −βσ (3) + δσ (1),

β = m0vLd, δ = �(L)

2
, κv = β

δ
, (51)

where σ (k) are the Pauli matrices. The initial condition is given
by the ground state of H2(v), i.e., by

|�(w, v,L, t = 0)〉 = sin(αv/2)|−〉 − cos(αv/2)|+〉, (52)

with tan αv = κ−1
v and αv ∈ (0, π ). The quantum evolution

after quenching from v to v + w can be easily obtained by
diagonalizing H2(v + w), whose eigenstates are

|0〉 = sin(αv+w/2)|−〉 − cos(αv+w/2)|+〉, (53)

|1〉 = cos(αv+w/2)|−〉 + sin(αv+w/2)|+〉, (54)

where tan αv+w = (κv + κw )−1 with αv+w ∈ (0, π ). Their
eigenvalue difference is given by

E1 − E0 = �(L)
√

1 + (κv + κw )2. (55)

Then, apart from an irrelevant phase, the time-dependent state
evolves as

|�(w, v,L, t )〉 = cos

(
αv − αv+w

2

)
|0〉 + e−iθ

√
1+(κv+κw )2

× sin

(
αv − αv+w

2

)
|1〉. (56)

Note that the time-dependent wave function is written in terms
of scaling variables only. The dynamic finite-size scaling of
the magnetization can be easily obtained [34] by computing
the expectation value of the operator σ (3) over the state
|�(w, v,L, t )〉.

The decoherence function FD can be straightforwardly
obtained by computing

FD (w, v,L, t ) = 1 − |〈�(−w, v,L, t )|�(w, v,L, t )〉|2.
(57)

Using Eq. (56), one can immediately see that FD (w, v,L, t )
is a function of κw, κv , and θ only, confirming the dynamic
finite-size scaling (47). The resulting expression is quite cum-
bersome; some plots are shown in Fig. 1. The curves are
also characterized by revivals, which are typical of two-level
systems.

The dynamic finite-size scaling of the decoherence growth-
rate function CD is obtained by computing

CD (v, L, t ) = ∂2FD

∂w2

∣∣∣∣
w=0

=
(

∂κw

∂w

)2

CD (κv, θ ), (58)

which leads to the analytical result

CD (κv, θ ) = 2[1 − cos
(
θ
√

1 + κ2
v

)
]

(1 + κ2
v )2

. (59)

Note the simple result for κv = 0:

CD (0, θ ) = 2(1 − cos θ ), (60)
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FIG. 1. Some plots of the scaling function FD (κw, κv, θ ) asso-
ciated with the decoherence dynamics at first-order quantum transi-
tions [cf. Eq. (47)]. The top figure shows plots versus θ for κw = 1
and some values of κv; the middle figure shows plots versus κw for
θ = 1 and some values of κv; the bottom figure shows plots versus
κw for κv = 0 and some values of θ . The units of the scaling variables
can be easily inferred by taking into account that we set h̄ = 1, J = 1
and the lattice spacing a = 1.

and that CD (κv, θ ) vanishes for κv → ∞. We stress that the
above dynamic finite-size scaling functions are expected to
be independent of g < gc along the first-order transition line,
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apart from trivial g-dependent normalizations of the scaling
variables.

We finally mention that a notable feature of one-
dimensional quantum Ising systems at first-order quantum
transitions, with neutral boundary conditions such as periodic
and open boundary conditions, is their rigidity with respect
to external perturbations [22,42], i.e., their response to global
or local longitudinal perturbations is analogous. Therefore, an
analogous quantum decoherence dynamics at the first-order
transition line is expected in the case of a local coupling
between the longitudinal parameter v, the qubit, and the Ising
chain; for example when replacing P� [cf Eqs. (19) and (20)]
with

p� = −σ (3)
xc

, hq = w�(3)p�, (61)

respectively, where xc is one of the sites of the chain (suf-
ficiently far from the boundaries). The only difference is
that the relevant scaling variables turn into κv = 2m0v/�(L)
and κw = 2m0w/�(L) instead of those reported in Eq. (45).
They give rise to a two-level scenario as well, with the same
dynamic finite-size scaling functions.

V. CONCLUSIONS

We have investigated the decoherence dynamics of a two-
level qubit system globally and homogeneously coupled to a
many-body spin system S, such as a d-dimensional quantum
Ising system, at a quantum transition. In particular, we have
considered the out-of-equilibrium quantum evolution of the
global system starting from pure states of both the qubit
and S. The decoherence dynamics of the qubit is described
by the time evolution of its density matrix, obtained tracing
out the states of S. Its behavior can be characterized by the
decoherence function FD defined in Eq. (11), which quantifies
the departure of the qubit from a pure state, independently of
its initial pure state. The sensitivity to the qubit-S coupling w

is measured by the decoherence growth-rate function CD =
∂2FD/∂w2|w=0 [cf. Eq. (16)].

We have shown that the rate of the quantum decoherence
gets enhanced when the environmental system S experiences
a quantum transition. At both continuous and first-order
quantum transitions of S, the interplay among the coupling
between the qubit and S, the Hamiltonian parameters and
the size of S, during the quantum evolution gives rise to
scaling behavior of the decoherence function FD (w, v,L, t )
[cf. Eq. (12)] and the corresponding decoherence growth-rate
function CD (v, L, t ) [cf. Eq. (17)] in the limit of large size
L of S. This is shown within dynamic finite-size scaling
frameworks, which allow us to determine the behavior of

the decoherence functions at both continuous and first-order
quantum transitions of the environmental system S, in appro-
priate dynamic finite-size scaling limits.

We derive the general properties of the dynamic finite-size
scaling of the decoherence functions FD and CD , providing
evidence of the differences between continuous and first-order
quantum transitions. We show that they are characterized
by power laws of the size L at continuous quantum transi-
tions, while exponential laws generally emerge at first-order
quantum transitions. This behavior represents a substantial
enhancement of the rate of the decoherence dynamics. For
example, at continuous quantum transitions, when the qubit
couples longitudinally to the Ising model, the rate function
turns out to increase as CD ∼ Lζ where ζ = 2yh = 15/8 for
d = 1, ζ = 2yh ≈ 4.96 for d = 2, and ζ = 2yh = 6 for d = 3
(apart from logarithms). Therefore they show a significant
enhancement of the decoherence growth rate, when compared
with the general volume Ld law expected for systems in
normal conditions. The decoherence growth-rate enhance-
ment appears even more substantial at first-order quantum
transitions, where CD ∼ exp(bLd ) increases exponentially.

Note that the main features of the dynamic finite-size
scaling, such as the general size dependence and the scaling
functions, are expected to be universal, i.e., they are expected
not to depend on the microscopic details of the models.
Therefore, their predictions can be extended to all continuous
quantum transitions belonging to the same Ising universality
class with analogous coupling between qubit and system.
An analogous statement holds for the dynamic finite-size
scaling with environmental systems at first-order quantum
transitions. In particular, the dynamic finite-size scaling with
environmental Ising systems is expected to be the same, apart
from normalizations, along the first-order transition line for
g < gc, and in any system sharing the same global properties,
such as first-order quantum transitions arising from an avoided
two-level crossing phenomenon in the large-L limit.

Finally, we would like to stress that the dynamic finite-
size scaling frameworks, which was exploited to study the
decoherence dynamics of qubit coupled longitudinally and
transversally to Ising systems at quantum transitions, can be
straightforwardly extended to general continuous and first-
order quantum transitions, and generic couplings of the qubit
to its environmental system.
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