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Variational approach to the optimal control of coherently driven, open quantum system dynamics
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Quantum coherence inherently affects the dynamics and the performances of a quantum machine. Coherent
control can, at least in principle, enhance the work extraction and boost the velocity of evolution in an open
quantum system. Using advanced tools from the calculus of variations and reformulating the control problem in
the instantaneous Hamiltonian eigenframe, we develop a general technique for minimizing a wide class of cost
functionals when the external control has access to full rotations of the system Hamiltonian. The method is then
applied both to time and heat loss minimization problems and explicitly solved in the case of a two-level system
in contact with either bosonic or fermionic thermal environments.
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I. INTRODUCTION

Differently from the universal results of classical thermo-
dynamics such as the first and the second law, the analy-
sis of quantum systems driven out-of-equilibrium involves
nonuniversal features depending on the details of the dynam-
ics [1–3] or on the response of the system to an external
perturbation [4–6]. In such irreversible situations, optimizing
thermodynamic quantities like heat or work usually requires
nontrivial control strategies that explicitly involve quantum
operations [7–10]. In this framework optimal control theory
has proved to be effective for solving a variety of applicative
tasks [11–14,16]. Beyond thermodynamics, optimal control
theory is well known to be useful in time minimization prob-
lems [15,17], for the study of quantum speed limits [18], and
for generating efficient quantum gates in dissipative systems
[19–22]. Such different goals can be achieved with several
techniques, depending on the framework in consideration,
i.e., on the dynamical equations and the physical constraints
associated with the controlled system, and on the quantities
one wants to optimize. These methods span, e.g., from Floquet
theory, that is particularly suitable for periodical external
driving forces [23,24], to geometric reformulations of the
control problem [19,25–31] for fidelity or time optimization
and applications in the linear response regime, to adiabatic
and shortcut to adiabaticity approaches [32,33]. An excellent
review on the recent advances in optimal quantum control
theory can be found in [34].

In this work we focus on externally driven open quantum
systems and we develop a formal variational approach which
is general enough to cover thermodynamics and time mini-
mization problems. We will use a powerful tool known as the
Pontryagin minimum principle (PMP) [35], already success-
fully applied in time [36–40] and heat loss [41] optimization
problems. The peculiarity of our work is that we consider
quantum systems which are open (i.e., in contact with a
thermal bath) and which might develop quantum coherence
between the energy eigenstates. The latter is an intrinsically
quantum mechanical effect which is often neglected in many

thermodynamic analyses but which, at least in principle, could
allow for better optimization strategies with respect to a
semiclassical driving of the system.

For this sake we will suppose that the dynamics of the
system weakly coupled to a thermal bath is described by
a Markovian master equation (MME) of the Lindblad form
[42,43],

dρ(t )

dt
= Lu(t )[ρ(t )] := −i[Hu(t ), ρ(t )] + Du(t )[ρ(t )], (1)

where Hu(t ) is the system Hamiltonian and Du(t ) is the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) dissipator,
and both are assumed to implicitly depend on a family of
external control fields that we cast in the form of the vector
u(t ) = [u1(t ), u2(t ), ...] (throughout the paper we will use the
convention that h̄ = 1). We are interested in the problem of
minimizing general cost functions associated with the state
evolution of the system from an initial time t = 0 to a final
time t = τ , and possessing the following structure:

f :=
∫ τ

0
〈Fu(t )[ρ(t )]〉dt, (2)

where Fu(t ) is a generic control-dependent linear operator
acting on the quantum state, while the brackets 〈·〉 denote the
trace operation.

In this work we aim principally at the development of a
formalism for handling quantum coherences in the variational
calculus. In Sec. II we show that such a problem can be tackled
by doing a time-dependent change of basis that brings the
system into the instantaneous Hamiltonian eigenframe and
by introducing a convenient reparametrization of the control
fields.

In Sec. III we apply this formalism to the heat minimization
problem and we present three physical models as examples: a
two-level system in a Gibbs mixing channel and a two-level
system in a thermal bath with either bosonic or fermionic
excitations. Eventually in Sec. IV we will see that our general
approach proves to be useful also for solving time minimiza-
tion problems and for characterizing the set of reachable states
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FIG. 1. Pictorial representation of two possible strategies to con-
trol a quantum system in the time interval [0, τ ]: on the left the
eigenvectors of the Hamiltonian are fixed, i.e., [H (t1), H (t2)] = 0;
on the right the Hamiltonian can rotate and [H (t1), H (t2)] �= 0. In
the following we will provide a set of necessary conditions for an
optimal control specifically in this last case.

for open quantum systems. In order to make the main text
easier to read, we moved many details and calculations in
technical appendixes.

II. GENERAL VARIATIONAL APPROACH
IN A ROTATING FRAME

A stationary solution of the functional (2) under the con-
straint (1) can be found through an extremization of the
extended functional:

J := f +
∫ τ

0

{
λ(t )(〈ρ(t )〉 − 1)

+
〈
π (t )

(
Lu(t )[ρ(t )] − dρ(t )

dt

)〉}
dt, (3)

where π (t ) is a self-adjoint traceless [44] operator and λ(t )
is a scalar, respectively, acting as Lagrange multipliers of
the dynamical constraint (1) and of the normalization of the
state ρ. Notice that all the variables appearing in Eq. (3) are
independent, thus the integrand on the right-hand side is a
priori different from zero, although it nullifies on-shell as a
consequence of the minimum conditions [35]. The functional
(3) is the starting point of the PMP approach, cf., for instance,
Ref. [41], in which this kind of functional was introduced to
study heat loss optimization problems. Let us suppose now
that the system Hamiltonian Hu(t ) is fully controllable, i.e.,
the external control fields can be tuned to obtain a generic
self-adjoint Hamiltonian with time-dependent eigenvectors
and eigenvalues (see Fig. 1). It is convenient to parametrize
the Hamiltonian through its spectral decomposition:

Hu(t ) = U †(t )D(t )U (t ), (4)

where U (t ) and D(t ) are, respectively, a unitary matrix con-
taining the eigenvectors and a real diagonal matrix containing
the energy levels. These two objects are just a different
parametrization of the control fields and so, from now on, we
drop the subscript u(t ) for ease of notation.

A semiclassical modulation of the energy levels corre-
sponds to keeping U (t ) equal to the identity and this regime
has been often studied in the context of quantum thermo-
dynamic processes (see, e.g., Refs. [41,45]). Quantum me-
chanics, however, allows for a larger class of possible con-
trols where, in addition to the manipulation of the energy
eigenvalues D(t ), also the energy eigenstates can be rotated
by a nontrivial unitary matrix U (t ). The main task of this
work is to develop a formalism which is suitable also for
this coherent regime. The idea is to introduce a reference
frame which is co-moving with the Hamiltonian in such a
way that, in the rotating frame, H (t ) always looks like a
semiclassical diagonal matrix. The corresponding quantum
state and co-state in this frame are given by

ρ̃(t ) = U (t )ρ(t )U †(t ), (5)

π̃ (t ) = U (t )π (t )U †(t ). (6)

Moreover, we can express U (t ) in terms of a self-adjoint
operator �(t ), in such a way that the motion of the rotating
frame is represented as induced by a fictitious Hamiltonian
term �(t ). If U (t ) is sufficiently regular, i.e., its entries are
continuous and differentiable, it is possible to cast it in terms
of a time-ordered exponential,

U (t ) = −→exp

( ∫ t

0
i�(t ′)dt ′

)
U (0), (7)

which is the solution of the following differential equation,

U̇ (t ) = i�(t )U (t ), (8)

with initial condition U (0). According to Eq. (7), �(t ) is
the generator of the change of basis which diagonalizes the
Hamiltonian. Moreover it is easy to check that the time
derivative of the quantum state satisfies

U (t )ρ̇(t )U †(t ) = ˙̃ρ(t ) − i[�(t ), ρ̃(t )]. (9)

Now we make an important assumption about the structure of
the generic functional Fu(t ) introduced in Eq. (2) which, as we
are going to show, applies to many practical situations.

Assumption 1 (H covariance). We assume that Fu(t )

may depend nontrivially only on the energy levels D(t ) of
the Hamiltonian Hu(t ), while it is covariant with respect to
Hamiltonian rotations, i.e.,

Fu(t )[ρ(t )] = U †(t )FD(t )[ρ̃(t )]U (t ), (10)

where U (t ) and D(t ) are the matrices defined in (4). In what
follows we denote all linear operators which obey the previous
property as H covariant.

Simple examples of H -covariant operators are the left and
right multiplications of ρ(t ) by H (t ) or any analytical func-
tion of H (t ). Another important example is given by the class
of thermal Liouvillian operators, i.e., the class of generators of
the thermal master equation introduced in Eq. (1). Indeed, by
following the standard microscopic interpretation of Eq. (1) as
an effective map emerging from the interaction of the system
with a heat bath, one can easily show (see Appendix A), that
thermal dissipators and Liouvillian operators are H covariant.
More explicitly,

Lu(t )[ρ(t )] = U †(t )LD(t )[ρ̃(t )]U (t ), (11)
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where

LD(t )[ρ̃(t )] := −i[D(t ), ρ̃(t )] + DD(t )[ρ̃(t )], (12)

and DD(t ) is the GKSL thermal dissipator associated with the
diagonal Hamiltonian D(t ).

With this in mind, it is possible to rewrite the extended
functional (3) in terms of the rotated variables (5) and (6).
Making use of Eq. (9) we obtain

J =
∫ τ

0

{
λ(t )(〈ρ̃(t )〉 − 1) +

〈
FD(t )[ρ̃(t )]

+ π̃ (t )

(
LD(t )[ρ̃(t )] − dρ̃(t )

dt
+ i[�(t ), ρ̃(t )]

)〉}
dt.

(13)

At first glance our choice to parametrize the system in terms of
the transformed variables π̃ (t ), ρ̃(t ), D(t ) and the generator
�(t ) may seem quite arbitrary and unnecessarily contrived.
However, the great advantage in doing such an operation is
that the extended functional (13) is now linear in �(t ) which
allows one to significantly simplify the problem.

In fact, following the standard approach used in classical
control theory [35], we first map the Lagrangian minimization
problem (13) into the so-called pseudo-Hamiltonian and then
we apply the PMP. Thus, the functional J can be rewritten as

J =
∫ τ

0

{
H(t ) −

〈
π̃ (t )

dρ̃(t )

dt

〉}
dt, (14)

where

H(t ) := 〈(π̃ (t )LD(t )[ρ̃(t )] + FD(t )[ρ̂(t )]〉
+ λ(t )(〈ρ̃(t )〉 − 1) + i〈�[ρ̃(t ), π̃ (t )]〉 (15)

is the pseudo-Hamiltonian. It is important to remark that
H(t ) is just a mathematical object associated with the control
problem and it is completely different from the physical
Hamiltonian H (t ) of the quantum system. Now we can fi-
nally apply the PMP [35] which establishes three necessary
conditions that have to be satisfied by all extremal solutions
of the extended functional. The first condition states that (i)
a nonzero costate π̃ (t ) exists such that the following pseudo-
Hamiltonian equations hold:

dρ̃(t )

dt
= ∂H(t )

∂π̃ (t )
,

dπ̃ (t )

dt
= −∂H(t )

∂ρ̃(t )
. (16)

The previous equations of motion determine, in the rotating
frame identified by U (t ), the dynamical evolution of the state
and of the costate. The second condition states that (ii) for all
t ∈ [0, τ ] the pseudo-Hamiltonian H(t ) has to be a minimum
with respect to the control fields, that in our case are the
entries of �(t ) and D(t ), and (iii) it must assume a constant
value K, i.e.,

H(t ) = K. (17)

The minima of the functional (3) subject to the dynamical con-
straint (1) are obtained by imposing the previous prescriptions
as described in more details in Appendix B (see also Ref. [41]
for a similar treatment).

The same approach is valid both for fixed or free
initial and final states, but we recall that the boundary

conditions are functions of the original state variable ρ(t ),
and not of its rotated version ρ̃(t ). Thus, from Eqs. (5)
and (7) we have that ρ̃(0) = U (0)ρ(0)U †(0) and ρ̃(τ ) =
−→exp(i

∫ τ

0 �dt )U (0)ρ(τ )U †(0)−→exp( − i
∫ τ

0 �dt ). Finally we

stress again that, in order to obtain the previous relations, we
are assuming that the control fields are sufficiently smooth.
If we broaden our analysis allowing piecewise smooth solu-
tions we have to impose the so-called Weierstrass-Erdmann
conditions stating the continuity of π̃ (t ) and H(t ) at the
corner points [35]. The controls can be discontinuous at these
points, while ρ̃ can undergo an instantaneous unitary rotation,
obtained, for instance, applying a divergent Hamiltonian for
an infinitesimal period of time. These irregular trajectories
are an idealized mathematical limit of an extremely fast and
effectively adiabatic process, that in practice can occur when
the external fields are varied on a time scale much smaller
than those typically emerging from the naked (i.e., without
controls) dissipative dynamics. Examples of such kinds of
control strategies in open quantum systems have been theo-
retically considered in Refs. [41,46], while experimental im-
plementations have been realized, for example, using electron
islands [47].

The general approach presented in this section applies to
the minimization of a generic cost function (2) determined by
an arbitrary, H -covariant, linear operator Fu(t )[ρ̂(t )]. In the
next sections we are going to consider some relevant applica-
tions in different contexts, i.e., quantum thermodynamics and
quantum speed limits.

III. MINIMIZATION OF HEAT DISSIPATION IN
COHERENT SYSTEMS

Given the dynamical evolution of an open quantum system
according to the thermal master Eq. (1), the amount of heat
dissipated by the system into the environment in a time τ is
given by [3,48,49]

Q := −
∫ τ

0
〈Ĥu(t ) Lu(t )[ρ̂(t )]〉dt. (18)

In the semiclassical case, i.e., when the state, the costate
and the Hamiltonian remain diagonal, the optimal control
problem for minimizing heat dissipation has been already
studied [41,45]. Here, our aim is to consider the larger set of
possible control strategies in which quantum coherences can
be created during the time evolution. For this task, we use the
formalism developed in the previous section and replace the
general linear operator in Eq. (2) with the heat flux operator,

Fu(t )[ρ̂(t )] = −Ĥu(t ) Lu(t )[ρ̂(t )], (19)

so that the generic cost function f in Eq. (2) becomes equal
to the dissipated heat Q defined in Eq. (18).

In this particular case, in addition to the dynamical equa-
tions (16) and to the conserved quantity (17) originating from
the PMP, we can perform further algebraic manipulations (see
Appendix B) obtaining the following additional relations:

[π̃ (t ), ρ̃(t )] = 0; (20)

[π̃ (t ),LD(t )[ρ̃(t )]] + [ρ̃(t ),L†
D(t )[π̃ (t )]]

= [ρ̃(t ),L†
D(t )[D(t )]]. (21)
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The previous conditions are particularly appealing because
they are simple matricial algebraic equations. In particular,
despite the fact that Eq. (21) can be obtained from Eqs. (16)
and (20) thus being redundant in the PMP set of solutions, it
is nevertheless very useful since we can trade it with one of
the more difficult differential equations (16). In the following
we will apply the formalism developed above to two specific
models of dissipation described by a MME in the Lindblad
form (1). For this reason, although we are considering un-
constrained families of Hamiltonians, we have to ensure that
the driving is sufficiently slow and the energy gaps of the D

matrix are sufficiently large in order to preserve the Born-
Markov and the secular approximations [50]. If the optimal
control history does not fulfill these conditions we have to
introduce non-Markovian corrections to Eq. (1) in order to get
a more physical and realistic description.

A. Two-level system in a Gibbs mixing channel

As an example of coherent optimization we consider a two-
level system evolving through a master equation (1) with a
dissipator of the form,

DG[ρ̂(t )] = γ [η̂β (t ) − ρ̂(t )], (22)

where η̂β (t ) is the Gibbs state associated with the Hamiltonian
Hu(t ) and the inverse temperature β, while γ is the decoher-
ence rate. For this model, the optimal trajectories minimizing
the functional (18) are known only for semiclassical processes
[41,45] while the formalism introduced in the previous section
paves the way to a general discussion. After the change of
basis (4) the Hamiltonian D(t ) will be a linear combination
of 1 and σz but, since the term proportional to the identity is
arbitrary [52], we can always set the ground-state energy to
zero such that

D(t ) = ε(t )

2
(1 + σz), (23)

where ε(t ) is the energy of the excited state. The state and the
costate can be parametrized using a pair of Bloch vectors �a(t )
and �q(t ), i.e.,

ρ(t ) = 1
2 [1 + �a(t ) · �σ ], (24)

π (t ) = �q(t ) · �σ , (25)

where �σ = (σx, σy, σz) is the vector of Pauli matrices. Since
we need to consider the rotating variables ρ̃(t ) and π̃ (t )
introduced in Eqs. (5) and (6), we name �̃a(t ), �̃q(t ) the asso-
ciated Bloch vectors. The PMP conditions allow one to find
(see Appendix C1) only one extremal solution with nonzero
coherences ã2

x + ã2
y �= 0, for which

ãz = aeq
z

(
1 + βε

sinh(βε)

)
(
1 − βε

sinh(βε)

) , (26)

where

aeq
z ≡ − tanh

(
βε

2

)
(27)

is the z component of the Bloch vector at equilibrium. How-
ever, this solution cannot be accepted, since it gives |ãz| > 1

for any value of ε, corresponding to nonphysical quantum
states. On the other hand, we recover the solution with ãx (t ) =
ãy (t ) = 0 and �(t ) = 0, thus exactly reproducing the results
of Ref. [41]. This implies that the most general structure of the
optimal coherent protocol for evolving an initial state ρ(0) to
a final state ρ(τ ) is the following.

(1) Rotate H (0) in a basis in which it is diagonal and
commuting with ρ(0).

(2) Follow the optimal semiclassical process already de-
termined in Ref. [41] until the state eigenvalues match those
of ρ(τ ).

(3) Perform an instantaneous unitary operation, rotating
the state to the desired target ρ(τ ).

Note that while step 1 is just a quench in the controlled
Hamiltonian which does not affect the state of the system,
step 3 instead corresponds to a singular perturbation of the
Hamiltonian rotating the quantum sate. This means that, in the
ideal situation of achievable unconstrained controls, the only
strictly coherent operation on the quantum system is the final
unitary rotation.

For what concerns step 2 of the protocol, corresponding
to a regular process lasting for t ∈ (0, τ ), apparently coherent
operations do not help. This means that for initial and final
diagonal states of the two-level system, the restriction of the
analysis to the set of incoherent protocols only (as performed
in Ref. [41]) was indeed justified. On the other hand, since this
result can be a peculiarity of the Gibbs mixing channel, in the
next subsections we will consider two further, different kinds
of dynamical evolution.

B. Two-level system in a thermal bosonic bath

The evolution of a two-level system with Hamiltonian
Hε(t ) = ε(t )σz/2 in contact with a bosonic heat bath can be
described, under physically reasonable assumptions [50], by
the master equation (1) with the following dissipator com-
monly used in quantum optics:

DB[ρ̃(t )] = γ
{
(1 + NB )

[
σ−ρ̃(t )σ+ − 1

2 {ρ̃(t ), σ+σ−}]
+NB

[
σ+ρ̃(t )σ− − 1

2 {ρ̃(t ), σ−σ+}]}, (28)

where NB (ε(t )) = (eβε(t ) − 1)−1 is the average excitation
number associated with the energy ε(t ), and γ is the deco-
herence rate. Both dissipators (22) and (28) tend to push the
system towards the same equilibrium Gibbs state associated
with the instantaneous Hamiltonian, however, the thermaliza-
tion processes are different and therefore we expect different
optimal controls.

Before we start our analysis, it is more convenient to
express (28) in terms of the Bloch coordinates (24), giving

DB (ρ̃) = γ

4a
eq
z

[�̃a · �σ + (
ãz − 2aeq

z

)
σz

]
, (29)

where a
eq
z is the same as for the Gibbs mixing channel,

Eq. (27).
As we did in Sec. III A, we first consider a coherent

solution of (1) in which ãz ∈ [−1, 1] exists and reads

ãz = aeq
z + μ

cosh2
(

βε

2

)[
1 ±

√
1 − βε

4μ2
sinh(βε)

]
, (30)
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where we defined μ := (Kβ )/(2γ ), while the of-diagonal
terms satisfy

ã2
x + ã2

y = 2aeq
z

(
2K
γ ε

− 1

)(
ãz − aeq

z

)
, (31)

as proven in Appendix C 2. Equation (30) in principle de-
scribes a set of possible optimal trajectories for ãz as a
function of ε, labeled by the conserved quantity K de-
fined in Eq. (17) and by two possible choices of sign (see
Appendix C). However, one notes that the right-hand side
of Eq. (31) is smaller than zero for all values of K and ε

in the region in which the square root appearing in Eq. (30)
is defined. We conclude that coherent isothermals are not
optimal, similarly to the Gibbs mixing channel. Then, we look
for solutions with no coherence by setting ãx (t ) = ãy (t ) = 0.
Applying the minimum conditions to this case we obtain the
following equation for ãz:

ãz = a(eq)
z + μ

cosh2
(

βε

2

)
[

1 ±
√

1 − sinh(βε)

μ

]
, (32)

where the sign is fixed by the values of ε and ȧz, as dis-
cussed in Appendix C 2. Equation (32) represents the only
acceptable regular solution for the heat minimization problem
when the dynamics is described by the dissipator (28) and
by construction connects only states that are diagonal in the
energy eigenbasis. The optimal protocol for arbitrary initial
and final conditions can be obtained with the same reasoning
of the previous paragraph, to which is substantially equivalent
apart from the intermediate step that is described by an open
evolution of the form (32) instead of the one derived in [41].

C. Two-level system in a thermal fermionic bath

Consider now a two-level system weakly coupled with
a fermionic environment and suppose that the dynamics is
characterized by Eq. (1), again in agreement with the MME
approach. In this case the dissipator reads [51]

DF [ρ̃(t )] = γ
{
(1 − NF )

[
σ−ρ̃(t )σ+ − 1

2 {ρ̃(t ), σ+σ−}]
+NF

[
σ+ρ̃(t )σ− − 1

2 {ρ̃(t ), σ−σ+}]}, (33)

where NF (ε(t )) = (eβε(t ) + 1)−1 is the average number of
fermionic excitations in resonance with the system. Using the
Bloch vector parametrization, Eq. (33) becomes

DF (ρ̃) = −γ

4

[�̃a · �σ + (
ãz − 2aeq

z

)
σz

]
, (34)

where again a
eq
z is given by Eq. (27). Thus, the fermionic

bath model and the Gibbs mixing channel considered in
Sec. III A are strictly related, since the terms in Eq. (34) can
be rearranged in order to obtain

DF (ρ̃) = γ [ηβ (t ) − ρ̃(t )] + γ

4
(ãxσx + ãyσy ), (35)

i.e., the evolution in the fermionic scenario is generated by
adding a phase damping component to the Gibbs mixing
channel (22). It is easy to show that, since the additional
dephasing is independent of the control ε(t ), it does not play
any role in the characterization of the optimal trajectories (see
Appendix C 3) that, as a consequence, are equal to the ones

described in Sec. III A. More in detail, after showing that
the only regular solution of the minimization problem does
not involve coherent operations, it exactly reduces to the one
obtained in Ref. [41], since the two dissipators (33) and (22)
act in the same way on the diagonal part of ρ̃(t ).

IV. APPLICATION TO QUANTUM SPEED LIMITS,
REACHABLE STATES

Beyond thermodynamics, the general formalism intro-
duced in Sec. II can be applied also for determining quantum
speed limits and for characterizing the set of reachable states,
i.e., the set of all states reachable via quantum control from a
given initial state ρ(0) in a given time interval τ . In order to
minimize the total time required to evolve an open quantum
system from an initial state to a final state, we choose the
constant functional,

Fu(t )[ρ(t )] = 1

Tr[1]
, (36)

in Eq. (2) such that the generic cost function f becomes equal
to the time length τ of the process.

Accordingly, the general pseudo-Hamiltonian given in
Eq. (16) reduces to

H(t ) := 1 + 〈π̃ (t )LD(t )[ρ̃(t )]〉 + λ(t )(〈ρ̃(t )〉 − 1)

+i〈�(t )[ρ̃(t ), π̃ (t )]〉. (37)

Then we can apply the PMP conditions listed in Sec. II
to this pseudo-Hamiltonian, with the additional constraint
(cf. Ref. [35]) that K = 0 in Eq. (17). In other words, the
pseudo-Hamiltonian computed on shell has to nullify. We can
also compute the equivalent of Eq. (21) that we previously
obtained in the heat minimization problem. In the time mini-
mization setting, we obtain the simpler condition,

[π̃ (t ),LD(t )[ρ̃(t )]] + [ρ̃(t ),L†
D(t )[π̃ (t )]] = 0. (38)

In this way we established a procedure to find quantum
speed limits (QSL) [53] for an open system dynamics with a
fully controllable Hamiltonian in the presence of coherence
(for an explicit display of the conditions involved see Ap-
pendix D). It is known that coherence is a resource that can
provide a speed boost [54,55] to the evolution of a quantum
system, so this kind of investigation is interesting per se
since it has a large number of physical applications. However,
we want to stress here that the time minimization problem
is also interesting from a technical point of view for the
solution of general optimization problems [i.e., for different
functionals, like Eq. (2) on which this paper is focused] since
it is needed for the characterization of the reachable states
[35]. If there is not enough time to reach the final state, an
optimal protocol could not exist, and we can discriminate
if this is the case computing the minimum achievable time
and comparing it with the total time at disposal. In the next
paragraph we will apply our procedure to the specific case
of a two-level quantum system, for which the time opti-
mal trajectories have been studied in a variety of situations,
from the 1/2-spin particle evolving with Bloch equations
[56], to more general dissipative maps [19]. In these physi-
cally realizable models the Hamiltonian is not always fully
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controllable, a paradigmatic example being the optimal con-
trol of a nanomagnetic resonator [57], in which only the
transversal part of the magnetic field is time dependent. In our
model the characterization of the optimal trajectories turns out
to be quite simple thanks to the absence of constraints on the
choice of the external Hamiltonian.

A. Time optimal control of a two-level open system

Let us consider, for instance, an evolution induced by a
master equation of the form (22) with the general Hamiltonian
(23) and search for the protocol that allows one to go from
an initial state ρi to a final state ρf in the minimum time τ .
This analysis will provide also the optimal control strategy for
a dynamics induced by Eq. (33), since we can again exploit
the analogy between the two scenarios described in Sec. III C
(see Appendix D 3 for details). If we call, respectively, ρ̃i =
[1 + ãz(0)σz]/2 and ρ̃f = [1 + ãz(τ )σz]/2 the diagonalized
versions of the initial and final states, the PMP conditions ap-
plied to the pseudo-Hamiltonian (37) allow to find an optimal
trajectory that consists of the following three operations (see
Appendix D1).

(1) Perform an instantaneous unitary operation that makes
ρi diagonal in the same basis of the initial Hamiltonian H (0).

(2) Perform an open evolution of the form (22) in which
ε = ±∞, until the state eigenvalues match those of ρf .

(3) Perform an instantaneous unitary operation, rotating
the state to the desired target ρf .

Note that after step 1 and before step 3 there is a freedom
in choosing the sign of ãz(0), which can be switched via a
rotation of π around an axis in the x-y plane. From now on
we will always suppose ãz(0) � 0 and ãz(τ ) � 0. Explicitly
choosing a diagonal Hamiltonian and ε = ±∞, Eq. (22)
generates the following time evolution:

ãz(t ) = ãz(0)e−γ t ∓ (1 − e−γ t ), (39)

that allows either an increase or a decrease of ãz(t ) depending
on the choice of sign: If ãz(0) � ãz(τ ) we will reach the final
configuration only picking ε → ∞, while the opposite choice
has to be done otherwise.

The total evolution time τ is obtained inverting Eq. (39):

τ = 1

γ
ln

[
ãz(0) ± 1

ãz(τ ) ± 1

]
, (40)

where the sign has to be chosen following the previous
prescriptions. The optimal protocol is summarized in Fig. 2
where we use a convenient representation in terms of the
Bloch sphere.

We can also apply a similar machinery to a quantum optical
evolution of the kind (29), as we did in Appendix D 2. In this
framework it is possible to verify that while the structure of
the minimum time protocol preserves the two quenches and
the intermediate open evolution, the latter is characterized by
different values of the control ε.

Indeed if the rotated Bloch coordinates (chosen to be
negative) satisfy ãz(0) � ãz(τ ) the convenient choice turns
out to be ε → ∞ with a total time duration given again by
Eq. (40) (with the choice of the plus sign). Here, however, in
the opposite case ãz(0) � ãz(τ ) we have to choose ε → 0+
since in this case the optimal time collapses to zero. This is

(a) (b)

FIG. 2. Representation in the Bloch sphere of the minimum time
trajectories for the Gibbs mixing channel (22) and the bosonic master
equation (29). We suppose that the initial Bloch vectors are in the
x-z plane for ease of representation. A possible optimal trajectory is
always composed by two unitary quenches [blue dashed arrows in
(a) and (b)] separated by a semiclassical open evolution. The latter
depends on the modulus of the initial and final Bloch vectors, as
explained in the main text. (a) The final state (orange star) has |ãz(τ )|
smaller than |ãz(0)| of the initial state (green pentagon), so the open
evolution (black dashed arrow) occurs, respectively, with ε → −∞
when Eq. (22) holds and with ε = 0 when Eq. (29) holds. (b) The
opposite case, in which |ãz(τ )| > |ãz(0)|, the open evolution is such
that ε → ∞ (red dashed arrow).

due to the divergency of the rate for ε → 0+ as explained in
Appendix D 2. Since in this regime there could be deviations
from the Lindblad MME due to the divergency of the coupling
strength [43,50], in a more correct optimization procedure the
non-Markovian corrections have to be taken into account (as
discussed, for instance, in [58]).

Note that, differently from the optimal relaxation time
problem considered in Ref. [46], here we assume that the
dissipator depends on the system Hamiltonian and therefore
it is indirectly affected by the external control.

V. CONCLUSIONS

We introduced a general formalism suitable for the optimal
control of coherent open quantum systems. We first con-
sidered the minimization problem associated with a generic
linear functional possessing the only property of being co-
variant with respect to Hamiltonian rotations. Then we ap-
plied the general PMP variational techniques to the particu-
lar cases of heat minimization and time optimal driving of
open quantum systems. A useful technical contribution of
our work is the reformulation of the control problem in the
instantaneous Hamiltonian eigenframe, that through a time-
dependent change of basis allows one to introduce an effective
Hamiltonian term �(t ), which is responsible for the emer-
gence of quantum coherence between energy eigenstates. This
technique allows one to significantly simplify the problem
leading to several analytical results and to a characterization
of the optimal driving for a two-level system. Remarkably, for
the three dynamical maps considered in the main text, we are
able to show that an optimal coherent regular solution does not
exist, while the only coherent operation is an instantaneous
unitary quench performed at the final time. Other future
applications could be the characterization of new quantum
speed limits for different kinds of open quantum systems,
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the optimization of different thermodynamic quantities, and
the study of thermodynamic cycles. The latter analysis would
shed some light on the importance of energy coherence for
improving the performances of quantum heat engines.
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APPENDIX A: H COVARIANCE OF THERMAL
MASTER EQUATIONS

In order to recover Eq. (11) we recall that the GKSL
dissipator can be written in a standard form [42,50], i.e., in
terms of the so-called Lindblad operators:

Aα (ω) =
∑

ω=ε−ε′
�(ε)Aα�ε′ , (A1)

where �(ε) is the projector on the eigenspace with energy ε of
the system Hilbert space while the system Hermitian operators
Aα appear, along with the associated bath Hermitian operators
Bα , in the decomposition of the interaction Hamiltonian HI =∑

α Aα ⊗ Bα . Directly from Eq. (A1) it is easy to check
that computing Aα (ω) with a rotated system Hamiltonian,
is the same as applying the rotation directly to the Lindblad
operators. This is sufficient to prove the following:

Du(t )[ρ(t )] = U †(t )DD(t )[U (t )ρ(t )U †(t )]U (t ), (A2)

where we follow the notation introduced in Eq. (4). Since left
and right multiplication by H (t ) are clearly H -covariant oper-
ations, the previous result can be straightforwardly extended
to the whole generator of the master equation including the
Hamiltonian part. Therefore the property (11) used in the main
text holds and applies to all thermal master equations.

APPENDIX B: MINIMUM HEAT DISSIPATION

Here we focus on the minimization of heat dissipation
and we present some details about the calculations leading
to the main formulas discussed in the main text. For in-
stance, Eq. (20) is obtained from the partial derivation of the
functional J with respect to the generator �(t ). The same
operation performed with respect to the energy levels D(t )
gives

〈(π̃ (t ) − D(t ))∂iLD(t )[ρ̃(t )]〉 = 〈LD(t )[ρ̃(t )]∂iD(t )〉, (B1)

where ∂i indicates the derivative with respect to the ith diago-
nal element of D(t ). Note that the previous results hold for the
internal region of the space of accessible controls. When con-
straints are introduced a careful inspection for eventual global
minima located at the borders of the domain is mandatory.

The condition (i) of the PMP provides the equations of
motion (16) that can be written explicitly as

˙̃ρ(t ) = LD(t )[ρ̃(t )] − i[ρ̃(t ),�(t )], (B2)

˙̃π (t ) = L†
D(t )[D(t ) − π̃ (t )] − i[π̃ (t ),�(t )] − λ(t )1, (B3)

where L† is the adjoint of the dynamics generator L. Equation
(21) is obtained by taking the commutators of π̃ (t ) and ρ̃(t )
with Eqs. (B2) and (B3), respectively, adding the two and
applying the following identities:

[π̃ (t ), [ρ̃(t ),�(t )]] = [ρ̃(t ), [π̃ (t ),�(t )]], (B4)

[ ˙̃π (t ), ρ̃(t )] + [π̃ (t ), ˙̃ρ(t )] = 0, (B5)

that follow directly from Eq. (20) and the Jacobi identity.
Finally the condition (iii) of the PMP gives

〈(π̃ (t ) − D(t ))LD(t )[ρ̃(t )]〉 = K. (B6)

We note that, in the same way as for Eq. (21), this last equation
is redundant as it can be obtained from the previous conditions
(see Refs. [35,41]), and it may be chosen to replace one of the
more cumbersome differential equations (B2)–(B3).

APPENDIX C: CONTROL STRATEGIES
MINIMIZING HEAT

1. Two-level system in a Gibbs mixing channel

We consider now the heat minimization problem for a two-
level system evolving in a Gibbs mixing channel defined by
the master equation with dissipator (22). In the rotating frame,
we can express the MME as

DG[ρ̃(t )] = γ

[(
Î + a

eq
z σz

)
2

− ρ̃(t )

]
, (C1)

where a
eq
z is the z component of the Bloch vector at equilib-

rium given by Eq. (27). When Eqs. (23) and (C1) are inserted
in the PMP conditions (20), (21), (B1), and (B6), they give

(ãx q̃x + ãy q̃y ) + (
ãz − aeq

z

)(
q̃z − ε

2

)
= −K

γ
, (C2)

∂a
eq
z

∂ε

(
q̃z − ε

2

)
= −1

2

(
ãz − aeq

z

)
, (C3)

�̃a ∧ �̃q = �0, (C4)

aeq
z q̃x = −ε

2
ãx, (C5)

aeq
z q̃y = −ε

2
ãy . (C6)

Note that in terms of the Bloch vectors �̃a(t ) and �̃q(t ),
Eq. (20) becomes the collinearity condition (C4), while
Eq. (21) gives the last two relations (C5) and (C6). Moreover,
for the general case of coherent states (i.e., when at least
one of the Bloch components ãx, ãy is different from zero),
equations (C4)–(C6) can be summarized as

�̃q = −ε

2

�̃a
a

eq
z

(C7)

(where we have assumed that a
eq
z �= 0).

Now we look for a solution with coherence, i.e., for which
ã2

x + ã2
y �= 0, so we can suppose that at least one between

ãx, ãy is different from zero. In particular, substituting the
z component of Eq. (C7) into Eq. (C3), we can solve for ãz
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obtaining

ãz = aeq
z

(
1 + ∂ ln a

eq
z

∂ ln ε

)
(
1 − ∂ ln a

eq
z

∂ ln ε

) . (C8)

Finally, differentiating Eq. (27) we get

∂a
eq
z (ε)

∂ε
= −β

2

[
1 − (

aeq
z

)2]
, (C9)

and substituting into Eq. (C8) we eventually obtain Eq. (26)
of the main text.

Note that, along the steps leading from Eq. (C3) to
Eq. (C8), we divided by the quantity (∂ ln a

eq
z )/(∂ ln ε) − 1,

which must be different from zero. However, this turns out
not to be a physically relevant limitation [59].

2. Two-level system in a bosonic thermal bath

Let us now consider the minimization problem when the
system evolves according to the quantum optics master equa-
tion (28), which models the coupling of the system with a
bosonic heat bath. Inserting the dissipator (28) into Eqs. (20),
(21), (B1), and (B6) we obtain the minimum conditions for
this particular MME,

(ãx q̃x + ãy q̃y ) + 2
(
ãz − aeq

z

)(
q̃z − ε

2

)
= 2aeq

z

K
γ

, (C10)

[
(ãx q̃x + ãy q̃y ) + 2ãz

(
q̃z − ε

2

)]∂a
eq
z (ε)

∂ε
= −aeq

z

(
ãz − aeq

z

)
,

(C11)

�̃a ∧ �̃q = �0, (C12)

ãx

(
q̃z − ε

2

)
= aeq

z q̃x, (C13)

ãy

(
q̃z − ε

2

)
= aeq

z q̃y . (C14)

Note that, for the general case of coherent states (i.e., when
at least one of the Bloch components ãx, ãy is different
from zero), the three equations (C12)–(C14) imply the more
compact condition:

�̃q = ε

2

�̃a(
ãz − a

eq
z

) . (C15)

Let us first consider the general case including quantum
coherences, i.e., let us assume that at least one between the
Bloch vector components ãx and ãy is nonzero. Inserting the
z component of Eq. (C15) into Eq. (C10) we obtain

ãx q̃x + ãy q̃y = aeq
z

(2K − γ ε)

γ
. (C16)

Then, combining this with Eq. (C11), we find[
2K
γ

+ ε a
eq
z(

ãz − a
eq
z

)
]

∂a
eq
z (ε)

∂ε
= −(

ãz − aeq
z

)
. (C17)

The latter equation can be simplified introducing the differ-
ence between ãz and its equilibrium value (27), i.e., � :=
ãz − a

eq
z , and we obtain

�2 + 2
K
γ

∂a
eq
z (ε)

∂ε
� + εaeq

z

∂a
eq
z (ε)

∂ε
= 0. (C18)

The solution of the latter second-order equation leads to
Eq. (30) of the main text, while Eq. (31) can be obtained from
the previous expression combined with Eqs. (C13) and (C16).

Let us then look for solutions without coherence. In this
case Eqs. (C12)–(C14) are trivially verified, while eliminating
(q̃z − ε/2) from Eqs. (C10) and (C11), we are left with

(
ãz − aeq

z

)2 = −2
K
γ

ãz

∂a
eq
z (ε)

∂ε
. (C19)

From the last result and the fact that, from Eq. (C9),
∂a

eq
z (ε)/∂ε � 0, it follows that K � 0 if and only if ãz(t ) � 0.

Solving explicitly Eq. (C19) we find an expression for ãz as a
function of the control ε, which corresponds to Eq. (32) of the
main text.

As we can see, from this last expression it is possible to
identify two isothermal branches depending on the choice
of the sign ±. Since the equation of motion (29) in the
diagonal case reduces to ˙̃az(t ) = −γ [ãz(t ) coth (βε/2) + 1],
the choice of sign in Eq. (30) determines the sign of ˙̃az(t ). For
instance, if ε � 0 and K � 0 the sign ± = − characterizes
an isothermal transformation with ˙̃az � 0 in which the heat is
released, while the sign ± = + corresponds to the opposite
situation. Note also that Eq. (30) is not defined for negative
arguments of the square root, which may happen for K � 0
and ε � 0.

3. Two-level system in a fermionic thermal bath

If the dissipative part of the dynamics is regulated by
Eq. (33), the PMP conditions are only slightly different from
those obtained for the Gibbs mixing dissipator (22). Plugging
Eq. (35) into Eqs. (21), (B1), and (B6) we recover Eqs. (C3),
(C4), (C14), and (C15), while Eq. (C2) has to be traded with
the following:

1

2
(ãx q̃x + ãy q̃y ) + (

ãz − aeq
z

)(
q̃z − ε

2

)
= −K

γ
, (C20)

that differs from Eq. (C2) only by a multiplicative factor
1/2 in the first addend on the left-hand side. Following a
discussion similar to that for the Gibbs mixing channel, i.e.,
by substitution of the compact Eq. (C16) (which still holds in
the fermionic bath case) into Eq. (C4) and using Eqs. (C2) and
(C10), one finds that

−
(

βε

2

)
tanh

(
βε

2

)
cosh2

(
βε

2

) = (
ãz − aeq

z

)2
, (C21)

which is clearly impossible to be satisfied by any real βε.
Thus we conclude that coherent regular solutions are excluded
also for the fermionic model. It is also easily shown that
the solutions without coherence (i.e., with ãx = ãy = 0) are
possible in the fermionic model as well, and they are the same
as those presented for the Gibbs mixing channel.

APPENDIX D: TIME OPTIMAL CONTROL OF AN OPEN
QUANTUM SYSTEM

We compute the PMP conditions starting from the pseudo-
Hamiltonian (37). Applying the same procedure followed
above for the heat minimization problem, we obtain in this
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case the analog of Eqs. (20), (21), (B1), and (B6) in this
scenario, i.e.,

〈π̃ (t )LD(t )[ρ̃(t )]〉 = −1, (D1)

〈π̃ (t )∂iLDi (t )[ρ̃(t )]〉 = 0, (D2)

[π̃ (t ), ρ̃(t )] = 0, (D3)

[π̃ (t ),LD(t )[ρ̃(t )]] + [ρ̃(t ),L†
D(t )[π̃ (t )]] = 0. (D4)

Note that, as anticipated in the main text, in Eq. (D1) the
conserved quantity has been set to K = 0 as required for time
minimization problems [35].

1. Two-level system in a Gibbs mixing channel

Writing Eqs. (D1)–(D4) explicitly for the dynamical evo-
lution (22) and using Bloch vector coordinates we find

(ãx q̃x + ãy q̃y ) + (
ãz − aeq

z

)
q̃z = 1

γ
, (D5)

∂a
eq
z

∂ε
q̃z = 0, (D6)

�̃a ∧ �̃q = 0, (D7)

aeq
z q̃x = 0, (D8)

aeq
z q̃y = 0. (D9)

Since the system (D5)–(D9) is sufficient to characterize the
optimal trajectory, let us overview the potential solutions.

(1) We first search for a solution with all coherence terms
set equal to zero, i.e., ãx (t ) = ãy (t ) = q̃x (t ) = q̃y (t ) = 0 and
∂a

eq
z /∂ε = 0, corresponding to the limits ε = ±∞. The dy-

namics of the state following these conditions is described by
the equation of motion with dissipator (22) in the absence of
coherence,

˙̃az = −γ (ãz ± 1), (D10)

subject to Eq. (D5). The solution of the previous equation for
ãz(t ) is exactly Eq. (39) of the main text, with corresponding
duration time given by Eq. (40).

(2) We then search for a coherent solution such that ε(t ) =
a

eq
z (t ) = 0 and ãz(t ) = q̃z(t ) = 0. In this way the of-diagonal

elements ãx (t ) and ãy (t ) both relax to zero. From Eqs. (D5)
and (D7) we find

|�̃a(t )| = |�̃a(0)|e−γ t , (D11)

�̃q =
�̃a

γ |�̃a|2 . (D12)

However, this solution turns out to be suboptimal in compari-
son with the solution without coherences, as one can directly
check by computing the total time in the two cases. Indeed, in

the present case the evolution time is

τ = 1

γ
ln

[
|�̃a(0)|
|�̃a(τ )|

]
, (D13)

which is longer than the time (40).
We have thus shown that the time optimal open evolution

occurs only when the state of the system and the Hamiltonian
commute, and the complete trajectory is obtained by the
composition of the open evolution with two unitary quenches,
as explained in the main text. However, we caution that, since
both the basis in which H and ρ are diagonal and the number
of unitary quenches are arbitrary, the solution proposed is
locally optimal but not unique.

2. Two-level system in a bosonic thermal bath

As another example we apply Eqs. (D1)–(D4) to the master
equation with dissipator (29) modeling a two-level system in
contact with a bosonic heat bath. In this case we get

( �̃a · �̃q + ãzq̃z) = −2a
eq
z

γ
(1 − γ q̃z), (D14)

( �̃a · �̃q + ãzq̃z)
∂a

eq
z (ε)

∂ε
= 0, (D15)

�̃a ∧ �̃q = �0, (D16)(
ãz − aeq

z

)
q̃x = 0, (D17)(

ãz − aeq
z

)
q̃y = 0. (D18)

From equations (D15)–(D18), it is possible to prove that a
solution is given by ãx = ãy = 0 and ε = ∞ with

ãz(t ) = [ãz(0) + 1]e−γ t − 1. (D19)

The optimal trajectory discussed above is obtained from
Eq. (D15) that provides only local stationary points. However,
in this dynamical model the equation of motion is nonan-
alytical for ε → 0+, a point in which the decoherence rate
diverges, setting the total time to zero. Applying the condition
(ii) of the PMP which states that H(t ) has to be minimum with
respect to the control fields, the limit ε → 0+ appears to be the
optimal choice. However, this last solution may not reach all
the possible final states as explained in the main text.

3. Two-level system in a fermionic thermal bath

If we insert Eq. (35) in the minimum condition Eqs. (D1),
(D2), (D3), and (D4) we recover

1

2
(ãx q̃x + ãy q̃y ) + (

ãz − aeq
z

)
q̃z = 1

γ
, (D20)

∂a
eq
z

∂ε
q̃z = 0, (D21)

�̃a ∧ �̃q = �0, (D22)(
ãz − aeq

z

)
q̃x = ε

2
ãx, (D23)(

ãz − aeq
z

)
q̃y = ε

2
ãy . (D24)
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In particular, for the general case of coherent states (i.e.,
when at least one of the Bloch components ãx, ãy is different
from zero), Eqs. (D22)–(D24) can be substituted by the more
compact relation,

�̃q = ε

2

�̃a(
ãz − a

eq
z

) . (D25)

We note that Eq. (D20) differs from Eq. (D5) only by a pref-
actor 1/2 on the first addend of the left-hand side. As already
discussed when dealing with minimum-heat trajectories, this
factor does not affect the time optimal solution which turns
out to be the same as in the Gibbs mixing channel, expressed
by Eqs. (38) and (39).

APPENDIX E: EXPLICIT EQUATIONS OF MOTION FOR
THE PREVIOUS EXAMPLES

For the best convenience of the reader, we write here the
set of equations of motion emerging from Eq. (16) for all the
examples of optimal control problems considered in this work.

1. Two-level system in a Gibbs mixing channel

We parametrize the Hermitian generator of the change of
basis as

�(t ) := 1
2 [(�0 + �3)1 + 2(�1σx + �2σy ) + (�0 − �3)σz],

(E1)

where �i (t ) (for i = 0, 1, 2, 3) are real coefficients. For the
heat minimization problem, the equations of motion for the
state Bloch vector are

˙̃ax = −γ ãx + (�0 − �3 − ε)ãy − 2�2ãz,

˙̃ay = −γ ãy − (�0 − �3 − ε)ãx + 2�1ãz,

˙̃az = −γ
(
ãz − aeq

z

) + 2(�2ãx − �1ãy ), (E2)

while for the costate Bloch vector are

˙̃qx = γ q̃x + (�0 − �3 − ε)q̃y − 2�2q̃z,

˙̃qy = γ q̃y − (�0 − �3 − ε)q̃x + 2�1q̃z,

˙̃qz = γ

(
q̃z − ε

2

)
+ 2(�2q̃x − �1q̃y ). (E3)

For the time minimization problem, the equations of motion
are the same up to the removal of the ε term from the last of
the costate equations (E3).

2. Two-level system in a thermal bosonic bath

For the heat minimization problem, the equations of mo-
tion for the state Bloch vector are

˙̃ax = γ

2a
eq
z

ãx + (�0 − �3 − ε)ãy − 2�2ãz,

˙̃ay = γ

2a
eq
z

ãy − (�0 − �3 − ε)ãx + 2�1ãz,

˙̃az = γ

a
eq
z

(
ãz − aeq

z

) + 2(�2ãx − �1ãy ), (E4)

while for the costate Bloch vector are

˙̃qx = − γ

2a
eq
z

q̃x + (�0 − �3 − ε)q̃y − 2�2q̃z,

˙̃qy = − γ

2a
eq
z

q̃y − (�0 − �3 − ε)q̃x + 2�1q̃z,

˙̃qz = − γ

a
eq
z

(
q̃z − ε

2

)
+ 2(�2q̃x − �1q̃y ). (E5)

For the time minimization problem, the equations of motion
are the same up to the removal of the ε term from the last of
the costate equations (E5).

3. Two-level system in a thermal fermionic bath

For the heat minimization problem, the equations of mo-
tion for the state Bloch vector are

˙̃ax = −γ

2
ãx + (�0 − �3 − ε)ãy − 2�2ãz,

˙̃ay = −γ

2
ãy − (�0 − �3 − ε)ãx + 2�1ãz,

˙̃az = −γ
(
ãz − aeq

z

) + 2(�2ãx − �1ãy ), (E6)

while for the costate Bloch vector are

˙̃qx = γ

2
q̃x + (�0 − �3 − ε)q̃y − 2�2q̃z,

˙̃qy = γ

2
q̃y − (�0 − �3 − ε)q̃x + 2�1q̃z,

˙̃qz = γ
(
q̃z − ε

2

)
+ 2(�2q̃x − �1q̃y ). (E7)

For the time minimization problem, the equations of motion
are the same up to the removal of the ε term from the last of
the costate equations (E7).

4. Explicitly unravelling the generator �

It is possible to find a decomposition for � in the nonrotat-
ing frame taking the time derivative of both sides of Eq. (4),
so that we obtain

Ḋ(t ) = U̇ (t )Hu(t )U
†(t ) + U (t )

d

dt
Hu(t )U

†(t )

+U (t )Hu(t )U̇
†(t ). (E8)

Sandwiching Eq. (E8) between the rotated (fixed) eigenvec-
tors 〈m̃| and |ñ〉, and using |n(t )〉 = U †(t )|ñ〉, where |n(t )〉 are
the eigenvectors of Hu(t ) in the nonrotating frame, we find

δmnε̇n(t ) = −[〈ṁ(t )|n(t )〉εm(t ) + 〈m(t )|ṅ(t )〉εn(t )]

+〈m(t )| d

dt
H (t )|n(t )〉. (E9)

Finally, thanks to Eq. (8), the off-diagonal elements of � read

�mn(t ) = i
〈m(t )| d

dt
Hu(t )|n(t )〉

[εn(t ) − εm(t )]
. (E10)

Thus, from a technical point of view, a direct control of
�nm(t ) is equivalent to controlling 〈m(t )| d

dt
Hu(t )|n(t )〉, with

the only difference represented by the denominator, that is a
regular function if the energy gaps are finite (this is consistent
with the microscopcal derivation of the Lindblad MME, in
particular with the secular approximation [50]).
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