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Contextuality describes the local consistency but global inconsistency of data. In this paper, we review and
generalize the bundle diagram representation introduced in [S. Abramsky, R. S. Barbosa, K. Kishida, R. Lal, and
S. Mansfield, Contextuality, Cohomology and Paradox, 24th EACSL Annual Conference on Computer Science
Logic, Vol. 41 (CSL, 2015), p. 211-228 ] to graphically demonstrate the contextuality of diverse empirical models
(a collection of probability distributions for jointly measurable observables).
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I. INTRODUCTION

Contextuality—the general impossibility of assigning pre-
determined outcomes to measurements of quantum observ-
ables in a noncontextual way—is a crucial feature of quantum
mechanics [1,2]. Quantum contextuality has a wide variety
of applications; for example, understanding Bell nonlocality
[3–9]. Recently, it has been shown that in specific models of
quantum computation, contextuality is a necessary resource
[10–13]. There has been rapid recent progress in understand-
ing contextuality, both theoretically [10,14–18] and experi-
mentally [19–28], leading to many insights into the behavior
of contextual models. However, many mysteries remain and
a general theory of contextuality analogous to the theory of
quantum entanglement, remains to be achieved [29–31].

Several frameworks have been developed to study quan-
tum contextuality exploiting, variously, graph and hypergraph
theory, sheaf theory, and cohomology theory [14–16,32,33].
Most relevant to this work are a sequence of works by
Abramsky and coworkers aiming to quantify contextuality
using the technology of sheaf theory. Here one conceives of an
empirical model—a collection of probability distributions for
jointly measurable observables—as a kind of “vector bundle”:
the observables of the empirical model are points in the “base
space” where two points are connected if they may be jointly
measured (i.e., if they are in the same context). The possible
measurement outcomes are then associated to the contexts
(the edges) similar to transition maps. This analogy is not just
superficial as one can exploit the theory of sheaves, developed
to generalize that of vector bundles, to exactly dure the data
of an empirical model. Exploiting results from sheaf theory,
one can formulate various obstructions to noncontextuality in
terms of properties of the sections of the sheaf.

The formalism of sheaf theory is very powerful and many
key results have been obtained via its application. However,
it is challenging for the newcomer to appreciate its utility. In
particular, although it is motivated by vector bundle theory, a
geometrical interpretation of the sheaf-theoretic formulation
of an empirical model may be unclear. To clarify its geo-
metrical aspects Abramsky et al. [34] introduced a graphical
method via bundle diagrams to visualize empirical models,
particularly in the setting where there are two agents who

can each choose to measure one of two possible observables.
Bundle diagrams are visually striking and of considerable
utility in understanding contextuality. For this reason we were
interested in generalizing the bundle diagram approach as a
pedagogical tool to study empirical models involving more
agents and measurement settings.

In this paper, we study a variety of empirical models going
beyond the two-agent scenario and explain how to adapt the
bundle diagram technology of Abramsky et al. [34] and Carù
[35] to illustrate the contextuality of these empirical models.
We discuss strong contextuality—where the possible local
measurement outcomes cannot all be preassigned—in detail
here. Raussendorf [36] has shown that any (classical and
quantum) measurement-based computation with Z2-linear
classical processing computing a nonlinear boolean function
constitutes a proof of strong contextuality. If a noncontextual
hidden variable model, where the outcomes associated with
measurements are predetermined by (local) value assign-
ments, describe a quantum measurement-based computation
with Z2-linear classical processing, it is restricted to comput-
ing linear functions.

In the first section, we review the sheaf-theoretic for-
mulation of empirical models and therefore recall the most
important definitions from Ref. [18]. Introducing the bundle
diagram representation helps one to geometrically understand
the sheaf structure of the empirical models. Furthermore, we
review how one can deduce contextuality from the nonex-
istence of a global section. In the following, we represent
a measurement-based quantum computational model via a
bundle diagram. We then graphically illustrate that, for a
Greenberger-Horne-Zeilinger type scenario, there exists no
empirical model with a global section. We conclude with a
discussion of examples arising from the cluster state on a ring.

II. THE SHEAF-THEORETIC STRUCTURE OF
EMPIRICAL MODELS

The aim of this section is to understand how to associate
a sheaf to an empirical model and to describe contextuality
via this mathematical structure. We restrict ourselves to the
case where Pauli measurement operations are the observables.
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TABLE I. Empirical model for |�〉.

A B 00 10 01 11

XA XB 1/2 0 0 1/2
XA ZB 1/4 1/4 1/4 1/4
ZA XB 1/4 1/4 1/4 1/4
ZA ZB 1/2 0 0 1/2

Throughout this section, we very closely follow the papers of
Abramsky and coworkers [17,18,34,35].

In the basic setting there are several agents, who can each
select from a set of measurements and observe outcomes. We
call the procedure whereby each agent performs a measure-
ment on their system and observes an outcome, an event. A
probability distribution on these events results from repeated
trials.

Definition 1: An empirical model is a family of probability
distributions on events, one for each choice of measurements.
A set of allowed jointly measurable observables is called a
measurement context.

We exemplify the theory in terms of a bipartite qubit
model, where each of the two parties, Alice and Bob, can
apply a Pauli measurement operation to the state

|�〉 = 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B )

≡ 1√
2

(|00〉 + |11〉). (1)

We choose for the allowed observables X = |0〉 〈1| + |1〉 〈0|
and Z = |0〉 〈0| − |1〉 〈1| and index the measurement oper-
ations according to whether Alice or Bob carries out the
measurement. The measurement setting where Alice mea-
sures XA = X ⊗ 1 and Bob XB = 1 ⊗ X is an example of a
pair of jointly measurable observables (the two observables
commute). For this bipartite system, we take for our contexts
the following four sets of jointly measurable observables:

C1 = {XA,XB}, (2)

C2 = {XA,ZB}, (3)

C3 = {ZA,XB}, and (4)

C4 = {ZA,ZB}. (5)

The outcomes of the measurements can be described by the
eigenvalues, which are ±1 for both X and Z. To this end, we
label the outcome (−1)j where j ∈ {0, 1} is a bit indicating
the outcome. Thus, the probabilities that the measurement
outcome is j for Alice and k for Bob may be summarized
in Table I.

A. Joint measurability structures and abstract simplicial
complexes

Abramsky et al. [34] introduced a diagrammatic
representation—further developed in Ref. [35]—to depict
empirical models whereby measurements are represented as

vertices in a “base space” and possible outcomes as “fibers”
above the base.

To describe this representation, we first note [37,38] that
a contextual model, or joint measurability structure, may be
represented via a combinatorial object known as an abstract
simplicial complex. Recall that a Positive Operator Valued
Probability Measure (POVM) is a map A : � → B+(H) from
an outcome set (which we take to be finite from now on) to the
convex cone of positive operators on a Hilbert space H such
that ∑

j∈�

A(j ) = I. (6)

We say that a POVM A with outcome set �1 × · · · × �n

marginalizes to a set of POVMs {A1, . . . , An} with outcome
sets {�1, . . . ,�n}, respectively, if∑

j1,...,ĵk ,...,jn

A(j1, . . . , jn) = Ak (jk ) (7)

for all k = 1, 2, . . . , n, where the hat means that the variable is
excluded from the summation. If, for a given set {A1, . . . , An}
of POVMs there is such a measurement A marginalizing to
{A1, . . . , An}, then we say they are jointly measurable. Thus,
if a set of POVMs is jointly measurable then so is any subset
of them.

An elegant combinatorial object which naturally dures the
structure of a contextual model is that of an abstract simplicial
complex.

Definition 2: A family � of nonempty subsets of a set M

is an abstract simplicial complex if, for every set U ∈ � and
every nonempty subset V ⊂ U , V also belongs to �. The
finite sets belonging to � are called faces and the vertices
are the elements of the set

⋃
�. (We henceforth assume that

M = ⋃
�.)

An abstract simplicial complex � gives rise to a topolog-
ical space by endowing it with the Alexandroff topology by
defining a subset U ⊂ � to be closed if and only if U is itself
an abstract simplicial complex, i.e., ∀U ∈ U if V ⊂ U then
V ∈ U . The open sets are hence generated by stars, where for
a face σ ∈ � we set star(σ ) ≡ {τ ∈ � | σ ∈ τ }. In particular,
this means that upper sets in the poset of faces with respect to
inclusion, i.e., maximal faces, are open.

We henceforth take for the vertices of the abstract simpli-
cial complex associated to a contextual model the set of all
allowed observables: a set of vertices form a face whenever
the corresponding measurements can be performed jointly.
Thus contexts correspond to faces of a such complex. This
complex is called the base.

Continuing the two-qubit example above, the base
suitable to the above-described model is the complex
{{XA}, {XB}, {ZA}, {ZB}, C1, C2, C3, C4}. This may be rec-
ognized as a square depicted in Fig. 1, where the four vertices
represent the observables and the edges the contexts.

B. Bundle diagrams

We can enhance the abstract simplicial complex represen-
tation by including information about the possible measure-
ment outcomes of the observables of a context. To this end,
we attach, above each vertex, the fiber (or, more correctly,
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XA XB

ZAZB

FIG. 1. Base of the bundle diagram.

the stalk) of possible measurement outcomes, which in this
example are either 0 or 1. This can be seen in Fig. 2.

Depending on the empirical model, not all measurement
outcomes can occur. We illustrate this by connecting elements
of the fibers above a face (i.e., above a context) if the cor-
responding outcome combination has a probability strictly
larger than 0. For the two-qubit example, we depict this by
connecting possible outcomes with purple lines.

The example illustrated in Fig. 3 is noncontextual. Before
proceeding, it is instructive to give an example of what a
contextual empirical model looks like. To this end, we con-
sider the Popescu-Rohrlich box [39], which corresponds to a
joint measurement scenario of a particular extremal state of
a generalized probabilistic theory whose correlations exceed
those allowed by quantum mechanics. Measurements of this
state give rise to the empirical model (Table II). The corre-
sponding bundle diagram is illustrated in Fig. 4. This model is
contextual.

At this point, it is clear that the bundle diagram representa-
tion can only describe a possibilistic model as it only contains
information about what possible outcomes can occur, and not
the corresponding probability. Nevertheless, we will see that
such bundle diagrams are of great utility for representing the
contextuality of an empirical model.

To more precisely describe a useful graphical representa-
tion for an empirical model, it is helpful to first introduce some
of the mathematical terminology of sheaf theory.

C. Sheaf structure

We denote by M the vertices of an abstract simplicial
complex � corresponding to a contextual model. It is assumed
throughout that the set of allowed observables M for the
model and the set of outcomes O are finite. We give M the

XA XB

ZAZB

1 1

11
0 0

00

FIG. 2. Fibers of the bundle diagram.

XA XB

ZAZB

1 1

11
0 0

00

FIG. 3. Bundle diagram for the empirical model of Table I.

discrete topology by defining any subset of M to be open,
i.e., the topology for M is the power set P (M ). (Note: this
topological space is very different from the natural topological
space � given by the Alexandroff topology.) We first build a
structure called a presheaf of sets over the space (M,P (M )).
This presheaf is intended to dure all possible measurement
outcomes, regardless of whether the observables are jointly
measurable or not (note that, depending on whether U is a
context, there may or may not be a joint measurement for the
observables in U ). We do this by associating to every subset
U ⊂ M the set of all functions from U to O. This is a finite
set, denoted OU , with cardinality |O||U |. We call a function
s : U → O a section over U . A section in E (M ) is called a
global section.

Definition 3: If s : U ′ → O is a function and U ⊆ U ′, we
write s|U : U → O for the restriction of s to U . We define the
restriction map

resU ′
U : E (U ′) → E (U ) (8)

via

resU ′
U (s) ≡ s|U . (9)

The map resU ′
U endows E with the structure of a presheaf as it

enjoys the additional properties that resU ′
U ◦ resU ′′

U ′ = resU ′′
U for

U ⊂ U ′ ⊂ U ′′ and resU
U = idU .

This presheaf E of events has two important additional
properties.

Definition 4: (1) Locality: if {Vj } is a covering of U and if
s, t ∈ E (U ) are elements such that s|Vj

= t |Vj
for all Vj , then

s = t .
(2) Gluing: suppose {Vj } is an open covering of U ⊂

M and we have a family of sections {sj ∈ E (Vj )} with the
property that for all j, k,

sj |Vj ∩Vk
= sk|Vj ∩Vk

, (10)

TABLE II. Empirical model for the Popescu-Rohlich box.

A B 00 10 01 11

NA NB 1/2 0 0 1/2
NA MB 1/2 0 0 1/2
MA NB 1/2 0 0 1/2
MA MB 0 1/2 1/2 0
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NA NB

MAMB

1 1

11
0 0

00

FIG. 4. Bundle diagram for the empirical model of Table II.

then there is a unique section s ∈ E (U ) such that s|Vj
= sj for

all j .
Any presheaf obeying locality and gluing is called a sheaf,

which, in this case, we refer to as the sheaf of events. The sheaf
condition says that we can uniquely glue together compatible
local data, where “compatible” means that measurement out-
comes agree on observables common to contexts.

Let U ∈ � be a context: we now exclude events with
probabilities strictly equal to 0 and write F (U ) for the set
of sections over the context. For example, each of the purple
lines directly above the set of measurements C3 in Fig. 3
corresponds to a section in the set E (C3):

E (C3) = {sC300(ZA) = 0, sC300(XB ) = 0,

sC301(ZA) = 0, sC301(XB ) = 1,

sC310(ZA) = 1, sC310(XB ) = 0,

sC311(ZA) = 1, sC311(XB ) = 1}. (11)

By only including sections with a nonzero probability of
occurring, we can obtain a subpresheaf F of E . This is done
by associating to sets U ⊂ M built from the unions of two
or more contexts only those sections which are compatible
on the overlaps between the constituent contexts. (Abramsky
and coworkers [18] describe some additional properties of
this subpresheaf; however, we do not need them for this
discussion.)

A key role is played throughout this subject by the exis-
tence of global sections [18] because a global section glues
together a compatible family on a presheaf and allocates a
predetermined outcome to each measurement. In this case,
the measurement outcomes depend only on the measurement
operator and not the context. If every section s belongs to
a compatible family, then the model is called noncontextual.
Such a model is described by a hidden-variable model. If there
is a section which does not belong to a compatible family,
then the model is said to be logically contextual. If no section
belongs to a compatible family, then the model is strongly
contextual.

Abramsky and his coworkers [18] determined locality and
noncontextuality in terms of the existence of global sections:

Proposition 5: The existence of a global section for an
empirical model implies the existence of a noncontextual
deterministic hidden-variable model which realizes it.

XA XB

ZAZB

1 1

11
0 0

00

FIG. 5. Example for a global section.

Thus, given an empirical model, we have to check whether
we can extend every section to a global one, i.e., we can
realize every possible outcome combination for a context in
a local hidden variable model. If this is the case, the model is
noncontextual.

A global section in the bundle diagram is represented
by a closed path traversing all the fibers exactly once. This
observation allows us to graphically determine the contextu-
ality of an empirical model. The above-discussed model is
noncontextual, because every section is extendable to a global
one. An example of a global section is depicted in Fig. 5.

III. CONTEXTUALITY AS A RESOURCE FOR (QUANTUM)
COMPUTATION

In a key paper, Anders and Browne [10] argued that in
MBQC a parity computer achieves classical universality using
contextuality. This argument exploits joint measurements of
a Greenberger-Horne-Zeilinger-type state |�〉 = 1√

2
(|001〉 −

|110〉) as a resource. By carrying out measurements of this
state, a classical parity computer only able to implement NOT
= |1〉 〈0| + |0〉 〈1| and CNOT = |1〉 〈1| ⊗ X + |0〉 〈0| ⊗ 1 op-
erations may be augmented to carry out any deterministic
computation. The canonical gate enabled by measurements of
the GHZ state is the NAND-gate in Table III.

By performing three measurements on the GHZ state, it
is possible to deterministically implement this gate [40]. Our
objective for this section is to explain how to represent the
resulting contextual model via a generalized bundle diagram
and explore its contextuality in terms of the nonexistence of
global sections.

We build a joint measurability structure for the Anders-
Browne example as follows. We take for the set of observ-
ables M = {XA,XB,XC, YA, YB, YC} with Y = −i |0〉 〈1| +

TABLE III. Truth table for NAND-gate.

a b NAND

0 0 1
0 1 1
1 0 1
1 1 0
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TABLE IV. Empirical model for the Anders-Browne example.

A B C 000 001 010 011 100 101 110 111

C1 XA XB XC 0 1/4 1/4 0 1/4 0 0 1/4
C2 XA YB YC 0 1/4 1/4 0 1/4 0 0 1/4
C3 YA XB YC 0 1/4 1/4 0 1/4 0 0 1/4
C4 YA YB XC 1/4 0 0 1/4 0 1/4 1/4 0

i |1〉 〈0|. The choice of which measurements Alice and Bob
perform depend on the inputs a and b of the NAND-gate they
wish to compute. Charlie measures his observable according
to the value of a third supplemented input a ⊕ b. If the input is
0, an X measurement is carried out and for 1 a Y measurement
is made. We can summarize this procedure in terms of the
following four contexts:

C1 = {XA,XB,XC}, (12)

C2 = {XA, YB, YC}, (13)

C3 = {YA,XB, YC}, and (14)

C4 = {YA, YB,XC}. (15)

We use the basis

|+〉 = 1√
2

(|0〉 + |1〉), and |−〉= 1√
2

(|0〉 − |1〉) (16)

for the X measurements and

|�〉 = 1√
2

(|0〉 + i |1〉), and |�〉 = 1√
2

(|0〉 − i |1〉), (17)

for the Y measurements. Measuring these contexts leads to the
empirical model in Table IV.

The abstract simplicial complex � corresponding to this
example is depicted in Fig. 6.

We obtain a generalized bundle diagram for the Anders-
Browne example by depicting the possible outcomes of a
joint measurement of a context not as a line, but instead
as a triangular facet in Fig. 7. We are lucky that in three

XA

XB

XC

YA

YB

YC

XA

XBB

XC

FIG. 6. The abstract simplicial complex forming the base for the
Anders-Browne example.

XA

XB

XCYA

YB

YC

XCCX XAX

XBX

1
1

1
1

1

1

0
0

0
0

0

0

00
000

0000000000000

111
1

00

111111111

11

FIG. 7. Bundle diagram with all contexts for the Anders-Browne
example.

dimensions we can always draw a surface through three
points. To build, in a similar way, a bundle diagram for
a contextual model involving four or more agents would
require a higher dimensional ambient space. In Fig. 8 the
violet triangles represent the sections above the context C1.
The context C2 is marked with teal triangles. The sections
related to C3 are depicted in orange, the ones belonging to
C4 in blue. Points in the stalk above a measurement are
labeled according to the observable and the outcome—for
example, the point above XA corresponding to outcome 1 is
denoted XA1.

We now explore the contextuality of this model: if there
exists a triangle which cannot be continued to a global
section, then the model is contextual. We argue this is the
case by starting with the violet triangle XA1 − XB1 − XC1
and exploring all potential compatible ways of extending this
section to a global section. We illustrate this procedure via a
tree diagram, which graphically enumerates all the possible
extensions.

We draw a node (connected to our start triangle) in the tree
diagram for the assignment of 1 to XA, i.e., the point XA1 in
the stalk above XA. We then draw leaves connected to nodes
labeled by triangles containing XA1. Each such triangle node
has leaves corresponding to compatible assignments and so
on. Thus our tree is comprised of alternating layers of triangles
and assignments. We tag the leaves of a node with a + symbol
when they are incompatible. Since in a global section only one
outcome per measurement is allowed and our start triangle
contains XA1, XB1, and XC1, we stop when we meet any of
XA0, XB0, or XC0.

Of course we also have to connect the edges XB1 and
XC1 of the starting triangle correctly. When we meet them
again via this extension process, we mark the nodes with
∗ or ∗∗. We can see that there is a possibility to connect
the edges XB1 and XC1 of the start triangle and touch all
measurements XA,XB, YA, and YB with ones, unless YA1 �=
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XA1

X
B

1∗

X
C

1∗∗

XB0 + XC0 + YB0

X
A
0

+

Y
C

1

Y
A
0

X
C

0
+

Y
A
1

X
C

1 ∗∗

YC0

X
A
0

+

Y
B

1

Y
A
0

X
B

1 ∗
Y

A
1

X
B

0
+

YB1

X
A
0

+

Y
C

0

Y
A
0

X
C

1 ∗∗
Y

A
1

X
C

0
+

YC1

X
A
0

+

Y
B

0

Y
A
0

X
B

0
+

Y
A
1

X
B

1 ∗

FIG. 8. Trying to build a global section with the triangle XA1 − XB1 − XC1.

YA0. This situation is tagged with an dashed orange line. A
similar case corresponds to the dotted blue lines. We can see
graphically how building a global section fails in these two
cases in Fig. 9.

Using such a tree diagram, we can also see that it is not
possible to build a complete global section with the triangle
XA1 − XB0 − XC0.

According to this argument, the model is logically con-
textual. We can further deduce that the model is strongly
contextual, i.e., there is no global section at all. (Because
logical contextuality follows from strong contextuality, the

first proof is not needed but is mentioned for illustrating
techniques before.) To this end, we define a function f :
Support[P (O )] → {±1} for each context, where P (O ) is
the possibility to get the outcome O = (a, b, c) via the joint
measurement of the context. Considering C1, the function is
defined by

fC1 (XA = a,XB = b,XC = c)

= (−1)a (−1)b(−1)c, (18)

XA

XB

XCYA

YB

YC

XCCX XAX

XBX

1
1

1
1

1

1

0
0

0
0

0

0

00

000

1111

XA

XB

XCYA

YB

YC

XCCX XAX

XBX

1
1

1
1

1

1

0
0

0
0

0

0

1
11

00

FIG. 9. Examples for failed global sections for the Anders-Browne example.

052124-6



CONTEXTUALITY AND BUNDLE DIAGRAMS PHYSICAL REVIEW A 98, 052124 (2018)

XA
XB

XC

YA

YB

YC

XX

AA

-1

-1

1

-1

FIG. 10. Values of parity function.

and produces the following codomain:

fC1 (0, 0, 1) = −1, (19)

fC1 (0, 1, 0) = −1, (20)

fC1 (1, 0, 0) = −1, (21)

fC1 (1, 1, 1) = −1. (22)

Defining the other functions analogously and computing the
codomains, we observe that the codomain for one particular
context is either {−1} or {1} so we can summarize the func-
tions fCi

for i ∈ {1, . . . , 4} with an overall parity function
F : Ci → {±1} defined on {Ci |i ∈ {1, . . . , 4}}. We depict the
values of the parity function for each context in Fig. 10.

It follows that all triangles have an odd number of edges on
the one-plane, except for the blue ones. So it is not possible to
build any global section. Also the structure of the NAND gate
becomes clear in this approach, i.e.,

XAXBXC |�〉 = − |�〉 , (23)

XAYBYC |�〉 = − |�〉 , (24)

YAXBYC |�〉 = − |�〉 , (25)

YAYBXC |�〉 = |�〉 . (26)

We were not able to find a global section using the state
|�〉 = 1√

2
(|001〉 − |110〉). As a next step, we want to figure

out whether there exists a state which produces a model with
a global section using the same contexts. Thus we search
for a model which fulfills F (Ci ) = −1 for an even number
of contexts Ci . An appropriate set of conditions on |�〉 is
depicted in Fig. 11 and requires

XAXBXC |�〉 = − |�〉 , (27)

XAYBYC |�〉 = |�〉 , (28)

XA
XB

XC

YA

YB

YC

XX

AA

-1

-1

1

1

FIG. 11. Values of parity function.

YAXBYC |�〉 = − |�〉 , (29)

YAYBXC |�〉 = |�〉 . (30)

To build such a state |�〉 fulfilling these conditions, we
construct the projectors

P1 = 1 − XAXBXC

2
, (31)

P2 = 1 + XAYBYC

2
, (32)

P3 = 1 − YAYBXC

2
, (33)

P4 = 1 + XAXBYC

2
. (34)

If P1 |�〉 = P2 |�〉 = P3 |�〉 = P4 |�〉 = |�〉 and these pro-
jectors come from commuting generators, three of which
are independent, then tr(P1P2P3P4) = 1 and therefore
P1P2P3P4 = |�〉 〈�| [41]. In the case depicted in Fig. 11, we
get P1P2P3P4 = 0. Hence there is no such state |�〉 �= 0.

Calculating the states resulting from all sets of conditions
satisfying F (Ci ) = −1 for an even number of the four con-
texts Ci analogously, we notice an interesting fact (Lemma
6).

Lemma 6: The states with an even number of minus signs
in the projectors vanish using the contexts

C1 = {XA,XB,XC}, (35)

C2 = {XA, YB, YC}, (36)

C3 = {YA,XB, YC}, and (37)

C4 = {YA, YB,XC}. (38)

It is only possible to find a state |�〉 �= 0 for an odd number
of minus signs in the projectors.

Proof. We can prove this by calculating P1P2P3P4 =
|�〉 〈�| for all cases.

On one hand, we reasoned that for a state with an odd
number of minus signs there is no global face. On the other,
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TABLE V. Empirical model for cluster state n = 5.

1 2 3 4 5 000 001 010 011 100 101 110 111

C1 X1 Z2 1 1 Z5 1/4 0 0 1/4 0 1/4 1/4 0
C2 Z1 X2 Z3 1 1 1/4 0 0 1/4 0 1/4 1/4 0
C3 1 Z2 X3 Z4 1 1/4 0 0 1/4 0 1/4 1/4 0
C4 1 1 Z3 X4 Z5 1/4 0 0 1/4 0 1/4 1/4 0
C5 Z1 1 1 Z4 X5 1/4 0 0 1/4 0 1/4 1/4 0

1 2 3 4 5 0000 0001 0010 0011 0100 0101 0110 0111
C6 Z1 X2 1 X4 Z5 1/4 0 0 1/4 0 1/4 1/4 0
C7 Z1 Z2 X3 1 X5 1/4 0 0 1/4 0 1/4 1/4 0
C8 X1 Z2 Z3 X4 1 1/4 0 0 1/4 0 1/4 1/4 0
C9 1 X2 Z3 Z4 X5 1/4 0 0 1/4 0 1/4 1/4 0
C10 X1 1 X3 Z4 Z5 1/4 0 0 1/4 0 1/4 1/4 0

1000 1001 1010 1011 1100 1101 1110 1111

C6 Z1 X2 1 X4 Z5 0 1/4 1/4 0 1/4 0 0 1/4
C7 Z1 Z2 X3 1 X5 0 1/4 1/4 0 1/4 0 0 1/4
C8 X1 Z2 Z3 X4 1 0 1/4 1/4 0 1/4 0 0 1/4
C9 1 X2 Z3 Z4 X5 0 1/4 1/4 0 1/4 0 0 1/4
C10 X1 1 X3 Z4 Z5 0 1/4 1/4 0 1/4 0 0 1/4

we proved that there is no state |�〉 �= 0 satisfying F (Ci ) =
−1 for an even number of Ci . Thus there is no state producing
an empirical model with a global section using the contexts
defined at the beginning of the section.

IV. THE CLUSTER STATE ON A RING OF FIVE QUBITS

We consider now a cluster state model on a ring of n = 5
qubits. This state is stabilized by five stabilizer operators (the
first five below). Taking products we generate five additional
stabilizers:

XZ11Z |�〉 = |�〉 , (39)

1ZXZ1 |�〉 = |�〉 , (40)

Z11ZX |�〉 = |�〉 , (41)

ZZX1X |�〉 = |�〉 , (42)

1XZZX |�〉 = |�〉 , (43)

ZXZ11 |�〉 = |�〉 , (44)

11ZXZ |�〉 = |�〉 , (45)

ZX1XZ |�〉 = |�〉 , (46)

XZZX1 |�〉 = |�〉 , (47)

X1XZZ |�〉 = |�〉 . (48)

We use for our contexts the observables contained in each
of these ten stabilizers. These are listed in Table V. The entries

X1

X2X3

X4 X5

Z1

Z2

Z3

Z4

Z5

X2X2
33

X4X4 X5X5

XX

FIG. 12. Base of bundle diagram for the cluster state on a ring of
n = 5 qubits involving contexts C1 − C5.

with nonzero probabilities are used for building the bundle
diagram. For a better overview, we depict the base of the
bundle diagram and the bundle diagram itself in two different
figures, divided in the contexts C1 to C5 (base in Fig. 12 and
diagram in Fig. 15) and C6 to C10 (base in Fig. 13 and diagram
in Fig. 16). (The complete bundle diagram is the union of
these two figures.) Note that since we have contexts involving
four observables, we are unable to depict the sections above
the corresponding quadrilaterals as flat surfaces; they are
buckled in general.

If there exists a triangle or square which cannot be con-
tinued to a global section, then the model is contextual. We
prove this by considering the teal triangle Z10 − X20 − Z30
and depicting all ways of trying to find a global section via
a tree diagram in Fig. 14, as before. We start with the chosen
triangle and draw all triangles containing X20. We can see that
only two of the first five children, A and B, do not contain a

X1

X2X3

X4 X5

Z1

Z2

Z3

Z4

Z5

X1

X2X3

X5
X4

FIG. 13. Base of bundle diagram for the cluster state on a ring of
n = 5 qubits involving contexts C6 − C10.
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X20

Z
2 0∗

Z
3 0∗∗

Z11+ Z31+

A

Z40 X50

Z20 X30

+

Z10∗ Z21 X31

+

Z10∗

Z30 ∗ ∗ Z40 X51 Z31+ Z41 X50 Z31+

B

Z41 X51

Z20 X31

+

Z10∗ Z21 X30

+

Z10∗

Z30 ∗ ∗

FIG. 14. Trying to build a global section with the triangle Z10 − X20 − Z30.

+ symbol. All vertices of A should be feasible for building
a global section with these children. But continuing X50, one
can see that at the end there are no compatible triangles or
squares. The case B is similar. We hence cannot build a global
section for the triangle Z10 − X20 − Z30 and, therefore, the
model is contextual.

V. CONCLUSION

The aim of this work was to exploit bundle diagrams
to illustrate the contextuality of empirical models involving
three or more agents. We considered first bipartite two-agent
models with two outcomes as a motivation and then gener-

X1X2
X3X4

X5 Z1

Z2

Z3

Z4
Z5

3X3

Z

X3X3

Z

XX3X33
X3X33X3
X3X3X X5 X15

2

111 1 1 1

1

1

1 1

000 0 0 0

0

0

0 2

111 111

Z5Z51 Z5Z5
1

1

1111 11 11 11 11 11 11

X1XX

1

11

Z

0

4

0

1111111111111111
ZZ4ZZZ

11111
4

11111111111
Z

0000
1

00
1

0 00000000000 00 00 0000

00

00 0000

00

0 000000

X

111

X2

1

000

X2X

00000

1 11

XX

FIG. 15. Bundle diagram for the cluster state on a ring of n = 5
qubits for contexts C1 − C5.

alized the bundle diagram representation from the two-agent
setting to the many-agent setting and illustrated the contex-
tuality of a model built on the Greenberger-Horne-Zeilinger
state. This representation was then applied to visualize the
contextuality of a joint measurability scenario involving a
cluster state for a five-qubit ring. There are many interesting
questions that arise in depicting contextuality in this way. For
example, the bundle diagram itself is an abstract simplicial
complex and the contextuality of the model corresponds to
the “twistedness” of the bundle, like for a Möbius strip. Find-
ing a way to quantify the connection between orientability
and contextuality more precisely is an intriguing research
direction.

X1X2
X3X4

X5 Z1

Z2

Z3

Z4
Z5

X15

ZZ2

X5

Z2

5555

111 1 1 1

1

1

1 1

000 0 0 0

0

0

0 00

11111111111111

Z5

X2 X22 XX5X5X52 XXX XX52

ZZZZZZ

X555 XXXX2 XX2 XX2

11111111

2 XX2 XX2 X2 XX5555X5555 XXXXXXXXXXXXXX

1

XXXXXXXXXX33X3X4X3
X3X333X3 4X4X4

3X3
X33X3X4X3
X

X4
11XXXXXXXXXX11XX1XX1XX1XX1XX1XX1X1XX111X3X4X

X
X4

XXXXXXX3X4X XXXXXXXXXX4X4

11111111

Z4ZZ
1 11111111

ZZZZ 11111111 111111111111 111111

00000 00000000000000000000 0000 0000 0000000000000000000000000000000000000000000 000 00000000000000000000 0000000000 0000 000 000000 00000 00 00 0 0000 000000 0 0000000000000000000000000000 0

11111111111111111111111
0000000000

11111111111111111111111111111111 111 111111 11111111111 111111111111111111111
000000

1 1111111

00
1 1111 111

0

1111 1 11 111 11 11111111111111111111111111111111111111111111

FIG. 16. Bundle diagram for the cluster state on a ring of n = 5
qubits for contexts C6 − C10.
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