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Memory-induced geometric phase in non-Markovian open systems
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Geometric phases have been shown to be feasible in implementing quantum gates to perform quantum
information processing. For all the realistic applications, the environmental influence on the geometric phase
and decoherence such as memory effects must be properly considered in order to achieve the required precision
in geometric quantum computation. In this paper, we study the geometric phase for a generic open quantum
system based on a microscopic model. A remarkable feature of the open system’s geometric phase obtained
from our theoretical formulation is that the geometric phase can be obtained regardless of the existence of the
master equations, while the environmental noise features such as memory effects are fully accounted for. We
demonstrate that the geometric phases for a general open quantum system can be fundamentally modified by its
non-Markovian environments.
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I. INTRODUCTION

As a quantum state slowly evolves, it will acquire a
global phase, which contains a geometric contribution that
is only dependent on the path traversed by the system. This
phenomenon was extensively studied by Berry in a seminal
paper [1] and was later generalized to nonadiabatic evolu-
tions [2] and noncyclic evolutions [3,4]. Over the last decades,
the geometric phase has been studied in various situations
such as nuclear resonance [5], quantum Hall effects [6], and
quantum phase transitions [7]. Recent growing interest in
quantum information and quantum computing [8] has con-
tributed to a crucial realization that the geometric phase can
be an important resource in implementing quantum gates in
geometric quantum computation. One of the major advantages
of realizing universal quantum computation with geometric
phase is its intrinsic resilience against errors and perturba-
tions [9].

In quantum information processing (QIP), however, the
quantum systems used as information carriers are inevitably
coupled to the surrounding environments, causing decoher-
ence and dissipation, hence, any realistic applications in QIP
must take the open system effects into account. While the
geometric phase for a quantum open system can be studied
by using either the Markov quantum jump approach [10],
Markov quantum state diffusion (QSD) equations [11,12], or
the quantum state purification approach [13], the geometric
phase for a general quantum system has still not been properly
addressed due to the lack of an efficient analytical approach
to recovering the density operator and the mathematical
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complexity arising from the environmental memory effects.
In this paper, we report a generic approach to the geometric
phase of quantum open systems through the non-Markovian
diffusive trajectories that unravel the open system dynam-
ics [14–16]. Our approach directly explores the geometric
phase on a single quantum process level and fully accounts
for the memory effect of the environment without using the
explicit master equations, which are typically not available for
general open systems.

More precisely, we will consider the geometric phase
for quantum trajectories generated by the exact stochastic
Schrödinger equation, called the non-Markovian quantum
state diffusion (QSD) equation, which describes nonunitary
and noncyclic evolutions without any approximations. The en-
semble mean of generated quantum trajectories will crucially
recover the density matrix of the open system under consider-
ation. Notably, the geometric phase of a generic open system
can be computed without the information of the (exact) master
equations that are typically difficult to obtain, except for a
few special cases including the Born-Markov approximation
[17–19]. Our general formalism is exemplified with two
exactly solvable models exhibiting several features of the
geometric phase when the memory effect caused by the envi-
ronment cannot be ignored. We emphasize that our approach
to the open system geometric phase is generic and expands our
understanding of the power of quantum geometric phase in a
domain where the environment can be much more realistic.
In the light of quantum computing applications, besides the
numerical advantage in tracking real-time information of the
geometric phase, our formalism has recovered an important
geometric phase correction due to the memory effects that
have been missing in all the standard Born-Markov approx-
imations [10,19].
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II. GEOMETRIC PHASE IN AN OPEN QUANTUM
SYSTEM: GENERAL DEFINITION

Consider a generic quantum system described by Hsys that
is embedded in a multimode bosonic bath, which is generally
referred to as an environment in this paper, and the total
system consisting of the system of interest and its environment
initially prepared in a pure product state |�(0)〉 = |ψsys(0)〉 ⊗
|ϕenv(0)〉, where the environment initial state is a vacuum,
|ϕenv(0)〉 = |0〉. The Hamiltonian of the total system is given
by

Htot = Hsys +
∑

k

(gkLb
†
k + g∗

kL
†bk ) +

∑
k

ωkb
†
kbk, (1)

where L is the coupling operator, called the Lindblad operator,
and b

†
k (bk ) are the kth mode creation (annihilation) operators

of the bosonic bath with frequency ωk . Here gk denotes the
coupling strength between the system and the bosonic bath.
The pure state of the total system |�(t )〉 is governed by
the standard Schrödinger equation, and the reduced density
operator ρ for the system of interest only is obtained by
tracing out the environmental degrees of freedom ρ(t ) =
Trenv[|�(t )〉〈�(t )|]. Due to the coupling between the system
and its environment, the reduced state of the open system is
typically a mixed state. Several attempts have been made to
calculate the geometric phase associated with this nonunitary
evolution process, including state purification [13] and the
quantum jump approach [10]. Notably, when the environment
memory can be ignored, the quantum jump approach takes
on the problem by calculating the phase of Markov stochastic
quantum trajectories |ψj 〉 for the reduced density operator
ρ = ∑

j pj |ψj 〉〈ψj |, and the state purification approach gen-
eralizes on the parallel transport condition to find a geometric
phase associated with an enlarged system whose partial trace
reproduces the reduced density operator for the system of
interest. For a generic quantum open system described by (1),
however, the master equation governing the reduced density
operator may be not approximated by a Markov equation, and
the general non-Markovian master equations are not available.
An important feature of our approach is that the geometric
phase is directly associated with a single physical process
for an arbitrary open system depicted in (1) regardless of
the existence of the exact or approximate master equations.
Moreover, the quantum trajectory based quantum geometric
phase may offer an effective feedback control mechanism that
gives rise to robust realizations of the geometric quantum
information processing.

The non-Markovian QSD is obtained from Eq. (1) through
specifying the bath state by a set of complex numbers {zk}
labeling the Bargmann coherent state of all bath modes. By
projecting the quantum state |�tot (t )〉 of the total system into
the bath state |z〉 ≡ ∏

k |zk〉, we have |ψz∗ (t )〉 = 〈z|�tot (t )〉,
which is called a quantum trajectory and obeys a linear QSD
equation [14]:

∂

∂t
|ψz∗ (t )〉 = [−iHsys + Lz∗

t − L†Ō(t, z∗)]|ψz∗ (t )〉, (2)

where z∗
t ≡ −i

∑
k g∗

k z
∗
ke

iωkt , O is an operator defined by the
functional derivative δ

δz∗
s
|ψz∗ (t )〉 = O(t, s, z∗)|ψz∗ (t )〉, and

Ō(t, z∗) = ∫ t

0 α(t, s)O(t, s, z∗)ds. Note that the effect of the

bath is characterized by the correlation function α(t, s) =∑
k |gk|2e−iωk (t−s). One can interpret zk as a Gaussian random

variable, and z∗
t becomes a random process with its statistical

mean given by the bath correlation function, i.e., M[ztz
∗
s ] =

α(t, s), where M[F] = 1
π

∫
d2ze−|z|2F represents the ensem-

ble average over noise.
A normalized quantum trajectory is defined by |ψ̃z∗ (t )〉 =

|ψz∗ (t )〉/√〈ψz(t )|ψz∗ (t )〉. To calculate the geometric phase
associated with this trajectory, we may discretize the wave
function as |ψj 〉 = |ψ̃z∗ (j�t )〉, where j = 0, 1, . . . , N and
�t = t/N is the time-step length. For this chain of pure
states, the geometric phase γG is given by the well-known
Pancharatnam formula [10,20],

γG = − arg[〈ψ0|ψ1〉〈ψ1|ψ2〉 · · · 〈ψN−1|ψN 〉〈ψN |ψ0〉], (3)

where the last term − arg[〈ψN |ψ0〉] represents the total phase
γtot and the rest constitutes the dynamical phase γdyn. It can be
readily shown that this definition coincides with the definition
using the fiber bundle reference section [4] through |χ (t )〉 =
ξ (t )|ψ̃z∗ (t )〉, where ξ (t ) = 〈ψ̃z(t )|ψ̃z∗ (0)〉/|〈ψ̃z(t )|ψ̃z∗ (0)〉|,
and the geometric phase is given by

γG = i

∫
〈χ (t )|∂t |χ (t )〉dt

= i

∫
ξ̇ (t )ξ ∗(t )dt + i〈ψ̃z(t )|∂t |ψ̃z∗ (t )〉dt, (4)

where ∂t represents the derivative with respect to time, the
first term is the total phase, the second term is the dynamical
phase (up to a minus sign), and the integral runs along the
path traced by the quantum state for the open system. We may
further close the path by the geodesic that connects the two
ends of the path, and then convert the line integral to a surface
integral. Obviously, one can always compute the geometric
phase by using the trajectories generated from the linear QSD
with Eq. (3) which greatly simplify the calculations.

The ensemble average for the trajectories may be obtained
by using the Bargmann coherent basis 1

π

∫
d2z e−|z|2 |z〉〈z| =

1. Accordingly, the reduced density operator of the
system is given by ρ(t ) = TrE [1 · |�tot (t )〉〈�tot (t )|] =
M[|ψz∗ (t )〉〈ψz(t )|]. Next, we show that the geometric
phase for the open system can be obtained by the ensemble
average based on Eq. (3). To calculate the average dynamical
phase γ̄dyn, we first note that 〈ψz[j�t]|ψz∗[(j + 1)�t]〉 =
〈ψz(j�t )|ψz∗ (j�t )〉 + dt〈ψz(j�t )|∂t |ψz∗ (j�t )〉. Using
Eq. (2) and taking the continuous time limit �t → 0, γ̄dyn is
given by

γ̄dyn = −i

∫ t

0
dτ M[〈ψz(τ )|∂t |ψz∗ (τ )〉]

= −i

∫ t

0
dτ M[〈ψz(τ )|h(τ )|ψz∗ (τ )〉], (5)

where h(τ ) = −iHsys + Lz∗
τ − L†Ō(τ, z∗), and we have used

the relation M[〈ψz(t )|ψz∗ (t )〉] = Tr[ρ(t )] = 1, which also
implies that M[〈ψz(t )|∂t |ψz∗ (t )〉] is purely imaginary. The
total average phase is simply γ̄tot = arg [M(〈ψz(0)|ψz∗ (t )〉)].
This total phase for the non-cyclic evolution may be measured
by an interferometer [21], where the input (initial) state goes
through one arm and |ψz∗ (t )〉 goes through another. The pure
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state |ψz∗ (t )〉 can be obtained by a measurement of the bath at
time t , with an outcome labeled z∗ [22].

The ensemble average for the dynamical phase may
be carried out with Novikov’s theorem [14], M[Ptzt ] =∫ t

0 ds M[ztz
∗
s ]M[ δPt

δz∗
s
] = ∫ t

0 ds α(t, s)M[ δPt

δz∗
s
]. The average

geometric phase is then given by γ̄G = γ̄tot − γ̄dyn. It is worth
pointing out that, in our definition of the geometric phase,
the form of the system Hamiltonian Hsys and the system-
bath coupling operator L are entirely general. Moreover, no
assumptions including weak coupling or Markov approx-
imations have been made. Hence, the formulation of the
geometric phase has incorporated all the information about
the environment without using an explicit master equation.
Interestingly, when the Ō operator itself is noise independent,
we have

γ̄dyn = −
∫ t

0
dτ Tr[Hsysρ(τ )] + 2 Im Tr[L†Ō(τ )ρ(τ )], (6)

where ρ(τ ) is the reduced density operator of the system
at time τ . Again, using the Novikov’s theorem [15], this
dynamical phase can still be expressed in terms of the den-
sity operator for the system when the Ō operator is noise
dependent, following a similar approach in the derivation of
master equations from QSD [23]. Since both the total and
dynamical phases are in principle measurable, our definition
represents an operational formulation of the geometric phase
under general non-Markovian open system dynamics. It is
also worth pointing out that this definition is independent of
the unraveling chosen (see Appendix A for details) and one is
free to choose other types of projection [22] than the coherent
state used here.

III. EXAMPLES

The general definition of the geometric phase of a non-
Markovian open system will be illustrated by two physically
interesting models that will allow explicit analytical solutions.
More general cases will inevitably require numerical sim-
ulations, which prove to be particularly efficient when the
quantum trajectories are employed [15,16,24]. The models
to be considered are the dissipative spin-boson model and
dephasing two-level system. In each case, the general non-
Markovian geometric phase is explicitly calculated, giving
rise to an important geometric phase that is not found in the
case of Markov limit. To be more specific, we prepare the
two-level system in a pure state characterized by a Bloch
vector (sin θ, 0, cos θ ). For the dissipative two-level system
described by the system Hamiltonian Hsys = ωσz/2 and the
coupling operator L = λσ−, the exact solution may be ob-
tained [14] (see Appendix B for more details), and the Ō oper-
ator is explicitly given by Ō(t ) = F (t )σ−, where the function
F (t ) can be analytically obtained. Note that here, although
our formulation is valid for an arbitrary correlation function,
for simplicity we have assumed the spectrum of the bath to be
of the Lorentzian form, and the correlation function is accord-
ingly given by α(t, s) = �γ exp[−γ |t − s| − i�(t − s)]/2 at
zero temperature. This spectrum is particularly convenient
for studying non-Markovian/Markov transition as γ → ∞
corresponds to the Markov limit. Throughout this example,
we set � = 1, � = 0. By definition, the geometric phase

FIG. 1. The geometric phase γG for a single trajectory in the
dissipative model as a function of time t , with ω = λ = 1 and θ = 1.
The solid line is calculated from the Pantcharatnam formula (3),
and the dots are calculated as half the solid angle enclosed by the
closed path formed by the QSD trajectory whose ends are joined by
a geodesic. Inset: Bloch sphere representation of the normalized path
generated by the QSD (blue) whose ends are joined by a geodesic
(red) to form a closed path.

acquired by the quantum trajectory will be dependent on the
path traversed by the state only. For the two-level system it
should be equal to half the solid angle enclosed by the closed
path formed by joining the open ends with a geodesic. Here,
we plot one realization of the non-Markovian QSD trajectory
with its associated geometric phase in Fig. 1 using Eq. (3),
where we see that the geometric phase exactly coincides with
half the solid angle enclosed. Since this model is analytically
solvable, we have an exact and analytical expression for the
geometric phase [see Eq. (B4) in Appendix B]. When θ = π ,
the wave function for the total system becomes |�(0)〉 =
|↓〉 ⊗ ∏

k |0〉k , which is an eigenstate of the total system.
Since the total Hamiltonian is time independent in this case,
this state acquires zero geometric phase, as expected. At t =
2π/ω in the Markov limit, the expression for γ̄G simplifies to

ω[cos θ + 1]
(
1 − e− 2πλ2

ω

)
2λ2

.

Further taking the weak-coupling limit, we have γ̄G ≈ γ
(M )
G =

π [cos θ + 1], which reduces to the geometric phase of an
isolated system. A remarkable feature of this model is that
when the system is interacting with a memoryless bath, the
maximally attainable geometric phase is reduced by a factor
of (taking ω = 1)

1 − e−2πλ2

2πλ2
. (7)

Therefore, as the coupling strength ratio λ increase, the range
of possible geometric phase acquired by the state is reduced,
which is consistent with the weak-coupling limit. On the other
hand, the environmental memory can increase the controllable
range of attainable geometric phase. To see this, we analyti-
cally calculated the geometric phase in the small-γ limit, i.e.,
the strong bath memory regime, and the geometric phase is
given by

γ̄G = γ
(M )
G

[
1 − γ�λ2

2

]
.
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FIG. 2. The geometric phase γ̄G for the dissipative model as a
function of the initial state parameter θ for different γ ’s: from top
to bottom, γ = 0.1, 0.5, 1.2, 100, with λ = 1, � = 1, � = 0, and
t = 2π/ω.

Therefore, the system environment may be engineered to give
rise to a correlation parameter γ that will generate a memory-
assisted geometric phase, where the range of attainable phase
can be improved with the help of environmental memory.
Using Eq. (B4) in Appendix B, we display an example in
Fig. 2, where the red line corresponds to the memoryless
case where the range of attainable geometric phase is greatly
reduced, and the blue curve corresponds to the case where
the full range [0, 2π ] is almost recovered with the help of the
environment memory effect. The example has clearly demon-
strated that the environmental memory can fundamentally
change the geometric phase for open quantum systems. Our
analysis shows that when quantum systems are engaged by
noise with memory, the geometric phase is not predicted by
the well-known Markov behavior that is familiar from the
quantum theory of Markov open systems or closed systems.

Our exact analysis of the non-Markovian geometric phase
can also be extended to the pure dephasing model. By em-
ploying this simple quantum open system model, we can
clearly show how the environmental memory affects the onset
of the geometric phase. The total Hamiltonian (1) takes the
following form: The system Hamiltonian of the model is given
by Hsys = ωσz/2 and the coupling to the bath is described
by L = λσz. The Ō operator of this model is exactly given
by Ō(t ) = λ

∫ t

0 ds α(t, s)dsσz. We can analytically solve the
QSD equation and derive the corresponding geometric phase
after taking the average. Remarkably, when � = 0, the geo-
metric phase at time t = 2π/ω is γ̄G = π (cos θ − 1), which
the same as a closed system H = ωσz/2, indicating that the
geometric phase in this case is robust against dephasing.
This agrees with the geometric phase obtained in the Markov
case via quantum jumps [10], since the dynamics is actu-
ally Markovian when � = 0. When � �= 0, the geometric
phase is a complex but analytical function [see Eq. (C2) in
Appendix C]. We can expand the geometric phase in powers
of 1/γ as

γ̄G = γ
(M )
G − π�λ2�

γω
+ �λ2�

γ 2
+ O

[
1

γ 3

]
,

where γ
(M )
G = π (cos θ − 1) is the geometric phase in the

Markov limit, which also coincides with the closed system

FIG. 3. The geometric phase γ̄G for the dephasing model as a
function of the initial state parameter θ for different γ ’s: from top to
bottom, γ = 100, 7, 0.3, 0.7, with λ = 1, � = 1, � = ω and t =
2π/ω.

case. Taking � = ω and t = 2π/ω, the geometric phase can
be simplified as

γ̄G = γ
(M )
G − γ�λ2

[
π (γ 2 + ω2) + γω(e− 2πγ

ω − 1)
]

(γ 2 + ω2)2
, (8)

i.e., the geometric phase is subject to a shift which is indepen-
dent of the initial state parameter θ , and the range of attainable
geometric phase is unaffected. This shift is maximized when
γ ≈ �, at about 1.32.

Using Eq. (8), we plot in Fig. 3 the exact geometric phase
γ̄G for the dephasing model as a function of the bath memory
parameter γ = 1/τ (τ is the memory time) and initial state
parameter θ with λ = 1, � = 1, � = ω, and t = 2π/ω. As γ

increases, the geometric phase first decreases then increases
asymptotically to the Markov limit.

We emphasize again that the non-Markovian quantum
phase can always be calculated from the general QSD equa-
tion without assuming the exact solvability, and the geometric
phase defined here can be used whenever the QSD approach
is applicable, for example with finite-temperature bath [25],
fermionic bath [26], and other types of bath correlation
functions [27]. In this case, the existing perturbation tech-
nique [15] or numerical algorithms for the QSD equation [28]
can be readily employed, such that the geometric phase can
still be obtained under general non-Markovian open system
dynamics. Specifically, the geometric phase for a bosonic bath
may be calculated with

I = M[〈ψz(0)|ψz∗ (�t )〉] × M[〈ψz(�t )|ψz∗ (2�t )〉] × · · ·
×M[〈ψz(T − �t )|ψz∗ (T )〉] × M[〈ψz(T )|ψz∗ (0)〉],

γ̄G = − arg(I ), (9)

where T is the final evolution time under consideration. We
have verified the results using the generic algorithm in [28]
and found a perfect agreement between the numerical result
and the analytical results presented above.

IV. CONCLUSION

In this paper we introduced a generic formulation of non-
Markovian geometric phase for quantum open systems by
means of a set of non-Markovian quantum trajectories. This
approach represents a systematic and computable way to
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study the geometric phase in general non-Markovian open
systems without relying on the existence of a master equation
or purification while at the same time fully accounting for the
memory effect of the bath. Additionally, this approach can
give a hierarchical approximation of the geometric phase with
respect to the degree of bath memory effects, starting with a
Markov case, followed by a post-Markov analysis [15], all the
way up a full non-Markovian treatment. This generic formal-
ism of the geometric phase places no restriction on the system
Hamiltonian, the system-bath coupling operator L, or the bath
correlation function, ensuring its wide application domain.
By examining the temporal behavior of quantum trajectories
under the influence of the environments with memories, we
demonstrated the onset of a geometric phase of open quantum
systems not previously encountered in the Markov limit or
in the case of closed quantum systems. This geometric phase
will arise, for example, in a quantum information processing
device, where the environment cannot be approximated by a
Markov noise such as in the case of structured medium or

strong coupling regimes. As demonstrated in this paper, the
environmental memory can produce a wide adjustable range
for the geometric phase, which is of fundamental importance
in realizing universal geometric quantum computation. We
also showed that, in any implementation of the geometric
phase for quantum information processing, the environmental
effects must be properly taken into account to maximize the
accuracy of the quantum gate operations.
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APPENDIX A: GEOMETRIC NATURE FOR THE ENSEMBLE AVERAGE GEOMETRIC PHASE

Here we show that the ensemble average γ̄G is also geometric in nature. Consider the composite total wave function for the
system and bath |�(t )〉, which we can also discretize as |�j 〉 = |�(j�t )〉, where j = 0, 1, . . . , N and �t = t/N is the time-step
length. Since the total wave function describing the system plus bath state remains pure during evolution, we can also use the
standard Pancharatnam approach to ensure the geometric nature of the geometric phase associated with this composite pure state
wave function. Explicitly, the ensemble average geometric phase can be written as

γ̄G = − arg[〈�0|�1〉〈�1|�2〉 · · · 〈�N−1|�N 〉〈�N |�0〉].
To calculate each of the inner products above, we insert the identity operator 1 = 1

π

∫
d2ze−|z|2 |z〉〈z|. Under the QSD approach,

the inner product can be written in terms of the ensemble average of the trajectories since

〈�i |�j 〉 = 1

π

∫
d2ze−|z|2〈�i |z〉〈z|�j 〉 = M[〈ψz(i�t )|ψz∗ (j�t )〉] = M[〈ψi |ψj 〉].

This gives us a possible way to obtain an ensemble average for the geometric phase in non-Markovian open systems that is also
a geometric entity. Since we only insert an identity operator above, this way to calculate the inner product is also independent
of how we write the identity operator (for example, other than using coherent states), which corresponds to other types of open
system unraveling.

APPENDIX B: CALCULATION DETAILS FOR THE GEOMETRIC PHASE IN THE DISSIPATIVE SPIN-BOSON MODEL

For the first example in the main text described by the system Hamiltonian Hsys = ωσz/2 and the coupling operator L = λσ−,
the -operator does not contain noise terms and can be exactly given [14]. Denoting

O(t, s) = f (t, s)σ−, (B1)

we have

∂tf (t, s) = [iω + λF (t )]f (t, s), (B2)

where F (t ) = ∫ t

0 ds α(t, s)f (t, s). For simplicity, we have assumed the spectrum of the bath to be Lorentzian, and the correlation
function is accordingly given by α(t, s) = �γ exp[−γ |t − s| − i�(t − s)]/2 at zero temperature. In this case, F (t ) may be
analytically obtained,

F (t ) =
γ − �p tan

[ − �pt

2 + tan−1
(

γ−i(ω−�)
�p

)] − i(ω − �)

2λ
, (B3)

where

�p =
√

−γ 2 + 2γ [λ2 + i(ω − �)] + (ω − �)2.
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Using the ensemble average of Eq. (5), we arrive at the analytical form for the geometric phase in the dissipative spin-boson
model γ̄g = γ̄tot − γ̄dyn, where

γ̄tot = − arg{e−iωt/2{1 − cos θ + exp[iωt − λg∗(t )](1 + cos θ )}},

γ̄dyn =
∫ t

0

ω

2
− exp[−2λ Re{g(s)}] cos2(θ/2)[ω + 2λ Im{F (s)}]ds, (B4)

and g(t ) = ∫ t

0 F (s)ds.

APPENDIX C: CALCULATION DETAILS FOR THE GEOMETRIC PHASE IN THE PURE DEPHASING MODEL

The second example in the main text also admits an exact analytical solution. Assume a Lorentzian spectrum for the bath
at zero temperature as example 1. Using the ensemble average of Eq. (5), the geometric phase for the non-Markovian pure
dephasing model is given by

γ̄ = arg

[
[cos θ + 1 − (cos θ − 1)eiωt ] exp

(
−γ�λ2[(γ + i�)t + e−(γ+i�)t − 1]

2(γ + i�)2
− iωt

2

)]

− e−γ t [2γ�λ2{�eγ t [γ (γ t − 2) + �2t] + (γ 2 − �2) sin �t + 2γ� cos �t} − ωt (γ 2 + �2)2 cos θeγ t ]

2(γ 2 + �2)2
. (C1)

At t = 2π/ω, we have

γ̄g = e− 2πγ

ω

2ω(γ 2 + �2)2

[
2e

2πγ

ω (−π (γ 2 + �2)(γ 2ω + γ�λ2� + ω�2) + γ 2�λ2ω� + πω(γ 2 + �2)2 cos θ )

+ γ�λ2ω

(
(�2 − γ 2) sin

2π�

ω
− 2γ� cos

2π�

ω

)]
. (C2)

With � = ω, it simplifies to Eq. (9) in the main text.
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