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Topological invariants and phase diagrams for one-dimensional two-band non-Hermitian systems
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We study topological properties of one-dimensional non-Hermitian systems without chiral symmetry and give
phase diagrams characterized by topological invariants νE and νtot , associated with complex energy vorticity
and summation of Berry phases of complex bands, respectively. In the absence of chiral symmetry, we find that
the phase diagram determined by νE is different from νtot . While the transition between phases with different
νE is closely related to the band-touching point, the transition between different νtot is irrelevant to the band-
touching condition. We give an interpretation for the discrepancy from the geometrical view by analyzing the
relation of topological invariants with the winding numbers associated with exception points of the system. We
then generalize the fidelity approach to study the phase transition in the non-Hermitian system and find that
transition between phases with different νtot can be well characterized by an abrupt change of fidelity and fidelity
susceptibility around the transition point.
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I. INTRODUCTION

Topological phases of matter have been one of the most
intriguing research subjects in condensed-matter physics.
Recently, topological phases in non-Hermitian systems have
attracted great attention [1–37], partially motivated by the
experimental progress on optical and optomechanical systems
with gain and loss, which can be implemented in a con-
trollable manner and effectively described by non-Hermitian
systems [38–45]. Recent studies have unveiled that the topo-
logical properties of non-Hermitian systems may exhibit quite
different behaviors from Hermitian systems, associated with
some peculiar properties of the non-Hermitian Hamiltonian,
e.g., biorthonormal eigenvectors, complex eigenvalues, the
existence of exceptional points (EPs), and unusual bulk-edge
correspondence [46–55]. Although non-Hermiticity brings
some challenges for carrying out topological classification
and properly defining topological invariants on biorthonormal
eigenvectors [22,23,54], the non–Hermitian system with novel
qualities has opened up new frontiers for exploring rich topo-
logical phenomena.

It is well known that symmetry and dimension play
an important role in the study of topological properties
[22–24,56]. For one-dimensional (1D) topological systems
with chiral symmetry, the topological properties of the Her-
mitian systems can be characterized by a winding number
νs , which is closely related to the Berry phase across the
Brillouin zone (Zak phase) of systems [16,57,58]. For the non-
Hermitian system with chiral symmetry, one can generalize
the definition of winding number νs as a topological invariant.
Furthermore, due to the eigenvalue being complex, we need
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to define another topological winding number νE , describ-
ing the vorticity of energy eigenvalues [11,15]. The phase
diagram of the non-Hermitian system with chiral symmetry
can be well characterized by νE and νs , which can take half
integers. In a recent work [16], it was demonstrated that
both νE and νs are related to two winding numbers ν1 and
ν2, which represent the times of trajectory of the Hermi-
tian part of the momentum-dependent Hamiltonian encircling
the EPs.

In this work, we study 1D non-Hermitian systems without
chiral symmetry, which are found to exhibit quite different
behaviors from their counterparts with chiral symmetry. In the
absence of chiral symmetry, while νE remains a topological
invariant, the Berry phase for each band is not quantized
and the corresponding νs is no longer a topological invariant.
Nevertheless, the summation of νs for all the bands, denoted
by νtot, is still quantized and can be taken as topological
invariant [6]. By studying a concrete two-band non-Hermitian
model, we find that the phase diagram determined by the
topological invariant νE is different from that characterized
by νtot. While the phase boundaries of phase diagram char-
acterized by νE correspond to the band-touching points of
the nonchiral system, no band touching occurs at the phase
boundaries of νtot. This is in sharp contrast to the chiral non-
Hermitian system, for which the phase boundaries between
phases with different νs also correspond to the band-touching
points. To understand the discrepancy of phase diagrams
of the nonchiral systems, we further unveil the geometrical
meaning of the topological invariants νE and νtot . Similar to
the chiral non-Hermitian system, we find that νE is related
to the winding numbers ν1 and ν2, which count the times of
trajectory of the Hermitian part of the Hamiltonian encircling
the EPs of the nonchiral Hamiltonian. However, νtot is related
to different winding numbers ν ′

1 and ν ′
2 associated with EPs of
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a Hamiltonian in the absence of the term breaking the chiral
symmetry.

For the Hermitian system, besides the general Landau cri-
teria for quantum phase transitions (QPTs), fidelity approach
provides an alternative way to identify the QPT from the
perspective of wave functions [59–63]. Generally one may
expect that the fidelity of ground state shows an abrupt change
in the vicinity of the phase transition point of the system as a
consequence of the dramatic change of the structure of the
ground state. So far the studies of fidelity as a measure of
QPTs are focused on Hermitian systems, for which either
the Landau energy criteria or the fidelity approach gives a
consistent phase diagram. In this work, we shall generalize the
fidelity approach to study phase transition in non-Hermitian
systems. To our surprise, we find that both the fidelity and
fidelity susceptibility exhibit obvious changes in the vicinity
of phase boundaries of phases characterized by νtot , instead
of νE . This suggests that the phase transition between phases
with different νtot can be determined by the fidelity approach,
whereas the transition between different νE is closely related
to the band-touching (gap-closing) condition and can be de-
termined by the generalized Landau criteria.

The paper is organized as follows. In Sec. II, we first give
a general framework to expound the basic characteristics of
a two-band non-Hermitian system. In Sec. III, we introduce
a non-Hermitian model without chiral symmetry and analyze
the spectrum of the system. We also calculate the topological
invariant νE and give the phase diagram characterized by
νE . In Sec. IV, we calculate the other topological invariant
νtot, associated with the Berry phase, and the phase diagram
characterized by νtot . We find discrepancy of phase diagrams
characterized by νE and νtot, and unveil that the two topo-
logical invariants are related to different winding numbers
associated with the EPs of the Hamiltonian with and without
chiral symmetry. We also analyze the effect of a hidden
pseudoinversion symmetry on the topological property of
eigenstate. Then, we calculate the fidelity of a given eigenstate
and the corresponding fidelity susceptibility to identify the
phase transition characterized by νtot . A summary is given in
the last section.

II. TOPOLOGICAL INVARIANTS OF 1D TWO-BAND
NON-HERMITIAN SYSTEMS

In general, a two-band non-Hermitian system can be
described by

H(k) = h(k) · σ = n(k) · σ + iγ (k) · σ , (1)

where h(k), n(k), and γ (k) may include three components
x, y, z and σx,y,z is the Pauli matrix. In general, the non-
Hermitian system can be divided into the summation of Her-
mitian and non-Hermitian parts: h(k) = n(k) + iγ (k), with
n(k) and γ (k) being real functions of k. The energy square
of the non-Hermitian Hamiltonian is E2 = |n|2 − |γ |2 + 2in ·
γ := E2

1 = E2
2 (E1 = −E2). It is clear that the two bands

touch at zero when n(k) ⊥ γ (k) and |n(k)| = |γ (k)|.
The eigenvalue E1,2 is smoothly continuous with k. Since

the eigenvalue is generally complex, we can represent it as
E1 = |E|eiθk = −E2, with θk the angle of eigenvalue. As k

goes across the Brillouin zone (BZ), we can always define the

winding number of energy νE as [11,15]

νE = 1

2π

∮
dk ∂k arg (�E) = 1

2π

∮
dk ∂k arg (E1 − E2).

(2)
For the Hermitian system, νE is always zero as θk takes either
zero or π . See Appendix A for the detailed calculation of νE .

On the other hand, the eigenstates of the non-Hermitian
Hamiltonian [Eq. (1)] satisfy H(k)|ψR

1,2〉 = E1,2|ψR
1,2〉, and

|ψR
1,2〉 do not form an orthogonal basis. In order to describe

non-Hermitian properties, we need also consider the eigen-
states of H†, H†(k)|ψL

1,2〉 = E∗
1,2|ψL

1,2〉, which together with
|ψR

1,2〉 form biorthogonal vectors and fulfill 〈ψL
i |ψR

j 〉 = δi£j

by properly choosing the normalization 〈ψL
1,2|ψR

1,2〉. For sim-
plicity, we choose

∣∣ψR
1,2

〉 = 1√
2E1,2(E1,2 − hz)

(hx − ihy E1,2 − hz)T ,

where the superscript T is transpose operation, and

〈
ψL

1,2

∣∣ = 1√
2E1,2(E1,2 − hz)

(hx + ihy E1,2 − hz).

Similar to the definition of the winding number related to
the Berry phase of eigenstate in a Hermitian system, one
can generalize the definition νs directly to the non-Hermitian
system [8,16,21], which can be written as

νs,α = 1

π

∮
dk

〈
ψL

α

∣∣i∂k

∣∣ψR
α

〉
, (3)

where α = 1, 2 indicate the band labels. Substituting the
concrete forms of |ψR

−〉 and 〈ψL
−| into the above equation, after

some simplifications, we can represent νs as (Appendix B).

νs,α = 1

2π

∮
dk

hx∂khy − hy∂khx

Eα (Eα − hz)
, (4)

where E1 and E2 are eigenvalues of the non-Hermitian Hamil-
tonian.

For the case with chiral symmetry, it has been shown that
both νE and νs,α can only take some half-integers. In a recent
work, it has been demonstrated νE and νs,α are related to the
winding numbers ν1 and ν2 of trajectory of the Hermitian part
around two different EPs, respectively [16], and thus explain
why they are topologically invariant with half integers. The
phase diagrams can be determined by different values of either
νE or νs,α , or equivalently ν1 and ν2. For the general case
without chiral symmetry, νE remains a topological invariant;
however, νs,α is generally a complex number which is not
quantized, suggesting that νs,α is no longer a topological
invariant. Nevertheless,

νtot = νs,1 + νs,2

has been demonstrated to be a topological invariant, which
takes integers [6]. As shall be discussed in detail in the
following section, we find that phase boundaries of the phase
diagram determined by νE are consistent with the band touch-
ing curves determined by E1 = E2 = 0. On the other side, we
can also get a phase diagram determined by topological invari-
ant νtot, which displays obviously different phase boundaries
from phase boundaries determined by νE . To understand this
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discrepancy, we further analyze geometrical origins of νE and
νtot, associated to the Hamiltonian (7). While νE can be related
to the winding numbers around two EPs of the Hamiltonian
(7) via νE = ± 1

2 (ν2 − ν1), we find no relation of νtot with
ν1 and ν2; instead we have νtot = ν ′

1 + ν ′
2, where ν ′

1 and ν ′
2

are winding numbers around EPs of the Hamiltonian in the
absence of the chemical potential term.

III. MODEL AND SPECTRUM

For simplicity, we consider a 1D non-Hermitian model
by choosing the Su-Schrieffer-Heeger (SSH) model as the
Hermitian part of the non-Hermitian Hamiltonian, and intro-
duce an off-diagonal non-Hermitian part by taking different
hopping amplitudes along the right and left hopping directions
in the unit cell [16,54]. A diagonal non-Hermitian term is also
introduced by alternatively adding imaginary chemical poten-
tial ±iμ on the A/B sublattice. Explicitly, the Hamiltonian is
given by

H =
∑

n

(t + δ)c†A,ncB,n + (t − δ)c†B,ncA,n + t ′c†A,n+1cB,n

+ t ′c†B,ncA,n+1 + iμc
†
A,ncA,n − iμc

†
B,ncB,n, (5)

with t ′ = 1 as the unit of energy in the following discus-
sion. Under the periodic boundary condition, we can make
a Fourier transformation: cα,n = 1/

√
N

∑
k eikncα,k , where N

is the number of the unit cells and α takes A or B. Then the
Hamiltonian can be written in the form of

H (k) =
∑

k

φ
†
kH(k)φk, (6)

where φ
†
k = (c†A,k, c

†
B,k ), and

H(k) =
(

iμ t + δ + e−ik

t − δ + eik −iμ

)
= n(k) · σ + iδσy + iμσz. (7)

Here the Hermitian part is n(k) · σ = nx (k)σx + ny (k)σy with
nx = t + cos k and ny = sin k. When μ = 0, the term of σz

vanishes and the model reduces to the chiral non-Hermitian
SSH model which fulfills the chiral symmetry [16]:

σzH(k)σz = −H(k).

The chiral symmetry is broken when μ 	= 0.
From Eq. (7), it is straightforward to get the square of

eigenvalues given by

E2(k) = t2 + 1 + 2t cos k − δ2 − μ2 − 2iδ sin k,

which suggests the existence of two solutions E1 and E2 with
E2 = −E1. The ith band energy E1,2 can be represented as
Ei (k) = |Ei (k)|eiθi (k) (i = 1, 2), where θ2(k) = θ1(k) + π =
θ (k) + π . Substituting E1,2 into Eq. (2), we can simplify νE to

νE = 1

4

∑
i

sgn(δ)sgn

(
∂ny

∂k

∣∣∣∣
Ki

)

× sgn
((

n2
x − δ2 − μ2

)∣∣
Ki

)
, (8)

where k = Ki is the ith solution of ny = 0, which gives
k = 0 and π . In Fig. 1 we show the phase diagram of the

FIG. 1. Phase diagram characterized by the winding number of
energy νE . (a) t versus δ by fixing μ = 0.5 and (b) t versus μ

by fixing δ = 0.5. The light yellow shallow represents the winding
number of energy νE = 0.5 and the light pink shallow represents
νE = −0.5, while other regimes are νE = 0. The phase transition is
accompanied by the band touching (close of band gap).

model (5) with different phases characterized by different
νE . In Fig. 1(a), the phase diagram is plotted for t versus δ

by fixing μ = 0.5 and Fig. 1(b) is for t versus μ by fixing
δ = 0.5. We find that the phase boundaries can be determined
by δ2 + μ2 = (t ± 1)2, which is consistent with the band-
touching (gap-closing) condition E1(k) = E2(k) = 0, i.e., the
two bands touch together at the phase boundaries.

It is shown that in some regions of the phase diagram νE

takes the half integer ±1/2, which suggests the definition
Eq. (2) is not a true winding number in the geometrical mean-
ing. The reason behind this is that in this region the complex
eigenvalue E1(k) or E2(k) does not form a closed curve when
k goes around the BZ. To see it clear, we show Ei (k) versus k

in Fig. 2, in which Ei (k) changes continuously and smoothly
with k. As shown in Fig. 2(b), neither E1 nor E2 form a
closed curve as k changes from −π to π ; instead they switch
each other with E1(π ) = E2(−π ) and E2(π ) = E1(−π ), in
contrast with the phase regimes with νE = 0 corresponding to
Figs. 2(a) and 2(c), where both E1,2(k) forms a closed curve
and we have Ei (π ) = Ei (−π ).

Furthermore, we demonstrate that the definition Eq. (2) is
equivalent to half of the difference of two winding numbers,
i.e.,

νE = 1
2 sgn(δ)(ν2 − ν1), (9)

where ν1,2 = 1
2π

∮
dk ∇kφ1,2 with φ1,2 defined by

tan φ1 = ny

nx +
√

μ2 + δ2
, tan φ2 = ny

nx −
√

μ2 + δ2
.

It is clear that ν1 and ν2 represent the winding number
of the closed curve formed by [nx (k), ny (k)] in the
two-dimensional space surrounding the EPs (−

√
μ2 + δ2, 0)

and (
√

μ2 + δ2, 0), respectively.
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FIG. 2. Energy distribution in different parameter regions. The green curve and the black one represent E1 and E2, respectively. The
detailed parameters are shown in the figure. Panels (a) and (c) correspond to νE = 0 and (b) corresponds to νE = 0.5.

IV. TOPOLOGICAL PROPERTIES OF EIGENVECTORS

A. Topological invariant of eigenvectors

By using the expression of Eq. (4) and substituting it into
νtot = νs,1 + νs,2, we get

νtot = 1

2π

∮
dk

[
hx∂khy − hy∂khx

E1(E1 − hz)
+ hx∂khy − hy∂khx

E2(E2 − hz)

]
.

With the help of the relation E2 = −E1, the above equation
can be rewritten as

νtot = 1

2π

∮
dk

[
hx∂khy − hy∂khx

E1(E1 − hz)
+ hx∂khy − hy∂khx

E1(E1 + hz)

]

= 1

π

∮
dk

hx∂khy − hy∂khx

E2
1 − h2

z

.

Since E2
1 = h2

x + h2
y + h2

z , we can get

νtot = 1

π

∮
dk

hx∂khy − hy∂khx

h2
x + h2

y

, (10)

where hx = nx = t + cos k and hy = ny + iγy = sin k + iδ.
We notice that νtot is independent of hz, although its definition
is related to the eigenvectors of H(k).

In Fig. 3, we show the phase diagram characterized by
different values of νtot. In Fig. 3(a), the phase diagram is
plotted for t versus δ by fixing a μ = 0.5, and Fig. 3(b) is for
t versus μ by fixing a δ = 0.5. Figure 3(b) clearly indicates
that the phase diagram is irrelevant to μ as the expression of
νtot is independent of hz. From the expression of Eq. (10), we
can see that the phase diagram shown in Fig. 3(a) is identical
to the phase diagram of the Hamiltonian in the absence of
the hz term, i.e., the non-Hermitian Hamiltonian with chiral
symmetry given by

Hchiral(k) = (t + cos k)σx + (sin k + iδ)σy. (11)

The expression Eq. (10) does not represent a winding number
in the geometrical meaning as hy (k) is not a real function.
Following the same derivation for the case with chiral sym-
metry [16], we can represent νtot as the summation of two true
winding numbers

νtot = ν ′
1 + ν ′

2, (12)

where ν ′
1,2 = 1

2π

∮
dk ∇kφ

′
1,2, with φ′

1,2 defined by

tan φ′
1 = ny

nx + δ
, tan φ′

2 = ny

nx − δ
.

It is clear that ν ′
1 and ν ′

2 represent the winding number of the
closed curve formed by [nx (k), ny (k)] in the two-dimensional
space surrounding two points (−δ, 0) and (δ, 0), respectively.
These two points are not EPs of the Hamiltonian (7); instead
they are EPs of Hchiral(k). Consequently, the phase boundary
of the phase diagram determined by νtot is the same with
the band touching condition for the system described by
Hchiral(k), but is different from the phase diagram determined
by νE .

Alternatively, we can also understand the geometrical
meaning of the topological invariant νtot from trajectories of
eigenvectors by projecting the eigenvectors onto a 2D unit
spherical surface. In general, the right eigenvector can be
parametrized as

|ψR (αk, βk )〉 =
(

cos βk

2

eiαk sin βk

2

)
, (13)

For each eigenvector corresponding to E1 or E2, we
may calculate the sphere vector defined as R(k) =
(cos αk sin βk, sin αk sin βk, cos βk ), where αk and βk corre-
spond to the azimuthal and polar angles of R(k), respectively.
In Fig. 4, we plot the evolution of two eigenvectors on the
Bloch sphere across the Brillouin zone. Their trajectories form

FIG. 3. Phase diagram characterized by topological invariant νtot .
(a) t versus δ by fixing μ = 0.5 and (b) t versus μ by fixing δ =
0.5. The number in different color areas represents the topological
invariant νtot = νs,1 + νs,2.
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FIG. 4. Unit sphere vector R(k) (red curve with eigenvalue E1

and black one with eigenvalue E2). The parameter t in (a), (b), and
(c) takes 0, 1, and 2, respectively, with other parameters μ = 0.5 and
δ = 0.5. The blue line connects the north and south poles.

separately two closed curves as shown in Figs. 4(a) and 4(c),
or form together a closed curve in Fig. 4(b). The topological
invariant νtot can be viewed as a winding number which
accounts for times of the trajectories passing around the z axis
connecting north and south poles.

Generally speaking, νs,1 is not quantized for a system
without the chiral symmetry. However, for the model de-
scribed by Eq. (7), the Hamiltonian satisfies a pseudoinversion
symmetry:

σxH(k)σx = H†(−k), (14)

and we find that the real part of νs,1 is quantized in some
parameter regions due to the existence of the pseudoinver-
sion symmetry. Given that H(k)|ψR

α (k)〉 = Eα (k)|ψR
α (k)〉, it

follows that

H†(−k)σx

∣∣ψR
α (k)

〉 = Eα (k)σx

∣∣ψR
α (k)

〉
.

Noticing that H†(−k)|ψL
α (−k)〉 = E∗

α (−k)|ψL
α (−k)〉, we

have E1(k) = E∗
1 (−k) if the state fulfills σx |ψR

1 (k)〉 =
|ψL

1 (−k)〉 or E1(k) = E∗
2 (−k) if the state fulfills

σx |ψR
1 (k)〉 = |ψL

2 (−k)〉. The difference between these
two cases can be distinguished by whether the real part of νs,1

is quantized or not. The real part of νs,1 is quantized in the
case of E1(k) = E∗

1 (−k), and νs,1 is not quantized but real in
the other case. In Fig. 5, regions labeled by quantized number
0, 0.5, 1 correspond to the case of E1(k) = E∗

1 (−k) with
quantized real part of νs,1. Regions without labeled numbers
correspond to the case of E1(k) = E∗

2 (−k), for which νs,1 is
no longer quantized. The boundaries between these two cases
can be determined by E2

1,2(k = 0) = 0 (see Appendix B for
details).

When the chemical potential term hz is no longer imagi-
nary, i.e, hz ≡ nz + iγz = η + iμ with nonzero η, the pseu-
doinversion system is broken and the real part of νs,1/2 is not
quantized. Nevertheless, νtot is always quantized and takes the
same value no matter which form hz takes, i.e., the expression
of Eq. (12) is irrelevant to the term of hz.

B. Detection of phase boundaries via fidelity approach

We have demonstrated that the phase diagram determined
by νtot displays quite different phase boundaries from the
band-touching conditions. As νtot reflects the global geo-
metrical properties of wave functions, we apply the fidelity
approach to detect the phase boundaries. The fidelity approach
has been widely used to study the phase transitions in various
quantum many-body systems [59–63]. Given a Hamiltonian
H (λ), which depends on the driving parameter λ, the quantum
fidelity is defined as the overlap between two eigenstates with

0.5

1 1 0.50

-2-2

22

-2-2

-1-1-1-1

0 0

11

1 10 0 22
tt

δ μ

0.5

( )a ( )b0.5=μ 0.5=δ

0

FIG. 5. Phase diagram characterized by the real part of Berry
phase νs,1. (a) t versus δ by fixing μ = 0.5 and (b) t versus μ by
fixing δ = 0.5. The number in different color areas represents the
quantized Re(νs,1), and in the regions without the number Re(νs,1)
is not quantized. The blue solid curve represents the phase boundary
of phase diagram characterized by Re(νs,1), and the red dashed is
corresponding to the phase boundary of νtot .

only slightly different values of the external parameter and
thus is a pure geometrical quantity. For the non-Hermitian
Hamiltonian studied in this work, the driving parameter λ can
be taken as t, δ, or μ. In terms of the eigenstates |ψR,n(λ)〉
of H (λ), the Hamiltonian can be reformulated as H (λ) =∑

n En(λ)|ψR,n(λ)〉〈ψL,n(λ)|. Therefore, we can generalize
the definition of the state fidelity to the non-Hermitian sys-
tem, which is defined as the half sum of the overlap be-
tween |ψR,1(λ + ε)〉 and |ψL,1(λ)〉 and the overlap between
|ψL,1(λ + ε)〉 and |ψR,1(λ)〉, i.e.,

F (λ, ε) = 1
2 |〈ψL,1(λ)|ψR,1(λ + ε)〉
+ 〈ψR,1(λ)|ψL,1(λ + ε)〉|, (15)

where |ψR,1(λ)〉 is the wave function corresponding to the
parameter λ with eigenenergy E1 and ε is a small quantity.
It is obvious that the fidelity is dependent of ε. The rate of
change of fidelity is given by the second derivative of fidelity
or fidelity susceptibility

S(λ) = lim
ε→0

∂2
ε InF (λ, ε), (16)

which is independent of ε. We note that the first derivative
of fidelity defined by Eq. (15) gives zero, which is consistent
with the Hermitian system [60–62].

In Fig. 6, we display the fidelity and fidelity susceptibility
versus the driving parameter t , i.e., we take λ = t , by fixing
δ = 0.5 and μ = 0.5. It is shown that both the fidelity and
fidelity susceptibility exhibit an abrupt jump in the vicinity
of the transition points, which are consistent with the phase
boundaries of the phase diagram determined by νtot. If we
take the driving parameter as δ by fixing t and μ, similarly
we find an abrupt jump of the fidelity and fidelity suscep-
tibility in the vicinity of the transition points. Our results
demonstrate that the phase transition point determined by
the fidelity approach is different from that obtained by using
Landau’s energy criterion, which gives the phase boundaries
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FIG. 6. Fidelity (a) and fidelity susceptibility (b) as a function of
t . Here we take λ = t, μ = 0.5, and δ = 0.5.

by the band crossing condition. For the Hermitian system,
it has been demonstrated that the fidelity susceptibility and
the second derivatives of ground energy play an equivalent
role in identifying the quantum phase transition. However, for
the non-Hermitian system, they play different roles and may
give different phase boundaries when the chiral symmetry
is broken. This also explains why the discrepancy of phase
diagrams determined by νE and νtot may arise for the non-
Hermitian system.

V. SUMMARY

In summary, we have studied 1D general non-Hermitian
systems without chiral symmetry and found the existence of
discrepancy between phase diagrams characterized by two
independent topological invariants νE and νtot , which are
quantized for our studied systems. While the phase boundaries
between phases with different νE are determined by the band-
touching condition, the phase boundaries between different
νtot are irrelevant to the band touching of the nonchiral system.
The discrepancy of phase diagrams can be further clarified
from the geometrical meaning the topological invariants νE

and νtot, which can be represented as νE = ±(ν2 − ν1)/2
and νtot = ν ′

2 + ν ′
1, where ν1 and ν2 are winding numbers

counting the times of trajectory of the Hermitian part of the
Hamiltonian encircling two EPs of the nonchiral Hamiltonian,
and ν ′

1 and ν ′
2 are winding numbers associated with two EPs

of the Hamiltonian in the absence of the chiral-symmetry
breaking term. The fact that the topological invariant νtot is
independent of the chiral-symmetry breaking term suggests
that the corresponding transition between different νtot is
irrelevant to the band-touching points; instead it is equal to
the winding number which counts times of trajectories of
vectors by projecting the eigenstates onto a 2D unit sphere
passing around the z axis connecting north and south poles.
Furthermore, we find the existence of a hidden pseudoinver-
sion symmetry and the real part of νs,α is quantized when the
eigenvalues of the system satisfy E1,2(k) = E∗

1,2(−k).
We then generalize the definition of fidelity and use the fi-

delity and fidelity susceptibility to identify the phase transition
in the non-Hermitian system. Our results show that an abrupt
change of fidelity and fidelity susceptibility occurs around
transition points between phases with different νtot, which
suggests that the fidelity approach can witness topological
phase transitions characterized by νtot accompanied with no
gap closing in the non-Hermitian system. Our work unveils
that the non-Hermitian systems may exhibit some peculiar

properties, which have no correspondence in the Hermitian
systems and are worthy of further investigation. A question
that remains open is to find physical observable quantities to
detect the topological invariants in the non-Hermitian models
without chiral symmetry.
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APPENDIX A: WINDING OF EIGENENERGY νE

The winding number of energies νE can be written as

νE = 1

2π

∫
∇karg(�E)dk,

where �E represents the difference of energies between
any of the two bands. Generally speaking, a two-band non-
Hermitian system can be described by the Hamiltonian in
Eq. (1), with eigenvalues E2

1,2 = |h(k)|2 (E1 = −E2). Hence
the angle of �E is half of the angle of E2

1,2, and as a result νE

can be interpreted as the half of the winding number of E2
1,2

in the complex plane around the origin. In Hermitian systems,
the energy E1,2 is real and νE is always zero.

Similar to Ref. [64], the winding number of νE can be
written as

νE = 1

4

∑
i

[
sgn

(
∂ Im

(
E2

1,2

)
∂k

|k=Ki

)
sgn[Re

(
E2

1,2

)
(Ki )]

]
,

(A1)
with Ki being the ith solution of Im(E2

1,2) = 0. For the
Hamiltonian described by Eq. (7), the eigenvalues satisfy
E2

1,2 = t2 + 1 + 2t cos k − δ2 − μ2 + 2iδ sin k. It’s easy to
get the simplified form of νE ,

νE = 1

4

∑
i

sgn(δ)sgn

(
sin k

∂k
|Ki

)

× sgn[(t2 + 1 + 2t cos k − δ2 − μ2) |Ki ], (A2)

with Ki being the ith solution of sin k = 0. This is different
from the Hermitian cases where Ki is determined by ĥ0 = 0.

Now we give the geometric meaning of the winding num-
ber νE . To see this, we parametrize the square of energies by

E2
1,2 = |E|2e2iθk ,

with

tan 2θk = 2δ sin k

t2 + 1 + 2t cos k − δ2 − μ2
= Im

(
E2

1,2

)
Re

(
E2

1,2

) .

Then the winding number can be written as

2πνE =
∮

dk ∇kθk =
∮

dk
1

2
cos 2θ∇k tan 2θ

= 2 Re
(
E2

1,2

)
∣∣E2

1,2

∣∣2 ∇k

Im
(
E2

1,2

)
Re

(
E2

1,2

)
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FIG. 7. (a) Schematic diagram of compressive deformation E2
1,2.

(b) A schematic diagram shows the geometrical meaning of φ1 and
φ2 with nx/y = Re〈σx/y〉.

=
∮

dk
Re

(
E2

1,2

)∇kIm
(
E2

1,2

) − Im
(
E2

1,2

)∇kRe
(
E2

1,2

)
2
∣∣E2

1,2

∣∣2

=
∮

dk
Re

(
E2

1,2

)∇kαIm
(
E2

1,2

)−αIm
(
E2

1,2

)∇kRe
(
E2

1,2

)
2
[
Re

(
E2

1,2

)2+α2Im
(
E2

1,2

)2]
= sgn(α)

∮
dk ∇kθ

′,

where tan 2θ ′ = α Im(E2
1,2 )

Re(E2
1,2 )

. Here α is independent of k and

taken to be α =
√

μ2+δ2

δ
; thus sgn(α) = sgn(δ). The winding

number of θk is now represented by the winding number of θ ′
k

as shown in Fig. 7(a). Furthermore, we have

Re
(
E2

1,2

) + iα Im
(
E2

1,2

)
=

√[
Re

(
E2

1,2

)2 + α2Im
(
E2

1,2

)2]
e2iθ ′

=
√[

Re
(
E2

1,2

)2 + α2Im
(
E2

1,2

)2]
e−iφ1eiφ2 ,

with tan φ1 = ny

nx+
√

μ2+δ2
and tan φ2 = ny

nx−
√

μ2+δ2
, where

nx = t + cos k and ny = sin k. Here φ1 and φ2 are the angles
of vector n(k) around the two EP points EP1 and EP2 as
shown in Fig. 7(b), respectively. Finally, the winding number
νE becomes

νE = sgn(δ)
1

2π

∮
dk ∇kθ

′ = 1

2
sgn(δ)(ν2 − ν1), (A3)

where νi = 1
2π

∮
dk ∇kφi . Hence νE measures the differences

of winding number ν1 and ν2, which is similar to the case of
the chiral Hamiltonian discussed in Ref. [16].

APPENDIX B: WINDING OF EIGENSTATE νs

The eigenstates for the non-Hermitian Hamiltonian satisfy

H (k)
∣∣ψR

1,2

〉 = E1,2

∣∣ψR
1,2

〉
,〈

ψL
1,2

∣∣H †(k) = 〈
ψL

1,2

∣∣E1,2,

with∣∣ψR
1,2

〉 = 1√
2E1,2(E1,2 − hz)

(hx − ihy, E1,2 − hz)T ,

〈
ψL

1,2

∣∣ = 1√
2E1,2(E1,2 − hz)

(hx + ihy, E1,2 − hz),

where the superscript T is transpose operation. The Berry
phase νs of the state is defined by

νs,1 = 1

π

∮
dk

〈
ψL

1

∣∣i∂k

∣∣ψR
1

〉
.

Substituting the expression of |ψR
1 〉, 〈ψL

1 | into this equation,
νs is rewritten as

νs,1 = 1

π

∮
dk

1√
2E1(E1 − hz)

(hx + ihy E1 − hz)

× i∂k

1√
2E1(E1 − hz)

(
hx − ihy

E1 − hz

)

= 1

π

∮
dk

hx∂khy − hy∂khx

2E1(E1 − hz)
.

Summing up the Berry phases of the two bands, the total Berry
phase is

νtot = νs,1 + νs,2 = 1

π

∮
dk

hx∂khy − hy∂khx

h2
x + h2

y

,

which can be proved to be quantized.
In a Hermitian system, a Hamiltonian having inversion

symmetry means there is a unitary operator satisfying
UH (k)U−1 = H (−k). As a comparison, we can define a
pseudoinversion symmetry in the non-Hermitian system.
Because of H (k) 	= H †(k), the pseudoinversion symmetry
now requires UH (k)U−1 = H †(−k), while the operator U

is still unitary. For example, if U is chosen to be σx , the
pseudoinversion symmetry gives some constraints on the
Hamiltonian, i.e.,

hx (k) = h∗
x (−k),

hy (k) = −h∗
y (−k),

hz(k) = −h∗
z (−k).

Besides, the eigenvalues should satisfy E1(k) = E∗
1 (−k) or

E1(k) = E∗
2 (−k). Now we study the Berry phase for these

two cases, respectively.
In the first case, we have E1(k) = E∗

1 (−k), and the Berry
phase νs,1 is

νs,1 = 1

π

∫ π

−π

dk
〈
ψL

1

∣∣i∂k

∣∣ψR
1

〉

= 1

π

∫ π

−π

dk dk
hx (k)∂khy (k) − hy (k)∂khx (k)

2E1(k)[E1(k) − hz(k)]

= 1

π

∫ π

−π

dk
−h∗

x (−k)∂kh
∗
y (−k) + h∗

y (−k)∂kh
∗
x (−k)

2E∗
1 (−k)[E∗

1 (−k) + h∗
z (−k)]

= 1

π

∫ π

−π

d(−k)
h∗

x (−k)∂−kh
∗
y (−k) − h∗

y (−k)∂−kh
∗
x (−k)

2E∗
1 (−k)[E∗

1 (−k) + h∗
z (−k)]

(k → −k)

= 1

π

∫ π

−π

dk
h∗

x (k)∂kh
∗
y (k) − h∗

y (k)∂kh
∗
x (k)

2E∗
2 (k)[E∗

2 (k) − h∗
z (k)]

= 1

π

∫ π

−π

dk
〈
ψR

2

∣∣i∂k

∣∣ψL
2

〉
= ν∗

s,2.
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Similarly, we can see νs,2 = ν∗
s,1. As a result, the to-

tal Berry phase νtot = νs,1 + νs,2 = νs,1 + ν∗
s,1 is real and

quantized. The real and imaginary part of νs,1 sat-
isfies Re(νs,1) = Re(νs,2) = 1

2 Re(νtot ); Im(νs,1) = Im(ν∗
s,2).

This phase is called pseudoinversion symmetry unbroken
phase, in which the real part of Berry phase νs,i is quantized.

In the second case, E1(k) = E∗
2 (−k). The Berry phase

νs,1 is

νs,1 = 1

π

∫ π

−π

dk
〈
ψL

1

∣∣i∂k

∣∣ψR
1

〉

= 1

π

∫ π

−π

dk dk
hx (k)∂khy (k) − hy (k)∂khx (k)

2E1(k)[E1(k) − hz(k)]

= 1

π

∫ π

−π

dk
−h∗

x (−k)∂kh
∗
y (−k) + h∗

y (−k)∂kh
∗
x (−k)

2E∗
2 (−k)[E∗

2 (−k) + h∗
z (−k)]

= 1

π

∫ π

−π

dk
h∗

x (k)∂kh
∗
y (k) − h∗

y (k)∂kh
∗
x (k)

2E∗
1 (k)[E∗

1 (k) − h∗
z (k)]

= 1

π

∫ π

−π

dk
〈
ψR

1

∣∣i∂k

∣∣ψL
1

〉
= ν∗

s,1.

In this case, the νs,1 and νs,2 are real but not quantized. The
phase is called pseudoinversion symmetry broken phase.
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Christodoulides, Phys. Rev. Lett. 118, 093002 (2017).

[53] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,
Phys. Rev. Lett. 121, 026808 (2018).

[54] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[55] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[56] C. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.

Phys. 88, 035005 (2016).
[57] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).

[58] L. Li, C. Yang, and S. Chen, Europhys. Lett. 112, 10004
(2015).

[59] S. Zhu, Phys. Rev. Lett. 96, 077206 (2006).
[60] P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123
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