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Time in quantum mechanics: A fresh look at the continuity equation
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The local conservation of a physical quantity whose distribution changes with time is mathematically
described by the continuity equation. The corresponding time parameter, however, is defined with respect to
an idealized classical clock. We consider what happens when this classical time is replaced by a nonrelativistic
quantum-mechanical description of the clock. From the clock-dependent Schrodinger equation (as an analog of
the time-dependent Schrodinger equation) we derive a continuity equation, where, instead of a time derivative,
an operator occurs that depends on the flux (probability current) density of the clock. This clock-dependent
continuity equation can be used to analyze the dynamics of a quantum system and to study degrees of freedom
that may be used as internal clocks for an approximate description of the dynamics of the remaining degrees of
freedom. As an illustration, we study a simple model for coupled electron-nuclear dynamics and interpret the
nuclei as quantum clock for the electronic motion. We find that whenever the Born-Oppenheimer approximation
is valid, the continuity equation shows that the nuclei are the only relevant clock for the electrons.
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In many physical processes, the state of a system can be
described by a density distribution of a physical quantity
which is locally conserved, i.e., which is not created or de-
stroyed during the process of interest. The mathematical form
of the conservation law for such a density is the continuity
equation [1]. It relates changes of the density of the conserved
quantity to the divergence of a vector field, called the flux
density (or current density). The flux density represents the
instantaneous motion of the density and, when integrated over
a surface, yields the flow of the density through that surface.
As the continuity equation follows from the requirement of
continuity alone [1], it is a very important relation for the
mathematical description of nature. In nonrelativistic quantum
mechanics it holds for the probability density of the particles
[2] and occurs, for example, in the hydrodynamic formula-
tion of quantum mechanics [3,4], in time-dependent density
functional theory [5], and in the study of nuclear and electron
dynamics [6-9]. Continuity is such a basic requirement that
the continuity equation can also be used to test theories,
models, or numerical calculations for errors by comparing the
change of the density distribution to the expected fluxes.

Although the continuity equation is a very general relation,
it is typically assumed that the dynamics is parametrized by
a unique time; hence the continuity equation is stated accord-
ingly. However, the special status of time in quantum mechan-
ics is currently investigated [10-20] and different approaches
are developed that view time mostly as an emergent property,
assuming that quantum mechanics is fundamentally time-
less. One of these is the Page-Wootters approach [10,21-26],
where the timeless universe (a closed system containing all
relevant degrees of freedom) is partitioned into a clock and a
system of interest. This system has to be entangled with the
clock, and there has to exist a good clock in the sense that
it has many distinguishable states but little interaction with
the system [25]. The concept of time can then be found as a
(classical) conditional variable.
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In this article, we use a different but related approach
which allows us to include quantum-mechanical effects of
the clock: In the Briggs-Rost approach [11,15], a closed
composite (i.e., consisting of at least two degrees of freedom)
universe is also separated into a clock and a system which
depends conditionally on (and which is entangled with) the
clock. Then, from the time-independent Schrodinger equation
(TISE) of the system together with the clock, the time-
dependent Schrodinger equation (TDSE) of the system can
be obtained in the classical limit for the clock. It follows
that the TDSE is a quantum-classical equation. Consequently,
the time-dependent continuity equation is a quantum-classical
relation, too, and we may ask if a fully quantum-mechanical
equivalent can be found.

To investigate this question, we use the Briggs-Rost ap-
proach in the language of the exact factorization [15,27],
where the joint probability density for system and clock is
separated into a marginal probability density for the clock
and a conditional probability density for the system, which
conditionally depends on the state of the clock. Thus, time
has a similar status as it has in the Page-Wootters approach.
However, no assumptions or constructions are necessary and
all results can directly be derived from the time-independent
equation of motion, which in our case is the TISE. This will al-
low us to find a fully quantum-mechanical continuity equation
by replacing the TDSE of the system with a clock-dependent
Schrodinger equation (CDSE), which becomes a TDSE in
the classical limit of the clock wave function. Instead of a
conditional time parameter, both the CDSE and its continuity
equation depend on the (quantum) state of the clock.

Such a quantum-mechanical continuity equation is inter-
esting from a fundamental point of view, because it illustrates
the quantum-mechanical nature of the clock that is used to
track the dynamics of the system. Our focus in this article,
however, is to illustrate a possible practical purpose of the
quantum-mechanical continuity equation: It can be used to
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analyze a dynamics and to find degrees of freedom that can be
used as clocks for other degrees of freedom, possibly allowing
one to find approximate simulation methods in the spirit of
the Born-Oppenheimer approximation. Born-Oppenheimer-
type approaches are used in many different ways, e.g., for
quantizing constrained systems [28], for Rydberg states [29],
for quantum heat transfer [30], for a model of atoms in an
oscillator and lattice trap [31], or for the dynamics of H;
in carbon nanotubes [32]. The clock-dependent continuity
equation shows how the approximation works: As an example,
we consider a simple model of the coupled electron-nuclear
dynamics during a proton-coupled electron transfer process
and treat the nuclei as a quantum clock for the electronic
motion. In this case, there are two clocks for the electrons: an
external clock (to which also the nuclear motion is referred)
and an internal clock given by the nuclear wave function. In
the continuity equation, the change of the electron density
with respect to (w.r.t.) these two clocks shows clearly under
which conditions only the internal clock is relevant for the
electronic motion. These conditions correspond to situations
where the Born-Oppenheimer approximation is applicable,
i.e., where the change of the nuclear configuration is enough
to represent the electron dynamics. Of course, the conditions
for which the Born-Oppenheimer approximation works are
well known, but our analysis in terms of different clocks
gives both a new point of view on this familiar method, and
it allows a generalization of the approach to other problems
where similar separations of timescales may be helpful. As
a by-product, treating the nuclei as a clock for the electrons
also sheds a new light on the riddle of the vanishing electronic
flux density in the Born-Oppenheimer approximation [33], as
explained below.

I. THE TIME-DEPENDENT CONTINUITY EQUATION

Before developing the idea of time measured by means of a
quantum clock, we first review the time-dependent continuity
equation in quantum mechanics. Let p(x|¢) € R be the distri-
bution of a conserved continuous physical quantity depending
on spatial coordinates x € R*® and on time ¢. The change of
p(x]t) in some compact volume €2 has to correspond to the
flux through the surface 92 of the volume. This requirement
is stated as [1]

B,f ,o(x|t)dx+/ Jjx|t)-dS =0, (1)
Q aQ

where the vector field j(x|t) € R? is the flux density (or
current density) and where 9, is the derivative w.r.t. time. By
means of Stokes’ theorem and the requirement that (1) is true
for any volume, we obtain the continuity equation [1]

ap(x]t) + Vy - j(x[t) =0 2

with the gradient vector w.r.t. the components of x denoted
as V,. Equation (2) relates changes of p(x|t) in time to
the divergence of j(x|t). If the state ¥ (x|t) of a particle is
described by the TDSE

2
ihd Y (x|t) = (;-m[—ivx + A(x|O]* + v<x|t>)¢<x|z)

3)

with scalar potential V € R and vector potential A € R?, and
if |y (x|1)|> = p(x|t) is the probability density of this particle,
the probability flux density j(x|¢) in the continuity equation
(2) is identified with

h -
J(xlt) = - AIm[y (x| Vet (x]0)] + AIDIY (xID1P), @)

where ¥ denotes the complex conjugate of /.

We note that the flux density j(x|t) is defined via (2)
only up to the addition of a vector field j, (x|t) for which
Vy - j, (x]t)=0. Hence, (4) is not a unique definition if
only the continuity equation and the TDSE are known [34].
It is, however, the position representation of the quantum-
mechanical operator corresponding to the classical flux den-
sity, and the continuity equation may be derived from this
operator [2].

II. THE CLOCK-DEPENDENT SCHRODINGER EQUATION

To describe the system and its clock quantum mechani-
cally, we follow the developments presented in [11,15]. In
these articles, it was shown that the TDSE (3) can be ob-
tained from the TISE for the considered system together with
the clock that is used to measure the time parameter. Two
requirements were necessary: The energy of the clock has
to be much larger than that of the system so that its state is
negligibly disturbed by the system, and the classical limit has
to be taken for the wave function of the clock. Only in this
case a time parameter can be defined which corresponds to a
“universal” reference time. For our discussion, we do not need
to make any of these assumptions, but we keep the clock fully
quantum mechanical. Our derivation is based on the exact
factorization method [27,35] that was also used in [15], but we
explicitly take into account the gauge freedom that appears in
this theory.

We start from the TISE

hzvlze H R =Ey(R 5
(— _ky s>w( N=EYRD )

for a closed system (the “universe”) with energy E. The
Hamiltonian of the system is given as

R*V?

Hg = —
s 2m

+ V(R r), (6)

where R, r € R? are the coordinates of two particles and
where the gradients w.r.t. R and r are denoted as Vg and V,,
respectively. The restriction of the notation to two particles
leads to a simplification of the equations. The generalization
to many particles is straightforward and is discussed briefly
below. The wave function ¥ shall be normalized according to

(R, r)|Y(R, 1)) =1, (7

where (-|-) denotes the scalar product w.r.t. coordinates R and
r. In the exact factorization ansatz [27,36] the wave function
is written as a product

Vv (R, r) = x(R)p(r|R) ®)

of two amplitudes x (R) and ¢(r|R), which fulfill the follow-
ing properties: The function

X (R == (Y| ¥), )
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is the marginal probability density, which represents the prob-
ability of finding a particle of mass M at R independent of
where the particle with mass m is. The symbol (-|-), indicates
the scalar product w.r.t. the coordinate r only. Also,

¢(r|R) := ¥ (R, r)/x(R) (10)

yields the conditional probability density |¢(r|R)|? of finding
a particle with mass m at r, given there is a particle with mass
M at R. It obeys the partial normalization condition

(GrIR)| DR, = 1. (1)

This condition has to be valid all values of R.

Before using the ansatz (8), we would like to comment
on two restrictions of the approach. First, writing the wave
function ¥ (R, r) as a product of marginal and a conditional
amplitude is in general possible for ¥ (R, r) as defined above,
but there are situations where this factorization may fail.
In particular, there may exist configurations R; for which
Y (Rs,r) =0 for all r and thus the marginal amplitude
x (Ry) = 0, which leads to an ill-defined conditional ampli-
tude ¢(r|R;), cf. (10). Such a situation can be problematic,
for example, for Coulomb potentials [37] but may also be
relevant in other situations. Second, for (7) to hold with the
given TISE, V (R, r) has to be such that ¢/ (R, r) is a bound
state. If V (R, r) would contain only interparticle interactions,
it would be necessary to extract the center-of-mass coordinate
first and to use only relative coordinates, which would change
the kinetic energy operators used in (5) and (6). The effect of
both restrictions on the following discussion is not yet known
and has to be investigated further.

The function x (R) is interpreted as the wave function of
the clock, whereas the function ¢(r|R) is interpreted as the
wave function of the system which depends conditionally on
the configuration R of the clock. The equation of motion for
the clock is then [27,36]

PZ
(m-l—é(R))X =Ex (12)

and the equation of motion for the system is
Co = (Hs + U — e(R))p. (13)

In the equation for the system, the clock-dependent operator

A ot
C=——.P 14
M (14)
and the kinetic operator
/\T 2
N P
U= ) (15)
2M

occur, which both operate on the conditional variable R,
because the momentum operator P is defined as

P :=h(—iVg+ A) (16)
with the Hermitian adjoint

P = h(ivg + A). (17)

The real-valued scalar potential €(R) € R is obtained from
these operators as

e(R) := (¢|Hs + U — C|¢),, (18)

whereas the real-valued vector potential A(R) € R3 is
given by

A(R) := —i(¢|Vro)r. 19)

The operators P and P are Hermitian adjoints for x w.r.t.
R space, because

(Pxlx)r E/xﬁ*x«m = (xIPx) (20)

but also for ¢ w.r.t. r space. If we interpret the definition (19)
of the vector potential A such that A is a functional of ¢, we
find from the partial normalization condition (11) that A[¢] =
—A[®]. It follows that

(Polp)r = (9| Po), = 2R A[P]. (21
We note that if the scalar potential (18) is taken as a functional
of ¢, we have €[¢] = €[®].

From the ansatz (8), x (R) and ¢(r|R) are defined up to a
phase factor 6(R). Choosing 6(R) means choosing a gauge,
as the equations of motion (12), (13) are unchanged if the
marginal amplitude, the conditional amplitude, and the vector
potential are replaced by

X' (R) = x(R)e '™®),
¢'(rIR) = ¢(r|R)* ™),
A'(R) = A(R) + VzO(R). (22)

For a given state x (R) of the clock, (13) yields the state of
the system ¢. If we take

X(R) =: e = |y (R)|e™ ™ (23)
with W(R) € C and S(R) € R, we can rewrite (13) either as
ihéwe = (Hs + U — €(R))¢ (24)
with
. n .
Sy = M(_VRW 4+ A)- (Vg —iA), (25)
or as
ihesp = (Hs + U + its — €(R))¢ (26)
with
. h .
Cs = M(_VRS + A)- (Vg —iA), 27
R Velx|?
g = — -(iA — Vg). 28
US = o0 I @@ R) (28)

We note that the above equations can easily be extended to
many particles by redefining the coordinates as R € R3¢, r €
R3s if the clock and system consist of n¢ and ng particles,
respectively. The above equations can directly be used if the
number of components of the vector quantities is adjusted and
if the coordinates are mass-scaled such that only two masses
M and m occur. Alternatively, individual vector potentials and
flux densities for each particle can be defined.
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We call both (24) and (26) the clock-dependent
Schrodinger equation (CDSE) in analogy to the TDSE, be-
cause they become TDSEs if the classical limit for the clock
is taken. How to take this classical limit is discussed in [15],
and we only sketch here the steps that need to be done,
using some results of an analysis of the adiabatic limit in
the exact factorization [38]. First, we introduce a parameter
W := /m/M, which is the ratio of the mass of the system to
that of the clock. If the clock is heavy compared to the system
(u is small), the quantization of the clock becomes negligible
and the clock behaves classically. We can then expand W (R)
in powers of u,

o0

1
WR) = =) W' Wa(R). (29)
n=0

To lowest order in pu, it can be shown [15,38] that the
equation of motion for the clock (12) becomes a classical
time-independent Hamilton-Jacobi equation and Wj is the
classical real-valued action. Next, we consider the CDSE (24)
and use the result of [38] that U is of order w? and can be
neglected, while ¢y is of order  and is kept. By choosing the
gauge where the vector potential vanishes, A = 0, the CDSE
becomes

ihéwep — ih% -Vro =~ (Hs — €(R))o, (30)

where P is the classical momentum of the clock defined via
the derivative Vi Wy of the classical action of the clock. We
can now define a time ¢ that parametrized the position R of
the clock, such that the classical momentum is P = M9, R(t),
and

P
i - Vo = ihd. 31)

Thus, (30) is a TDSE.

This sketch of the derivation of the TDSE from the CDSE
leaves out many technical details, e.g., the change of the
scalar potential €(R) when the classical limit is taken or how
to perform the classical limit in a gauge invariant way, i.e.,
including the vector potential A(R). While some of those
details are explained in [15,38], some are still open problems
and may be rewarding topics for future research. We need
not be concerned with them here, however, because we keep
the clock fully quantum mechanical and derive the continuity
equation for such a quantum clock.

The operators ¢y and ¢s have some interesting properties:
They are gauge invariant, as a change of gauge (22) yields

&sywd' (rIR) = Mg wo(r|R), (32)
and i /icg is (like i7109,) Hermitian for ¢ w.r.t. the r space,
(plincsg), = (inisp|P),, (33)

because of the normalization condition (11) that ¢ has to
fulfill. However, in contrast to 9d;, the operators Cy s are in
general complex.

III. TIME-REVERSAL INVARIANCE

Before using the CDSE to derive a continuity equation,
we would like to comment on time-reversal invariance and

how it occurs in the CDSE. For the TDSE, it is well known
[39] that it is equivalent to either solve the TDSE with time
t, or to solve its complex-conjugate equation with time —¢,
provided the sign of a possible vector potential occurring in
the canonical momentum operator is changed. Hence, solving
the TDSE (3) or solving

2

—ihd_ U (x, —1t) = <2h—m[iVx — A(x, —t)]z)lp(x, —1)
(34)

for the same initial condition v (x, #y) yields the same proba-
bility density |1/|? and, except for a change of sign, the same
probability flux density (4).

From the clock-dependent point of view, time-reversal
invariance originates from invariance of the TISE of the uni-
verse, (5), w.r.t. to complex conjugation. Taking, for example,
the complex conjugate of the CDSE (26) yields an equation
equivalent to (26), provided one realizes that A[¢] has to be
replaced with A[¢] = —A[¢], and provided one changes the
sign of the clock’s phase S(R), making it run in the “reverse”
direction. Is this sense the CDSE is clock-reversal invariant,
but this is a rather trivial consequence of the requirement that
the universe is in a static state.

IV. THE CLOCK-DEPENDENT CONTINUITY EQUATION

To obtain the fully quantum-mechanical continuity equa-
tion for the density |¢(r|R)|?> of the system which depends
on the system coordinates r, on the clock coordinates R, and
also on the state of the clock x, we work with ¢g and treat it
as an analog of the time-derivative operator. Its action on the
conditional density |¢(r|R)|? can be defined as

ese + 9esd =: elgl’ (35)
with a purely real operator
h
¢ = —(—VgS+ A)- Vg. 36
¢ M( RS+ A)- Vg (36)

From the CDSE for ¢ and for its complex conjugate ¢, we
find

\V/ 2
f;'l’;' ) J1¢. —Al(r|R)

=0 (37)

elpl*+V, - jlpl(rIR) + <VR+

with the flux densities j[¢] and J[¢, —A] being of the usual
form of (4), given for a general function f € C as

h _
jUf1=—1m (FV:f) (38)
h _
JUf, #A] = - Im(f Vi f) + Alf1. (39)

Here, j[¢] appears because of the Hamiltonian Hs of the sys-
tem alone and is the flux density of the system w.r.t. the system
variables, while J[¢, —A] appears because of the operator U
and is the flux density of the system w.r.t. the clock variables.
We note that J[f, £A] (as well as j[f]) are invariant w.r.t.
the choice of gauge (22). With these definitions, we can also
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write the operator ¢ as

6:#][){,+A]~VR. (40)

Equation (37) is a clock-dependent continuity equation in
the space of the coordinates of the system which, however,
depends also conditionally on the coordinates of the clock.
Three flux densities occur in this equation: the flux density of
the system w.r.t. its coordinates, the flux density of the system
w.r.t. the clock coordinates, and, as part of the ¢ operator, the
flux density of the clock. The ¢ operator yields the change
of the density |¢|?> w.r.t. the clock variables, weighted by the
velocity components (flux density divided by density) in the
respective direction. What is also notable about (37) is that
there is a modification of the divergence of J[¢, —A] by the
additional term (Vg|x|?)/|x|*. This could be avoided if we
had used the complex-valued function W(R) instead of the
real-valued functions S(R) and |y (R)], i.e., if we had used
Cw instead of ¢s. The disadvantage of this choice would have
been that we could not have written (35) with a real-valued
operator ¢ acting on |¢|>.

To obtain a continuity equation for the system alone, we
need to average over the degrees of freedom of the clock.
This is done by multiplication of (37) with the probability
distribution of the clock |y |*> and subsequent integration over
the clock configurations R. Due to the modified divergence
w.r.t. the clock coordinates, the contribution of the flux density
J[¢, —A] cancels,

v 2
/|X|2<VR + IR)(lf(2| ) -J¢, —Al(r|R)dR =0, (41)

and we obtain

pslx1(r) + Ve - jslxl(r) =0 (42)

with the clock-averaged change of the density defined as

pslx1(r) == / Ix (R)I*¢|p(r|R)[*dR (43)

and with the clock-averaged flux density

Jsbx1(r) 2=/|X(R)|Zj[¢>](r|R)dR- (44)

The clock-dependent continuity equations (37) and (42)
are the main results of this article. The equation for the
system alone, (42), is especially interesting, as it is the direct
analog of the time-dependent continuity equation. Instead of
the usual time dependence, there is a functional dependence
on the state of the clock y in both the change of the density
ps and in the flux density j¢ which takes into account the
quantum-mechanical nature of the clock.

The clock-dependent continuity equation (42) can be use-
ful to analyze a quantum dynamics, as illustrated in the next
section. However, as we started from a stationary state of the
universe, it is not obvious from (37) and (42) how to obtain
a nontrivial dynamics of the system. Here, nontrivial means
that the terms of the continuity equations are not individually
zero. If the universe (which is assumed to be a closed system)
is in an eigenstate of zero total angular momentum, its wave
function can be chosen to be real and hence both the clock
wave function x and the system wave function ¢ may be

chosen to be real. Then, the (gauge-invariant) flux densities
jlol, Jl¢, —Al, and J[x, +A]in (37) vanish and there is no
dynamics. However, there are cases where there always exists
a nonzero vector potential leading to nonzero flux densities,
even for eigenstates [40]. This is the case if the universe is
in a state of nonzero angular momentum, and then it may be
possible to obtain a nontrivial dynamics. We tested a model
of a universe having only harmonic interactions, finding that
for an eigenstate of the universe with nonzero integer angular
momentum, a gauge A = 0 is in general not possible. Nev-
ertheless, after averaging over the clock wave function, we
find that the terms in (42) are still individually zero. This
test, of course, is not conclusive and further investigations are
necessary.

A clock-dependent measurement has, however, not only
a system and a clock that are involved, but also an observer
which measures both the state of the clock and of the system.
Taking the act of measurement into account may lead to a non-
trivial dynamics even if the universe is in an eigenstate, and
hence may change the interpretation of the clock-dependent
continuity equations. It may thus be necessary to take the view
of an internal observer that is measuring the state of the clock
and of the system, and some ideas of how to obtain such a
consistent timeless theory with evolution exist [20].

In the following example application we avoid the question
of the origin of the dynamics from a universe-internal point of
view altogether by assuming that the dynamics is measured
w.r.t. some external classical time (i.e., the dynamics is the
solution of a TDSE). This is the typical experimental situation,
but it is understood that the lack of a fully internal description
is unsatisfying from a fundamental point of view and calls for
further research.

V. APPLICATION

To understand the clock-dependent continuity equation
better, we consider as an example a molecular dynamics, i.e.,
a dynamics of nuclei and electrons, which is generated by an
external interaction (that need not be present anymore) and
which can be described by a TDSE. Our aim is to study the
electron dynamics with respect to the external classical time
and with respect to the nuclei, which are treated as an internal
clock. As the ansatz is similar to the Born-Oppenheimer
approach to molecular dynamics, the example allows us to
understand better how the Born-Oppenheimer approximation
works and shows how the idea of separating “slow” and “fast”
degrees of freedom can be transferred to other problems.
Additionally, it gives new insights into the puzzling problem
that the electronic continuity equation seems to be violated in
the limit of the Born-Oppenheimer approximation [33].

The state of the molecule is described by a wave function
¥ (R, r|t) depending on nuclear coordinates R, on electronic
coordinates r, and on an external time ¢, i.e., it is assumed that
the considered dynamics is governed by the TDSE

vy o
ihdy = (— u T Hel>w (45)
with electronicA Hamiltonian I:Iel [corresponding to the system
Hamiltonian Hs, cf. (5)] containing the electronic kinetic en-
ergy operator and the scalar interaction potential. Initialization
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of the dynamics and measurement of # can happen by means
of a suitable external interaction, e.g., strong ultrashort laser
pulses that can act as a good clock [12].

In analogy to (8), we make the factorization ansatz

V(R r|t) = x(R|)$(r|R, 1) (40)

with partial normalization condition (¢|¢), = 1VR, t, where
the equations of motion are [27]

2
ihd;x = <—2h—M[iVR + AR +€(R|t)>x, (47)

(ihd, + C)p = (Hy + U — e(R|1))¢, (48)

with the time-dependent vector potential A(R|r) as defined in
(19), with the operators C, U as defined in (14), (15), and with

the time-dependent scalar potential
€(R|t) = (¢p|Ha + U — C — ilid;|¢),. (49)

For a change of gauge (22), the time-dependent scalar poten-
tial transforms as €’ (R|t) = €(R|r) + 9,0(R, t). The continu-
ity equation following from the TDSE for ¢, integrated over
R, gives

0= (xI*3161) r + (P31 x ")k + (X *Vr - jI$]) k-
(50)

Also, (47) is a normal TDSE for x(R|¢), and hence the
corresponding continuity equation is

0=2dx>+ Vg Jx. Al

Inserting (51) for o] x |2 in (50) yields the 7- and clock-
dependent continuity equation

0= (IxI*0|¢1")r + (J[x, Al - VrI$|*)r + V,

61y

AxPFjl¢Dr,
(52)

where a partial integration was used once for the J-dependent
term. (| x|? Jl@]) g is the electronic flux density, and a com-
parison with (42) shows that (|x |?9,|¢|*) g can be interpreted
as the (averaged) change of the electronic density w.r.t. the
external time, and (J[x, +A]- Vg|$|?) g is the change of the
electronic density w.r.t. the internal clock.

To illustrate this continuity equation, we consider a model
for proton-coupled electron transfer [41] with the parameters
of [38]. In this one-dimensional model, two “ions” of infinite
mass are located at &1 /2, and a positively charged particle,
the nucleus, as well as a negatively charged particle, the
electron, are allowed to move along dimensions R and r,
respectively. The Hamiltonian for the system is

H:—%%+ih (53)
where u =m/M is the mass ratio between electron and
nucleus, and where

. 22 1 1 erf (21)
Hel - + + - <
2 |IR-%  IR+ZL IR —r|
_L 4l
erf (72)  erf ()
- b i (54)
lr — 51 Ir + 31

The parameters are taken to be L =19 ayg, R, = Rj = 3.5
ap, and we consider different values for R.. This parameter
determines the coupling between the two lowest electronic
states in a Born-Oppenheimer description of the dynamics.
The respective Born-Oppenheimer potential energy surfaces
are shown in Fig. 1 for R, = 4.0 ap (weak coupling) and
R. = 7.0 ay (strong coupling).

As in [38], we choose the initial state to be ¥ (R, r|0) =
G(R — Ry, a)¢(])30(r|R) with the electronic ground state
#8° within the Born-Oppenheimer approximation and with
Gaussian G centered at Ry = 5.0 a¢ having variance ol =
(0.15 ap)?+/2000/¢. The specific choice of the parameters for
the Gaussian are, however, not important for the following
analysis. The initial densities for the choices x~! = 100 and
w~'' =900 are shown in Fig. 1. We integrate the TDSE
(45) by constructing a sparse-matrix representation of the
Hamiltonian and by applying the corresponding evolution
operator to a vector representation of the wave function using
the SciPy sparse matrix functionalities [42]. Videos and fur-
ther pictures of the dynamics are given in the Supplemental
Material [43].

We investigate the mass dependence and coupling-strength
dependence of the three terms in the electronic continuity
equation (50). To quantify the contributions of each term, we
integrate their magnitudes over the whole simulation time.
Subsequently, the results are normalized by a factor 1/« such
that the maximum value of the largest of these quantities, for
the simulation with the largest flux, is 1, i.e., we define

L[ 201412
N, = ;/ X Parlé P ldt, (55)
0
|
N, = —/ Ix Pele ) eld, (56)
K Jo
1 [ime N
Ny = ;f 19,1 P 1) ldr. 57)
0

The larger N,, N,, or N; are, the more flux they correspond to.

The coupling-strength dependence is shown for £ ~! = 900
in Fig. 2. From the figure, we see that for strong coupling,
both the contributions w.r.t. the external and the internal clock
are important. In contrast, for weak coupling N, becomes
negligible compared to the other two terms, i.e., the external
clock plays a minor role.

The other relevant factor for the dynamics is the mass ratio.
The mass dependence of N,, N, N, for weak coupling (R, =
4 ap) is shown in Fig. 3. We see that N; becomes less and
less important with increasing mass. This is a general trend,
i.e., for weak couplings and large masses the contribution of
the external clock can be neglected, whereas for small masses
and/or strong couplings all terms are relevant.

The conditions where only the nucleus as internal clock
is relevant for the electron dynamics (large mass ratio, small
coupling parameter) are also those for which the Born-
Oppenheimer approximation is valid. There, the molecular
wave function is written as

V(R r|t) ~ x®*°(R|t)p®°(r|R), (58)

with #BO(r|R) being an eigenfunction of H, at a fixed
nuclear configuration R. It can be derived from the
exact factorization in the limit of vanishing mass ratio u
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weak coupling

strong coupling

-0.21 7
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FIG. 1. The two lowest Born-Oppenheimer potential energy surfaces of the proton-coupled electron transfer model as well as the initial

—1

nuclear densities |x|* for mass parameters ' = 100 and 900 are shown for a case of weak coupling (left, R. = 4.0 ap) and strong coupling

(right, R, = 7.0 ap).

of electronic and nuclear mass, cf. [38], which leads to the
disappearance of i7i9,, U, and € in the conditional equation
(48).

The Born-Oppenheimer approximation is usually inter-
preted such that due to their comparably small mass, the
electrons react instantaneously to a change in the nuclear
position. In this way, the electron density is well approximated
by the density of an eigenstate ¢B° of H at a given nuclear
configuration R. We see the meaning of this interpretation
in the vanishing of the contribution 9;|¢|* to the continuity
equation, i.e., in the vanishing of the (direct) dependence of

the electronic density on the external time. However, there is
still a motion of the electrons which is given by the electronic
flux density j[¢], but this motion is induced by the motion
of the nuclei. In the continuity equation, this part corresponds
to the clock-dependent contribution &|¢|? (that indirectly de-
pends on ¢, too), which entirely cancels the divergence of
the electronic flux density for large nuclear masses and small
coupling strengths.

Typically, the Born-Oppenheimer approximation does not
take into account this electronic motion w.r.t. the internal
clock of the nuclei. The consequence is that the electronic

N¢ N, N,
1.2
—— R.=4.0 —— R.=4.0 —— R.=4.0
—— R=5.0 —— R=5.0 —— R=5.0
1.0 RC=6.O RC=6.O RC=6.0
R.=7.0 R.=7.0 R.=7.0
>
c 0.8 A
®
e
(9]
©
2 0.6
©
(0]
N
g
£ 0.4
5 f A
0.2 A
0.0 T T / T T T l\

-10 0 10 -10

rlaog

-10 0 10
rlag

0 10
rlaog

FIG. 2. Measures N,, N., N; of the three contributions occurring in the continuity equation for the electron density for a mass parameter

w~! =900, for different coupling parameters R,.
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FIG. 3. Measures N,, N., N, of the three contributions occurring in the continuity equation for the electron density for a coupling parameter

R. = 4.0 ay, for different mass parameters p~!.

density

pel(r>:=/|1/f|2dR%f|xB°(R|z>|2|¢B°(r|R)|2dR
(59)

is close to the true density, but the flux density computed with
the Born-Oppenheimer wave function is zero [33],

h _
jatr) = - / Im(§V,)dR

h _
N — / |xBO1 Im(¢B°V,¢B°)dR = 0.  (60)
me

Comparing (59) and (60), we see that the continuity equation
(2) seems to be invalid. A number of investigations [44—47]
partly clarify the issue. In view of the results presented above,
the failure of the Born-Oppenheimer wave function can be
interpreted as the lack of correctly accounting for the motion
w.r.t. the internal clock. This interpretation is in line with
[47], where it was shown that the electronic flux density
can be recovered for conditions where the Born-Oppenheimer
approximation is valid if C is treated as perturbation, i.e., if
the motion is referred to the nuclei being the clock.

We note that a different way to find an approximation for
the motion of the electrons relative to the nuclear clock is
to replace the CDSE with a TDSE. This can be done by
starting from the conditional equation (13), applied to the
electron-nuclear problem (i.e., without dependence on the
external time ¢), and taking the classical limit for the nuclear
wave function. The results are essentially the equations of
motion of Ehrenfest molecular dynamics [48]. We find that
a simulation of the electron dynamics using equations of this
type, specifically, solving

ihdr¢(r|T) = Ha(T)$(r|T) (61)

for effective time T (which is close to the external time ¢)
defined via the expectation values of nuclear position and
momentum, 7 := (R(t))/(ﬁ(t)), yields a good approxima-
tion for the electronic flux density in our models. In the
classical limit of the nuclei, the internal classical time 7 and
the external time ¢ are, of course, identical. We note that the
electronic Hamiltonian Hy depends on T in the sense that
its dependence on the nuclear position R is replaced by the
expectation value (R).

VI. CONCLUSION AND OUTLOOK

In this article, we start with the premise that time is
obtained in the classical limit of a clock and that the system
depends conditionally on the configuration of the clock. From
a quantum-mechanical perspective, it follows that there is no
time, there are only clocks. We investigate the consequences
of this statement on the continuity equation, finding that the
flux density of the clock plays a vital role if the clock needs to
be treated as a quantum system.

The generalization of the TDSE to a CDSE by means
of the exact factorization allows us to define any degree of
freedom as a clock. Interpreting part of a quantum system as
a clock for the remaining degrees of freedom can be a helpful
idea for developing effective simulation methods. The clock-
dependent continuity equation (42) or its analog for dynamics
referred to an external time, (52), may be used as a tool to
analyze a general quantum dynamics for possible degrees of
freedom that are amenable to such approximate treatments.
Then, one may use a Born-Oppenheimer-like approach based
on the separation of timescales, or one may derive other
approximations to the CDSE based on the quasiclassical be-
havior of some degrees of freedom, like Ehrenfest molecular
dynamics, where the CDSE is replaced by a TDSE. Our
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analysis of a simple model of a coupled electron-nuclear dy-
namics illustrates the idea of a quantum clock and shows how
the Born-Oppenheimer approach works, and might provide
some ideas for a timescale separation of other problems.
Finally, an important point that we discussed only briefly
here is the origin of the dynamics, i.e., of evolution without
time as a fundamental variable. Starting from a stationary
state of the universe without reference to an external clock
or observer, an internally consistent static theory may be
derived. However, the mechanism of how a change of the
system happens needs to be explored further. One way that
this problem might conceptually be solved is by inclusion

of an internal observer which measures the clock and the
properties of the system. In this author’s opinion, there is
some promising research on this topic, but there is still no
relative point of view on time (and space) that yields a fully
developed picture of dynamics without time. Thus, further
work is needed.
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