
PHYSICAL REVIEW A 98, 052111 (2018)

Adaptive rotating-wave approximation for driven open quantum systems
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We present a numerical method to approximate the long-time asymptotic solution ρ∞(t ) to the Lindblad
master equation for an open quantum system under the influence of an external drive. The proposed scheme uses
perturbation theory to rank individual drive terms according to their dynamical relevance and adaptively deter-
mines an effective Hamiltonian. In the constructed rotating frame, ρ∞ is approximated by a time-independent,
nonequilibrium steady state. This steady state can be computed with much better numerical efficiency than
asymptotic long-time evolution of the system in the laboratory frame. We illustrate the use of this method by
simulating recent transmission measurements of the heavy-fluxonium device, for which ordinary time-dependent
simulations are severely challenging due to the presence of metastable states with lifetimes of the order of
milliseconds.
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I. INTRODUCTION

Recent advances in the design of quantum systems such
as superconducting qubits [1–8], trapped ions [9–11], and
optical lattices [12,13] have intensified the spotlight on the
goal of realizing a quantum computer. Essential to this goal
is the capability to control quantum systems coherently, while
minimizing the influence of noise. Qubit control via an ex-
ternal drive has been extensively studied both theoretically
and experimentally, particularly for gate operations [14,15],
initialization [16], and readout [17,18].

Predictions of the nonequilibrium dynamics of driven open
quantum systems can often be based on the framework of
the Lindblad master equation [19–21]. In most cases, solving
this equation has to rely on numerical methods and faces
multiple challenges, including Hilbert-space size and the re-
sulting memory requirements to store the density matrix as
well as Lindblad superoperators. A number of approxima-
tion schemes have been developed over time geared towards
reducing this difficulty. Some schemes apply perturbation
theory [22–25] or semiclassical methods [26,27] and are
usually limited to specific parameter regimes. Interestingly,
experimental achievements in increasing coherence times, by
as much as six orders of magnitude for superconducting qubits
over the past 20 years [7,28], further add to the numerical
challenges, especially in the context of predicting the long-
time asymptotic behavior of quantum systems of interest. For
decoherence times vastly exceeding characteristic dynamical
timescales associated, e.g., with the drive period, direct inte-
gration of the master equation can be both computationally
inefficient and vulnerable to numerical rounding errors using
standard differential equation solvers. This is especially true
for systems with a large Hilbert space [29].

*Present address: Fermilab, P.O. Box 500, Batavia, Illinois 60510,
USA.

One approach to obtain the long-time asymptotic solution
to the master equation is to employ the Floquet formalism
[30–32]. However, analytical solutions can usually only be
obtained in the adiabatic or high-frequency limit [33–37].
Furthermore, obtaining the required Floquet basis via matrix
diagonalization can be numerically expensive due to the large
size of the extended Hilbert space. A method avoiding the
switch to the Floquet basis altogether was recently proposed
by Hartmann et al. [38]. It is based on constructing the
Floquet map, i.e., the single-period dissipative propagator of
the system, which can be numerically challenging in its own
right. By calculating the fixed point of this map, their method
resolves the density matrix at stroboscopic instances of time.

For certain simple cases of driven open systems, di-
rect numerical integration can be avoided by performing a
rotating-frame transformation that eliminates the oscillatory
time dependence in the Hamiltonian exactly. In the rotating
frame, one can then solve for the nonequilibrium steady state
ρs which is independent of the initial conditions [39,40]
and represents the long-time asymptotic behavior. Finding ρs

amounts to solving a linear system of equations Lρs = 0,
which is generally more efficient than evolving the ordinary
differential equation (ODE) system to long times and is not
vulnerable to numerical integration errors. However, the exact
elimination of time dependence is not possible for many
systems of interest. One example of interest is the system
recently studied by Earnest et al. [41]: a heavy-fluxonium
qubit coupled to a resonator. Direct numerical integration is
especially challenging in this case, as the device exhibits a
metastable state with lifetimes of up to 8 ms, millions of times
longer than the characteristic timescale of the device.

In this paper we will address this issue by establishing
an effective time-independent formalism that approximates
the asymptotic solution to the master equation, ρ∞(t ). By
adaptively neglecting irrelevant drive terms, we can reduce the
system’s Hamiltonian to an approximate effective Hamilto-
nian that becomes time independent in an appropriate rotating
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frame. Such an adaptive rotating-wave approximation (RWA)
scheme was previously applied to closed systems in work by
Whaley and Light [42] and by Einwohner et al. [43]. Here
we consider an external single-tone drive acting on an open
quantum system. We separate the drive into individual terms
in the eigenbasis of the system Hamiltonian and rank each
term according to its dynamical relevance. This ranking is ac-
complished using an iterative scheme, adaptively determining
the form of the effective Hamiltonian.

The structure of our paper is as follows. In Sec. II
we discuss the general circumstances under which a time-
independent description can be obtained in a rotating frame.
In Sec. III we then present our iterative scheme, which uses
perturbation theory to rank drive terms according to their rele-
vance. Section IV illustrates applications of the adaptive-RWA
scheme, including the simulation of single-tone transmission
in the fluxonium-resonator device by Earnest et al. [41].
Section V discusses possible limitations of the adaptive-RWA
approach. We summarize in Sec. VI and give an outlook
on future directions including the extension to multiperiodic
Hamiltonians and simulation of two-tone spectroscopy data.

II. OBTAINING A TIME-INDEPENDENT HAMILTONIAN
IN A ROTATING FRAME

In a large variety of cases, coherently driven quantum sys-
tems are described by a generic time-dependent Hamiltonian
of the form

H (t ) = H0 + (V eiωd t + H.c.). (1)

Here H0 is the bare system Hamiltonian with eigenstates {|n〉}
and V is a drive operator that couples to the external drive.
As part of the usual rotating-wave approximation (see, e.g.,
Refs. [42,44–46]), we assume that the system operator V may
be limited to drive terms lowering the system state, i.e.,

V =
∑
n<m

Vnm |n〉〈m| . (2)

To account for the fact that the system couples to environ-
mental baths, we describe its open-system dynamics by the
standard time-dependent Lindblad master equation [19–21]

dρ(t )

dt
= −i[H (t ), ρ(t )] +

∑
l,ω

γl (ω)D[Al (ω)]ρ(t ). (3)

It captures the interaction of the open system with its en-
vironment through a set of collapse operators Al (ω) and
associated decoherence rates γl (ω). Here l labels the various
decoherence channels and ω denotes differences in (discrete)
system eigenenergies. (See Ref. [21] for an in-depth dis-
cussion.) The dissipation superoperator has the usual form
D[A]ρ ≡ AρA† − 1

2 {A†A, ρ}. Throughout our paper, we will
assume that the decoherence channels present are sufficient to
guarantee solutions of Eq. (3) to approach a unique periodic
density matrix, independent of the initial state [38,47]. This
long-time asymptotic behavior or the Floquet steady state
ρ∞(t ) is the relevant quantity for the simulation of a number
of measurement protocols including transmission and spec-
troscopy experiments.

In certain situations, a rotating-frame transformation can
render the transformed Hamiltonian h (and Lindbladian) time

independent. In this case, the long-time asymptote corre-
sponds to the steady-state solution ρ∞ = ρs , obtained from
the equation

0 = −i[h, ρs] +
∑
l,ω

γl (ω)D[Al (ω)]ρs. (4)

Let us inspect under what conditions exact elimination of time
dependence can succeed. The rotating-frame transformation
is based on a time-dependent unitary matrix U (t ) = e−i�t

with generator � yet to be determined. For the transforma-
tion to eliminate time dependence in the Hamiltonian and
not introduce time dependence in the dissipators, we re-
quire [�,H0] = 0. The Hamiltonian thus transforms accord-
ing to H (t ) → h(t ) = H0 − � + U †(t )[V eiωd t + H.c.]U (t ).
Since the collapse operators Al (ω) are eigenoperators of
H0, i.e., [Al (ω),H0] = ωAl (ω) [21], the dissipator terms
D[Al (ω)]ρs remain invariant under this transformation. Plug-
ging in Eq. (2) for V and rewriting � in the eigenbasis of H0,
� = ∑

n Ωn |n〉〈n|, we observe that the drive terms acquire
phase factors |n〉〈m| → |n〉〈m| ei(Ωn−Ωm )t . As a result, the
rotating-frame Hamiltonian now reads

h(t ) = H0 − � +
(∑

n<m

Vnm |n〉〈m| ei(Ωn−Ωm+ωd )t + H.c.

)
.

For h(t ) to be time independent, the constraint

Ωm − Ωn = ωd

must be satisfied for all n < m with Vnm �= 0. A general way
to solve this set of constraints is to choose the generator
parameters to be integer multiples of the drive frequency [42]
Ωn = knωd with kn ∈ Z. With this, we arrive at the equivalent
integer constraint

km − kn = 1. (5)

In conclusion, the possibility to eliminate time dependence
exactly hinges upon whether we can assign integers kn to each
system state, such that the integer constraint (5) is satisfied for
all drive terms. Let us consider some concrete examples.

If the system is a driven harmonic oscillator, then an �

obeying the above integer constraint can be constructed quite
easily. The driven-oscillator Hamiltonian (1) is

H (t ) = ωra
†a + ζ (a eiωd t + H.c.), (6)

where a denotes the usual lowering operator for the os-
cillator with angular frequency ωr and ζ is the drive
strength. Following the above notation, this implies V =∑∞

n=1 ζ
√

n |n − 1〉〈n|. Time dependence is eliminated by set-
ting � = ωda

†a = ωd

∑
n n |n〉〈n|, i.e., kn = n, which obvi-

ously satisfies the integer constraint for the nonzero drive
terms (here only nearest-neighbor transitions). The trans-
formed Hamiltonian

h = (ωr − ωd )a†a + ζ (a + a†) (7)

is time independent.
Another example of a system where time dependence can

be eliminated exactly is that of a transmon qubit coupled
to a resonator: In the limit EJ 
 EC only nearest-neighbor
qubit transitions appear in the coupling Hamiltonian [3]. The
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system is modeled in terms of an extended Jaynes-Cummings
(JC) Hamiltonian

H (t ) = ωra
†a +

∑
j

ωj |j 〉〈j | +
∑

j

gj (a |j + 1〉〈j | + H.c.)

+ ζ (aeiωd t + H.c.). (8)

Here |j 〉 denotes the bare transmon eigenstate with en-
ergy ωj . Due to the nearest-neighbor form of the coupling
between resonator and qubit in Eq. (8), time dependence
can also be eliminated for this system using the generator
� = ωd (a†a + ∑

j j |j 〉〈j |). Expressed in terms of eigen-
states of the system Hamiltonian, this generator reads � =
ωd

∑
J,mJ

J |J,mJ 〉〈J,mJ |, where J denotes the combined
excitation level of the transmon and resonator, J = j + n,
and mJ is an integer in the range 0 � mJ � J . Each integer
(previously denoted by kn) is thus given by the total excitation
level J for the corresponding dressed state |J,mJ 〉. The trans-
formed time-independent Hamiltonian in the dressed basis is

h =
∑
J,mJ

(
EJ,mJ

− Jωd

) |J,mJ 〉〈J,mJ | + ζ (a + a†), (9)

in which EJ,mJ
are the eigenenergies of the generalized JC

Hamiltonian.
For systems with a different structure of nonzero drive

terms Vnm (e.g., no selection rule limiting the system to
nearest-neighbor transitions), satisfying the km − kn = 1 con-
straint for all n < m may be impossible. This is certainly
true for systems consisting of a fluxonium qubit coupled to
a resonator, since fluxonium lacks simple selection rules. The
oscillatory time dependence in H (t ) then cannot be eliminated
exactly, no matter the choice of kn. Nevertheless, in the
spirit of the RWA, a particular drive term Vnm |n〉〈m| may
be neglected if it does not significantly affect the system’s
dynamics. For example, if Vnm is very small compared to other
drive-term coefficients or if the drive frequency is far detuned
from the energy splitting between |n〉 and |m〉, then it may be
permissible to neglect the drive term Vnm |n〉〈m|.

We thus want to determine whether we are able to approxi-
mate the dynamics using an effective Hamiltonian in which
a subset of irrelevant drive terms has been neglected and
which becomes time independent in the appropriate rotating
frame. This adaptive RWA would then allow us to extract the
long-time asymptotic behavior from a nonequilibrium steady
state.

III. ADAPTIVE ROTATING-WAVE APPROXIMATION

We now develop a systematic scheme to determine whether
some of the drive terms can be neglected and the problem be
reduced to a time-independent one. To assess the importance
of each particular drive term, we will consider its contribution
to the open-system dynamics as described by the master
equation. One common situation leading to the negligible
influence of a drive term is that of off-resonance driving.
For instance, a drive acting on a qubit with drive frequency
tuned off-resonance relative to the qubit will typically be less
effective in inducing Rabi flopping. We will thus seek to dis-
tinguish between relevant and irrelevant drive terms, denoting

the relevant ones by V0. Once this distinction is established,
we may be able to employ an effective Hamiltonian

Heff (t ) = H0 + (V0e
iωd t + H.c.), (10)

in which irrelevant terms are neglected. A key advantage
is gained if the remaining drive terms are so simple that a
transformation into an appropriate rotating frame eliminates
time dependence altogether.

Any method for separating relevant from irrelevant drive
terms has to meet two challenges. First, relevance cannot
merely be based on energetic resonance conditions, but must
also take into account drive strengths, transition matrix ele-
ments, and the question whether one of the two states involved
in a drive term is occupied to begin with. Here occupation of
excited states may arise from other active terms in the drive or
be induced thermally. Second, neglecting subdominant drive
terms only leads to a substantial simplification if it opens up
the possibility of a time-independent description by a rotating-
frame Hamiltonian

h = H0 − � + (V0 + H.c.). (11)

To address these challenges, we pursue the following strat-
egy (see Fig. 1 for a flowchart summary). We construct V0

by attempting to treat each drive term perturbatively. Specifi-
cally, we calculate the perturbative shift of the density matrix
induced by individual terms and thus establish a relevance
ranking among drive terms. Based on this ranking and the goal
to enable a time-independent description, a maximal set of
terms will be incorporated into V0. Since the relevance of one
drive term may depend on the effect of another drive term, we
perform multiple iterations of these steps, adaptively changing
the terms incorporated into V0 until convergence is reached.

A. First iteration (bootstrapping)

To jump-start our iterative scheme, we will initially rank
drive terms according to their capacity for steering the system
away from the thermal-equilibrium state. In other words,
we express the asymptotic solution to the Lindblad master
equation (3) in the form

ρ∞(t ) = ρs + �ρ(t ), (12)

where ρs = e−βH0/Z is the equilibrium state reached in the
complete absence of a drive,

0 = −i[H0, ρs] +
∑
l,ω

γl (ω)D[Al (ω)]ρs. (13)

The quantities β and Z denote inverse temperature and the
partition function, respectively. The correction �ρ(t ) reflects
the deviation of the system state from equilibrium due to
a single drive term Vnmeiωd t |n〉〈m| + H.c. Note that �ρ(t )
depends on the individual drive term choice. For simplicity,
we suppress this dependence on indices n and m in our
notation. We will take the Frobenius norm of the correction

‖�ρ‖F ≡
⎛
⎝∑

i,j

|�ρij |2
⎞
⎠

1/2

, (14)
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start:
ρs = e−βH0/Z

h = H0

rank drive terms
according to Δρ(t) F

incorporate maximal
set of terms into V0,

thus constructing new h

compute new ρs
rank drive terms

according to Δρ(t) F

adapt choice of hdid h change?

stop:
keep ρs

yes

no

FIG. 1. Flowchart for the adaptive-RWA scheme. In this iterative
scheme, drive terms are ranked by estimating relevance from magni-
tude of perturbative corrections to the density matrix. Based on the
ranking, a maximal set of drive terms is incorporated into the effec-
tive Hamiltonian, allowing for the computation of an approximate
time-independent steady state ρs in an appropriate rotating frame.

which we will use to rank drive term relevance. This is a
convenient measure because the time dependence in �ρ(t )
will drop out after taking its norm, as we will see below.

Next we calculate the corrections �ρ(t ) due to each in-
dividual drive term in first-order perturbation theory. Upon
plugging Eq. (12) and H = H0 + (Vnmeiωd t |n〉〈m| + H.c.)
into the master equation (3), we can expand in the perturbation
Vnm. The resulting first-order correction obeys the equation

d

dt
�ρ(t ) = − i[H0,�ρ(t )] +

∑
l,ω

γl (ω)D[Al (ω)]�ρ(t )

− i[(Vnm |n〉〈m| eiωd t + H.c.), ρs]. (15)

Note that this equation has both a homogeneous solution that
depends on initial conditions and a particular solution that
depends on the drive term. The asymptotic density matrix
(12) does not depend on the initial state, so we seek only
the particular solution to this equation. We will solve it
by Fourier expanding �ρ(t ) = ∑

κ∈Z 	κe
iκωd t . Plugging this

into Eq. (15), we obtain equations for the Fourier coeffi-
cients 	κ . Due to the time-dependent phase factors, only the

TABLE I. Drive terms ordered according to the magnitude of the
corresponding relevance parameter [Eqs. (16)–(18)].

Rank Relevance parameter Drive term

1 (highest) �n1m1 Vn1m1 |n1〉〈m1| + H.c.
2 �n2m2 Vn2m2 |n2〉〈m2| + H.c.
...

...
...

coefficients with κ = ±1 are nonzero,

−ωd	1 = [H0, 	1] + i
∑
l,ω

γl (ω)D[Al (ω)]	1

+ [Vnm |n〉〈m| , ρs],

and 	−1 = 	
†
1. The only nonzero matrix element of the upper-

triangular matrix 	1 is

〈n|	1|m〉 = Vnm(pm − pn)

ωmn − ωd + i(�n + �m)/2
. (16)

Here ωmn = Em − En is the difference between the mth and
nth eigenenergies of H0, pn = e−βEn/Z is the thermal occu-
pation probability of eigenstate n, and �n = ∑

l,n′ γl (ωnn′ ) is
the total decoherence rate of state n. The norm ‖�ρ(t )‖F is
reexpressed in terms of the component 	1 as

‖�ρ(t )‖F =
√

2‖	1‖F =
√

2|〈n|	1|m〉|, (17)

in which, indeed, all time dependence drops out. For
given drive indices n and m, we thus define the relevance
parameter as

�nm ≡ ‖�ρ(t )‖F . (18)

The relevance parameter �nm characterizes the ability of the
drive term to establish coherent oscillations between states
n and m. Inspection of Eq. (16) reveals that multiple factors
increase relevance: (i) large transition matrix elements |Vnm|,
(ii) the drive being close to resonance ωmn ≈ ωd , and (iii)
large differences in occupation probabilities between the two
involved states n and m. If both eigenstate populations are
thermally suppressed or if they both have similar populations,
then the drive term is not as effective at inducing coherent
oscillations between the two states and thus the relevance
parameter decreases.

All nonzero relevance parameters are now ordered accord-
ing to magnitude, �n1m1 � �n2m2 � · · · > 0, into a set C =
{�n1m1 ,�n2m2 , . . .} which provides us with a ranking of the
drive terms (see Table I). Based on this, we will next attempt
to construct a rotating frame in which the resulting effective
Hamiltonian is time independent and a new steady state can
be obtained.

B. Determination of the effective Hamiltonian

Our goal is to incorporate the maximal set of relevant
drive terms into the effective Hamiltonian, making use of the
ranking C and imposing the integer constraints km − kn =1
to construct a rotating frame where time dependence is elim-
inated. To facilitate this, we employ an algorithm similar to
the one by Einwohner et al. [43]. We represent the drive
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Hamiltonian as a weighted graph which encodes V0 as its
maximal zero-cyclic subgraph. While Einwohner et al. ex-
clusively consider near-resonance drive terms, we incorporate
lower-ranked off-resonance drive terms whenever possible.
The constructed graphs also enable us to read off the selected
rotating-frame generator �.

Each nonzero drive term Vnm |n〉〈m| (where m > n) is
graphically depicted by a directed edge connecting the two
vertices for states |n〉 and |m〉 from left to right. The weight
of each edge is set by the corresponding relevance parameter
�nm. Since we wish to track integer constraints (5) throughout
the graph, we assign integer labels kn and km to the vertices.
Graph edges and vertices are added sequentially, starting with
the highest ranked drive term. For a given edge connecting n

and m, there are three possible scenarios for graph construc-
tion: (i) Neither vertex has been incorporated into the graph
yet, (ii) only one has been previously incorporated, or (iii)
both vertices have already been incorporated. For case (i), we
assign the integers kn = 0 and km = 1 to the vertices:

0

n

1

m

Δnm

Recall that these integers characterize the generator � =
ωd

∑
j kj |j 〉〈j | and by choosing kn = 0 and km = 1 here

ensures that the corresponding drive term does not carry a
time-dependent phase factor in this rotating frame. For case
(ii), we assign an integer to the new vertex, adhering to the
integer constraint:

kn

n

kn+1

m

Δnm

For case (iii), there are two subscenarios. In the first
subscenario, the two vertices have already been included in
the graph, but are in two disjointed graph components. Then
the integer of one vertex, along with all other vertices sharing
its graph component, must be shifted by some integer k to
adhere to the constraint. A concrete example showing how
to merge two disconnected graph components is provided
in Appendix A. While the merging can be accomplished in
multiple ways, we show in Appendix B that the resulting
graphs only differ by a global integer shift and hence lead to
equivalent results.

In the second subscenario, both vertices have already been
included in the same component. In this case, the edge
weighted with �nm completes a graph cycle (see Appendix A
for more details). If this edge connects two vertices with km �=
kn + 1, then we cannot include this drive term in the effective
Hamiltonian and we mark the edge by a dashed arrow:

kn

n

km

m

Δnm

Drive terms marked in this way are neglected in our approx-
imation. (Whether this approximation is good or not depends

on whether dashed edges appear for terms with large relevance
parameters or are limited to terms with small �nm.)

The above rules are employed iteratively until the full
graph has been constructed. The drive terms V0 that will be in-
corporated in the effective Hamiltonian h = H0 − � + (V0 +
H.c.) are represented by the subgraph spanned by solid edges
(the maximal zero-cyclic subgraph [43]). In this subgraph, the
integer constraint km = kn + 1 is satisfied by construction. As
a result, the obtained effective rotating-frame Hamiltonian h

is time independent.
To give a concrete illustration of this scheme, we consider

the simplest example where a cycle appears: a driven three-
level system with three nonzero drive terms. If the ranking is
C = {�01,�02,�12}, then the graph is given by

0

0

1

1

1

2

Δ01 Δ12

Δ02

The terms given by solid edges, V01 |0〉〈1| and V02 |0〉〈2|, are
incorporated into the effective Hamiltonian, while the term
V12 |1〉〈2| is neglected. By assigning integers for terms in the
order determined by the weights in C, we ensure that the
effective Hamiltonian includes the terms associated with the
largest relevance parameters.

C. Subsequent iterations

Employing the constructed effective Hamiltonian h, we
compute the new steady state ρs from the master equation

0 = −i[h, ρs] +
∑
l,ω

γl (ω)D[Al (ω)]ρs. (19)

Since bootstrapping bases the relevance of drive terms on the
thermal-equilibrium state, the resulting ρs may not be a good
approximation yet. In subsequent iterations of the adaptive
scheme, relevance parameters are reevaluated based on this
new ρs , thus accounting for the possibility that relevance of
drive terms can develop interdependences, especially in cases
of multiple (nearly) resonant terms.

As before, we consider the effect of each individual drive
term ∼Vnm on the long-time asymptotic behavior of ρ∞(t ) =
ρs + �ρ(t ). Relevance is based on the magnitude of the
deviation from the new steady state �nm = ‖�ρ(t )‖F . In the
rotating frame, each drive term acquires an additional phase
factor Vnm |n〉〈m| eiknmωd t + H.c., where knm ≡ (kn − km + 1)
and kn are the previously assigned integers. We solve for
�ρ(t ) perturbatively, after plugging ρ∞(t ) and H = h ±
(Vnm |n〉〈m| eiknmωd t + H.c.) into the master equation (3). Note
that the perturbation is added or subtracted, depending on
whether it is already part of the current h, thus allowing for
the possibility that included drive terms may lose relevance in
subsequent iterations.
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The first-order correction obeys an equation analogous to
Eq. (15),

d

dt
�ρ(t ) = −i[h,�ρ(t )] +

∑
l,ω

γl (ω)D[Al (ω)]�ρ(t )

∓ i[(Vnm |n〉〈m| eiknmωd t + H.c.), ρs]. (20)

We obtain the particular solution to this equation by Fourier
expanding �ρ(t ) = ∑

κ 	κe
iκωd t . Calculating the Fourier

components, we find that only the components with κ = ±knm

are nonzero,

−knm ωd 	knm
= [h, 	knm

] + i
∑
l,ω

γl (ω)D[Al (ω)]	knm

± [Vnm |n〉〈m| , ρs], (21)

and 	−knm
= 	

†
knm

. Solving Eq. (21) for 	knm
is not as easy as

with Eq. (16) in the first iteration, since h and ρs are now
generally nondiagonal matrices. We rewrite Eq. (21) more
compactly as

(L0 − iknmωd1)	knm
= ∓Lnm ρs, (22)

where the superoperators are defined via L0ρ = −i[h, ρ] +∑
l,ω γl (ω)D[Al (ω)]ρ and Lnmρ = −i[Vnm |n〉〈m| , ρ], re-

spectively. Equation (22) is an inhomogeneous system of
linear equations for the D2 components of 	knm

.
In solving Eq. (22), we distinguish two different cases: If

knm �= 0, then the superoperator L0 − i knmωd1 is invertible;
if knm = 0, then it is not invertible. To see this, note that,
by assumption, L0 has no purely imaginary eigenvalues. [Re-
call that we are requiring decoherence channels sufficient to
guarantee a unique steady state given by Eq. (19), L0ρs = 0.]
Since det(L0 − i knmωd1) = 0 if and only if i knmωd is an
eigenvalue of L0, we can invert L0 − i knmωd1 for knm �= 0.
For knm = 0 the superoperator L0 − i knmωd1 = L0 is sin-
gular. In this case there is an infinite number of solutions,
obtained by shifting 	knm

by some multiple c of the steady
state, 	knm

→ 	knm
+ c ρs . We can compute 	knm

utilizing the
Moore-Penrose pseudoinverse L+

0 [48] and shifting the result
to render it traceless. Since the pseudoinverse reduces to the
standard inverse when the matrix is invertible, we can express
the solution in general as

	knm
= ∓(L0 − i knmωd1)+ Lnm ρs. (23)

Instead of computing the pseudoinverse, one may alternatively
employ an efficient least-squares method in which the norm
‖(L0 − i knmωd1)	knm

± Lnm ρs‖F is minimized.
As before, we find that application of the Frobenius norm

renders the relevance parameter time independent:

�nm = ‖�ρ(t )‖F =
√

2‖	knm
‖F . (24)

The updated relevance parameters are next employed in the
graphical scheme of Sec. III B to identify the maximal zero-
cyclic subgraph, yielding another new effective Hamiltonian
h. This iterative scheme is repeated for as long as reevaluating
relevance parameters causes h to change (or until a maximum
iteration number is exceeded, indicating rare cases when the

method breaks down),

ρ (0)
s = e−βH0/Z → ρ (1)

s → ρ (2)
s → · · · → ρs,

h(0) = H0 → h(1) → h(2) → · · · → h. (25)

Here superscripts enumerate the iterative steps (suppressed in
our notation above).

In summary, this iterative scheme adaptively incorporates
the most relevant drive terms and takes into account the
maximal set of subdominant drive terms. In the following
sections we will illustrate the power of the method by applying
it to single-tone transmission spectroscopy in a system with
metastability and discuss possible limitations based on a
simple three-level system example.

IV. APPLICATION: SINGLE-TONE SPECTROSCOPY

We illustrate application of the adaptive-RWA method
to the calculation of single-tone transmission data for two
different circuit-QED systems. First, we show that the scheme
reproduces the exact steady-state solution for the simple
system of a transmon qubit coupled to a resonator. Second,
we simulate recent transmission measurements of a heavy-
fluxonium circuit-QED device [41], in which the presence of
long-lived metastable states makes ordinary time-dependent
simulations particularly challenging.

In conventional single-tone experiments, transmission of a
coherent drive tone through the resonator is probed and uti-
lized to determine the dispersively shifted resonator frequency
or detect the vacuum Rabi splitting, depending on whether the
qubit is tuned out of or into resonance. Transmission data for
the oscillatory voltage signal are typically averaged over many
periods, after transients have died out. In terms of the field
quadratures I = Vp〈a + a†〉 and Q = Vp i〈a† − a〉, where Vp

is the peak voltage, we express the transmission amplitude as

A(t ) = Vp

√
I 2 + Q2 = 2Vp|〈a〉| = 2Vp|Tr[aρ(t )]|. (26)

The averaged transmitted power is thus proportional to
|〈a〉|2 ≡ T 2 where time averaging is performed on the long-
time asymptote ρ∞(t ). The adaptive-RWA scheme allows
us to calculate resonator transmission based on an effective
rotating-frame steady state T = |Tr(aρs )| instead of calculat-
ing ρ∞(t ) numerically by integrating the master equation up
to sufficiently long times.

A. Transmon qubit coupled to a resonator

We first confirm that the adaptive-RWA calculation re-
turns exact results whenever time dependence can be fully
eliminated in an appropriate rotating frame. This situation
is realized for the simple example of a system consisting of
a transmon and a resonator, as discussed in Sec. II. Recall
that the transmon states form a weakly anharmonic ladder
in which the resonator coupling only allows for transitions
among nearest-neighbor transmon levels. We expect the adap-
tive scheme to find the appropriate rotating frame and yield
transmission data identical to those from the exact solution.

Previously, we expressed the dressed transmon-resonator
eigenstates as |J,mJ 〉, where J is the total excitation level
and mJ is an integer in the range 0 � mJ � J . To implement
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FIG. 2. Adaptive-RWA calculation of transmission T vs drive frequency in the driven transmon-resonator system. (a) Adaptively obtained
graph for weak drive at ωd = ωr . Absence of dashed edges confirms that all drive terms are incorporated, hence the result is exact. (b)
Comparison of exact transmission with results from the adaptive RWA, showing excellent agreement. Since the transmon and resonator are set
to resonance, T exhibits the usual vacuum Rabi peaks, arising from transitions between |0, 0〉 and |1, ±〉. (c) For a tenfold increase in drive
power, each Rabi peak supersplits [49]. Exact solution and adaptive-RWA results continue to match perfectly.

the adaptive RWA we express the Hamiltonian of the driven
system in the dressed basis

H (t ) =
∑
J,mJ

EJ,mJ
|J,mJ 〉〈J,mJ |

+ ζ
∑

J,mJ ,mJ+1

(
aJ,mJ ,mJ+1 |J,mJ 〉

× 〈J + 1,mJ+1|eiωd t + H.c.
)
, (27)

separating the annihilation operator into individual drive
terms, where aJ,mJ ,mJ+1 are matrix elements of a in this
basis. If the drive strength is not too strong, we can ap-
proximate the transmon as a two-level system, and if the
qubit and resonator are on-resonance, we can find expressions
for the dressed states in terms of the bare states |n, j 〉,
with n and j as the resonator and transmon levels, re-
spectively. These expressions are |J,±〉 = (|n = J, j = 0〉 ±
|n = J − 1, j = 1〉)/

√
2 [49], hence the generator is given

as � = ωd

∑
J,± J |J,±〉〈J,±| (note that there are only two

possible values for mJ here). Applying our adaptive scheme
for arbitrary drive frequency, we expect a graph consistent
with this � and an effective Hamiltonian that is composed of
every nonzero drive term. In Fig. 2(a) we show the graph the
adaptive scheme converges to. For the example of driving at
the resonator frequency ωd = ωr , the ranking for the first few
terms is

C = {�01,�02,�24,�13,�46,�35, . . .}, (28)

where the subscripts indicate the energy level of each dressed
state [see Fig. 2(a)]. We emphasize that the adaptive scheme
does not neglect any drive terms in this special case.

Figure 2 compares between transmission results obtained
from the adaptive-RWA scheme and those calculated from
the time-dependent master equation after averaging. Since
the transmon is placed on-resonance, the transmission curve
exhibits the characteristic vacuum-Rabi peaks [Fig. 2(a)]. For
increased drive strength, each vacuum-Rabi peak supersplits
[Fig. 2(c)] [49]. Exact results (here obtained from averag-
ing the laboratory-frame time-dependent solution) and results
from the adaptive scheme are in perfect agreement. This
confirms that the scheme correctly selects the relevant drive
terms and detects the rotating frame in which the effective
Hamiltonian is time independent.

B. Heavy-fluxonium qubit coupled to a resonator

The adaptive-RWA scheme is most useful in situations
where time dependence cannot be eliminated exactly. We will
demonstrate this for a quite recent and promising addition to
the family of circuit-QED devices: a heavy-fluxonium qubit
coupled to a resonator. Again, we focus on the transmission
amplitude when a drive is acting on the resonator and employ
the adaptive-RWA algorithm. The Hamiltonian of this system
is given by

H (t ) = ωra
†a +

∑
j

Ej |j 〉〈j |

+ g
∑
j,j ′

(〈j |N |j ′〉 |j 〉〈j ′| a + H.c.)+ζ (aeiωd t + H.c.)

(29)

(see, e.g., Ref. [50]). Here bare fluxonium states have ener-
gies Ej and are denoted by |j 〉, N is the fluxonium charge
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FIG. 3. Heavy-fluxonium spectrum and comparison between experimental transmission data and adaptive-RWA calculation. (a) Relevant
heavy-fluxonium states and corresponding transitions (� = 0.35�0). Transition I is a plasmon (intrawell) transition between fluxonium states
|0〉 ↔ |2〉. Plasmon transition II between |1〉 ↔ |3〉 only occurs if one of these states is thermally excited, e.g., through fluxon transition III. (b)
Overview of dressed energy levels and transitions. Up to photon dressing, transitions (i)–(iii) correspond to the ones in (a). (c) Experimental
transmission amplitude normalized to high powers (in decibels) in the single-tone spectroscopy experiment [41]. The labeled resonances
correspond to the transitions defined in (b). (d) Transmission amplitudes T = |Tr(aρs )| obtained from the adaptive-RWA scheme showing
excellent agreement with the experimental data.

operator, and ζ is the drive strength. This generalized Jaynes-
Cummings Hamiltonian differs from the analogous Eq. (8):
As opposed to the transmon case, fluxonium charge matrix
elements are not subject to nearest-neighbor selection rules, so
〈j |N |j ′〉 are generally nonzero for all j and j ′. Accordingly,
time dependence cannot be removed exactly by any rotating-
frame transformation.

To apply the adaptive RWA, we first reexpress Eq. (29) in
terms of eigenstates of the generalized JC Hamiltonian. The
resulting Hamiltonian then reads

H (t ) =
∑

n

λn |φn〉〈φn|

+ ζ

(∑
n<m

anm |φn〉〈φm| eiωd t + H.c.

)
, (30)

where λn are dressed energies and states |φn〉 are hybridiza-
tions of bare fluxonium-resonator states. The adaptive RWA
will then select a set of drive terms ζanm |φn〉〈φm| to neglect
and find an effective Hamiltonian.

The experiment by Earnest et al. [41] uses the heavy
fluxonium to realize a � system with a metastable state
featuring lifetimes of up to 8 ms. Figure 3(a) depicts the
fluxonium wave functions and potential-well structure for a
select magnetic flux of � = 0.35�0. Device parameters in the
experiment were tuned such that the intrawell (plasmon) en-
ergy splitting E2 − E0 ≡ ω20 was nearly degenerate with the
resonator frequency ωr . This results in strong hybridization
of resonator and plasmon modes, rendering the single-tone
transmission data richer than usual. In addition, the long dwell
times in the metastable state render rare thermal-excitation
processes relevant for the device’s long-time dynamics. In-
deed, fingerprints of this interplay between metastability and
thermal excitations are observed in the form of anomalous
peaks in the transmission data, which we will discuss in detail
next.

Figures 3(c) and 3(d) show experimental data and adaptive-
RWA calculations of the transmission (color coded) as a func-
tion of external magnetic flux � and frequency ωd/2π of the
applied drive. The selected frequency range spans the region
near ωr and ω20 to capture the transmission peaks arising from
photon excitations of the resonator, transition (iv), and dressed
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FIG. 4. Graph for the driven fluxonium-resonator system (� =
0.35�0 and ωd = ω31). Adaptive selection of relevant drive terms
depends on � and ωd and is critical for accurate computation of
transmission peaks. Dashed edges mark neglected drive terms with
very small relevance parameters due to exponential suppression of
charge matrix elements and/or drive detuning.

plasmon oscillations, transition (i) [see Fig. 3(b) for labeling
of dressed-state transitions]. The latter plasmon resonance is
ordinarily not visible in single-tone transmission experiments
when the qubit is coupled dispersively, but can be observed
here because the left plasmon transition I, |0〉 ↔ |2〉, is only
weakly detuned from the resonator, ω20 − ωr ∼ g. Insets in
Figs. 3(c) and 3(d) display the more intricate structure of
resonances and avoided crossings in the region near half-
integer flux and confirm the very good agreement between
experimental data and our adaptive-RWA results.

While thermal excitation events populating the metastable
state |1〉 remain rare at a temperature of 30 mK consistent
with experimental conditions, the occupation probability for
|1〉 can nonetheless become significant due to its exceedingly
long lifetime. This gives rise to an anomalous transmission
peak associated with the dressed transition (ii), visible in both
experimental data and simulation. As seen in the graph of
Fig. 4, for a drive frequency ωd = ω31 the adaptive-RWA
algorithm properly includes those drive terms which induce
the dressed-plasmon transitions (ii) in the right potential
well, capturing their relevance due to thermal excitations.
The timescales for multiple competing thermal-excitation
channels vary between milliseconds and seconds, the latter
applying to the direct |0〉 → |1〉 transition. The resulting vast
span of timescales, ranging from the nanosecond drive period
to millisecond excitation times, makes brute-force time evo-
lution and averaging a disadvantageous strategy for numerical
simulation.

It is worth noting that numerical integration of the
laboratory-frame master equation does not merely face com-
putational efficiency issues with the excessive integration
time in the case of long-lived qubit states, but can also run
into serious difficulties due to accumulation of numerical
errors. Using standard integrators, we encountered such issues
that prevented us from obtaining reliable transmission values
from a brute-force time evolution. The adaptive-RWA scheme
eliminates this challenge and successfully reproduces the
thermally activated transmission resonances.

A comparison of the required computation time clearly
shows the advantage of the adaptive-RWA scheme over the di-
rect numerical integration of the master equation (Fig. 5). We
estimate the computation time for direct numerical integration
by extrapolation: The master equation was first integrated
numerically over a time interval of 0.5 μs and the required
computation time was then scaled up for the intended time
interval of 5 ms, an appropriate time given the relevance of
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(extrapolated)

15

102

18 21 24 27 30
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FIG. 5. Comparison of computation times using either direct
numerical integration of the master equation or the adaptive-RWA
scheme, for the example of the heavy fluxonium-resonator sys-
tem. The computation time using the adaptive-RWA algorithm is
orders of magnitudes shorter for moderate Hilbert space dimen-
sions. (Truncation at dimension 15 was sufficient for our chosen
parameters of T = 30 mK, � = 0.35�0, ωd/2π = 5.039 GHz, and
ζ/2π = 100 kHz.)

rare thermal excitations and lifetimes of the metastable state.
Figure 5 illustrates how the adaptive-RWA scheme cuts down
computation time by a factor of 103 or more in this example.
(See Appendix C for a computational-cost comparison with
the Floquet-map method [38].)

V. LIMITATIONS OF THE ADAPTIVE-RWA SCHEME

The adaptive-RWA scheme is applicable to a broad range
of driven open quantum systems. The scheme may fail,
however, in special situations where multiple drive terms
are similarly relevant and prevent construction of a zero-
cyclic graph. In the following, we discuss this limitation of
the adaptive-RWA scheme in the simplest possible context:
a driven three-level system in which all drive terms have
comparable relevance parameters.

The Hamiltonian H (t ) = H0 + (V eiωd t + H.c.) of the
driven three-level system consists of H0 = ∑2

n=0 En |n〉〈n|
for the three eigenstates and

V = V01 |0〉〈1| + V02 |0〉〈2| + V12 |1〉〈2| (31)

describing the drive terms. The adaptive RWA will succeed
here if one of these drive terms has low relevance compared
to the other two and can be neglected.

For example, suppose that the the energy-level splittings
are nearly identical, E1 − E0 ≈ E2 − E1 ≡ ω0, and that the
drive matrix elements Vmn all have the same order of mag-
nitude. If the system is resonantly driven with frequency
ωd ≈ ω0, then the dynamics will be dominated by transitions
induced by the drive terms V01 |0〉〈1| and V12 |1〉〈2|. The
adaptive-RWA scheme will yield the graph shown in Fig. 6,
based on the ranking �01 ≈ �12 
 �02. Here V02 |0〉〈2| has
significantly lower relevance since the |0〉 → |2〉 transition
is off-resonance. The resulting effective Hamiltonian in the
appropriate rotating frame determined from the graph is
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FIG. 6. Graph for the three-level system with identical level
splittings when driven on resonance, ωd ≈ ω0. Since the |0〉 →
|2〉 transition is off-resonance, �02 will typically be much smaller
than the other relevance parameters and the adaptive-RWA scheme
succeeds.

given by

h = H0 − ωd (|1〉〈1| + 2|2〉〈2|)
+ (V01 |0〉〈1| + V12 |1〉〈2| + H.c.). (32)

Here adaptive-RWA results are good approximations to the
asymptotic long-time behavior ρ∞(t ) of the system.

As an example observable, we calculate V ≡ |Tr(Vρs )| for
drive frequencies near ω0, a quantity similar to the transmis-
sion signal T calculated in the preceding section. As expected,
Fig. 7(a) shows a supersplit resonance peak and adaptive-
RWA results are in good agreement with the exact solution
based on time averaging |Tr[Vρ∞(t )]|. This time-dependent
signal is shown explicitly in Fig. 7(b) for two different initial
states, illustrating how the system first passes through a tran-
sient phase and then reaches its asymptotic behavior, whose
time average is in agreement with the adaptive-RWA solution.

Breakdown of the adaptive RWA occurs if we raise the
relevance of the V02 drive term: As �02 approaches the mag-
nitude of the other relevance parameters, the corresponding
drive term cannot be safely neglected. Indeed, if we triple
the magnitude of V02, then deviations between the adaptive-
RWA solution and the exact result become clearly visible
[see Fig. 7(c)]. These deviations are likewise reflected in
Fig. 7(d), showing that the adaptive-RWA solution does not
accurately match the actual long-time asymptotics. As ex-
pected, deviations from the exact solution diminish for drive
frequencies around ω0/2π = 2 GHz, i.e., when the system is
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FIG. 7. Success and breakdown of the adaptive-RWA scheme in the driven three-level system. (a) Comparison of V = |Tr(Vρs )| with
the numerically exact result obtained by time averaging the long-time dynamics. For drive terms Vmn of equal magnitude, the off-resonance
drive term V02 |0〉〈2| has low relevance and can be neglected, thus leading to good agreement between approximation and exact solution.
(b) Time-dependent signal for (a) at the frequency 1.95 GHz, plotted for two different initial conditions. The long-time asymptotes are seen
to match the adaptive-RWA result. (c) When V02 is tripled in magnitude, this drive term becomes relevant despite being off-resonance and
deviations between the adaptive RWA and the exact solution become visible. (d) Equivalent time-dependent signal to that in (b), with V02

tripled.
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driven on-resonance. In a particular pathological case, �02

could become so large that the iterative scheme would not
converge. In our experience, such cases are rare and do not
naturally occur in common driven circuit-QED systems.

VI. CONCLUSION AND OUTLOOK

In this paper we have presented the adaptive-RWA scheme:
a numerical method for driven open quantum systems that
approximates the asymptotic long-time solution to the master
equation by a nonequilibrium steady state in an adaptively se-
lected rotating frame. By iteratively determining which drive
terms in the Hamiltonian are most relevant to the dynamics,
the algorithm chooses an effective Hamiltonian including a
maximal set of relevant drive terms. Each iteration involves
solving an inhomogeneous set of linear equations and avoids
the need to numerically solve the system of ODEs tracking the
system dynamics. Adaptive-RWA computations can dramat-
ically improve efficiency over direct numerical integration,
particularly when decoherence timescales are as long as those
achieved in recent circuit-QED experiments.

We have illustrated applications of the adaptive-RWA
scheme to coupled transmon-resonator and fluxonium-
resonator systems. We have seen that the adaptive-RWA re-
sults reproduce transmission observed in single-tone spec-
troscopy experiments for heavy fluxonium done by Earnest
et al. [41], including the appearance of anomalous, thermally
activated transmission resonances. In general, the adaptive-
RWA method is useful for a wide class of driven open
quantum systems that do not allow for exact elimination
of time dependence within some appropriate rotating frame.
The adaptive-RWA scheme proves particularly beneficial in
systems with large T1 and T2 times which make explicit
numerical calculation of the long-time asymptotic behavior
challenging.

Future work should extend this adaptive scheme to multi-
tone drives, enabling the simulation of two-tone spectroscopy
experiments. In the multitone case, additional care must be
taken when considering the rotating-frame transformation and
the effective Hamiltonian due to additional constraints for
eliminating time dependence and graph-construction rules.
Investigation of multitone driving with the adaptive-RWA
method offers exciting prospects for studying future exper-
imental systems. Finally, we note that the calculation of
relevance parameters from first-order perturbation theory does
not account for the occurrence of two-photon transitions.
Extending the scheme to higher orders will therefore prove
fruitful in situations with larger drive strengths.
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APPENDIX A: GRAPH CONSTRUCTION ALGORITHM

This appendix details graph construction for an example
system that requires merging of two graph components, as

previously mentioned in Sec. III B. Suppose the ranking for
this example is given by

C = {�01,�23,�45,�04,�13,�24,�34}. (A1)

Following this ranking, graph construction starts by establish-
ing edges for V01 |0〉〈1|, V23 |2〉〈3|, and V45 |4〉〈5|, leading to
three disconnected graph components:

0

|0

1

|1

0

|2

1

|3

0

|4

1

|5

Δ01 Δ23 Δ45

The relevance ranking prompts for inclusion of V04 |0〉〈4|,
next, connecting states |0〉 and |4〉. This requires merging of
two separate graph components, done by shifting all integers
in one component such that the two states in question, here
|0〉 and |4〉, can be linked by a solid edge satisfying the
integer constraint k4 − k0 = 1. We have the choice of either
downshifting the component containing |0〉 or upshifting the
component containing |4〉. As shown in Appendix B, the
resulting graphs are always equivalent. Choosing to upshift
the rightmost graph component by +1, we obtain

0
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Δ01 Δ23 Δ45

Δ04

The next term to be incorporated, V13 |1〉〈3|, likewise requires
merging of graph components, yielding (weights not shown
from here on)
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The remaining two drive terms would violate the integer
constraint and hence cannot be included:

0

0

1

1

1

2

2

3

1

4

2

5

Such dashed edges appear when graph cycles emerge that do
not adhere to the requirement of zero cyclicity [43], which can
be understood as follows. Consider a clockwise traversal of a
graph cycle. Let P denote the number of edges in the cycle
where the final state has a higher index than the initial state
and Q the corresponding number of edges where the final state
has the lower index. If P − Q �= 0, then a dashed edge cannot
be avoided. This will always be the case for a cycle with an
odd number of edges, such as for a three-level system.

APPENDIX B: EQUIVALENCE OF GRAPH
MERGING CHOICES

In this appendix we show that the freedom in how to
merge two graph components leads to equivalent graphs. We
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encountered an example of this in Appendix A, where merg-
ing of two disconnected graph components could be achieved
by either upshifting integers in one component or down-
shifting them in the other. We will show that both choices
lead to equivalent effective Hamiltonians, differing only in an
irrelevant global energy shift.

Let us denote the integers associated with a graph com-
ponent (set of vertices connected by edges) by a vector,
(k1, k2, k3, . . .), so that kn is the integer chosen for the nth
eigenstate (vertex) in the graph component. For the issue of
merging, we now consider integers associated with two graph
components �a and �b. Since the two graph components are
separate before merging, the vectors �a and �b are spanned by
disjoint sets of Cartesian basis vectors. In particular, if �a ∈ ZN

and �b ∈ ZM , then the merged graph’s integers simply form a
vector in ZN ⊕ ZM .

The freedom in merging consists of either upshifting one
component by some integer k ∈ Z or downshifting the other
by −k. Upshifting component �a by k amounts to �a → �a′ ≡
�a + �kN , with �kN = k(1, 1, . . . ) ∈ ZN . The merged graph vec-
tor representation is then

�a′ ⊕ �b = (a1 + k, a2 + k, . . . , b1, b2, . . .).

On the other hand, merging the graph components by down-
shifting �b yields �b → �b′ ≡ �b − �kM with the merged-graph
representation

�a ⊕ �b′ = (a1, a2, . . . , b1 − k, b2 − k, . . .).

Subtracting these two vectors gives

�a′ ⊕ �b − �a ⊕ �b′ = �kN+M = k(1, 1, . . . , 1, 1, . . . ).

Therefore, the only difference between these two merge
choices is a global shift of every state’s integer by k. Ac-
cordingly, the two rotating-frame generators only differ by
� → � + k1 and the resulting effective Hamiltonians are
the same up to an irrelevant global shift h → h − k ωd1. In

conclusion, the two graph-merging choices lead to physically
fully equivalent descriptions of the system.

APPENDIX C: COMMENTS ON COMPUTATIONAL
AND MEMORY EFFICIENCY

We briefly discuss the efficiency of the adaptive-RWA
method and the Floquet-map method proposed by Hartmann
et al. [38]. The adaptive RWA is an iterative scheme where
each iteration involves solving a set of D(D − 1)/2 inhomo-
geneous matrix equations (22) (corresponding to the given
drive terms). For dense matrices, the computation time for
solving Eq. (22) scales as D6 using a direct method such
as lower-upper (LU) decomposition, so the total computation
time τ scales as τ ∼ ND8, where N is the needed number of
iterations. The superoperator in Eq. (22) is typically sparse, so
the scaling can be improved using an iterative method such as
least-squares minimization. Calculation of the Floquet map,
i.e., the single-period dissipative propagator, involves time
evolving the D(D + 1)/2 Hubbard operators |n〉〈m| over one
drive period T . The corresponding computation time addition-
ally depends on the time-step size �t used by the ODE solver.
The scaling in D of each time step depends on whether an im-
plicit or explicit ODE solver is used (D6 or D4, respectively).
This results in the scaling τ ∼ (T/�t )D8 [or (T/�t )D6].
The scaling of τ with D will generally be somewhat more
favorable for both methods, since the superoperators involved
usually are not dense. While it is difficult to make general
statements comparing the computational efficiency of the two
methods, for the concrete example of the heavy fluxonium-
resonator system we found the adaptive-RWA method to be
more efficient than the Floquet-map method.

Memory requirements also scale differently for the two
methods. Adaptive RWA requires storage of the sparse super-
operator L0 − i knmωd1 in Eq. (22). The Floquet map method,
on the other hand, requires storage of the single-period prop-
agator, which is generally a dense D2 × D2 matrix, posing a
possible memory bottleneck as Hilbert-space size increases.
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