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We study the decoherence dynamics of a quantum Ising lattice of finite size with a transverse dissipative
interaction, namely, the coupling with the bath is assumed perpendicular to the direction of the spins interaction
and parallel to the external magnetic field. In the limit of small transverse field, the eigenstates and spectrum are
obtained by a strong-coupling expansion, from which we derive the Lindblad equation in the Markovian limit.
At temperature lower than the energy gap and for weak dissipation, the decoherence dynamics can be restricted
to take only the two degenerate ground states and the first excited subspace into account. The latter is formed by
pairs of topological excitations (domain walls or kinks), which are quantum delocalized along the chain due to
the small magnetic field. We find that some of these excited states form a relaxation-free subspace, namely, they

do not decay to the ground states.
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I. INTRODUCTION

The quantum (or transverse) Ising model is a unique
paradigm for quantum magnetism and many-body systems
[1-6]. It illustrates the quantum criticality in the one-
dimensional quantum phase transition at equilibrium [7-10].
Several theoretical studies analyzed the dynamical aspects of
the quantum phase transition [11,12], as the Kibble-Zurek
mechanism [13,14], or the quantum superposition of topolog-
ical defects, i.e., domain walls or kinks [15].

The Quantum Ising model has been experimentally im-
plemented in artificial quantum many-body systems, as in
neutral atoms in optical lattices [16], trapped ions [17-19],
and with arrays of Rydberg atoms [20]. It has also been
realized more recently in superconducting qubits [21-23].
In these realizations, the interaction of the system with the
environment cannot be disregarded since the real chain of
effective spins always is affected by a certain amount of
dissipation such that they have to be considered effectively
as open quantum systems [24,25].

Numerical quantum Monte Carlo simulations were em-
ployed to unveil the phase diagram of a dissipative quantum
Ising lattice with Ohmic dissipation [26-29]. Effects of the
disorder were analyzed using a renormalization group ap-
proach [30]. The phase diagram of a dissipative Ising model
was also recently investigated in the framework of the Lind-
blad equation using a variational approach [31].

Beyond the phase diagram, the study of the relaxation
and the decoherence dynamics in the open quantum Ising
chain, with a finite number of spins, represents a relevant
theoretical issue. This study is important since, generally, the
decoherence rate scales with the system size and this property
might limit the scalability in quantum computation. More-
over, the interplay between dissipation and internal interac-
tions in quantum many-body systems gives rise to interesting
phenomena. For example, interactions lead to decoherence
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dynamics, which can be characterized by a (slow) algebraic
decay [32], in contrast to a (fast) exponential decrease. This
timescaling is a consequence of the vanishing gap in the
spectrum of the Liouville superoperator. In another example,
nonlinear interaction between harmonic oscillators can lead
to the formation of maximally entangled states which are
protected against phase-flip noise [33].

In this perspective, dissipative quantum Ising chains rep-
resent a bench test to understand dissipative many-body sys-
tems. The effects of the dissipation can depend crucially on
the operators coupling to the bath. In Refs. [26-30], each
spin was coupled to the environment through the same spin
direction of the spin-spin interaction. However, the dissipative
coupling of the 1D Ising chain with the environment can occur
even through other directions. For instance, the chain can have
a dissipative coupling along the direction of the transverse
magnetic field. This form of dissipative interaction was con-
sidered to address the dynamical phase transition [34-37] and
the nonequilibrium state of the chain coupled to two baths
at different temperature [38]. Transverse dissipative coupling
could also be an asset for quantum optimization since, in this
model, quantum diffusion can provide a mechanism of the
speed-up [39].

In this work we study the transverse dissipative coupling
for a quantum Ising chain in the limit of strong interaction
strength among the spins; see Fig. 1.

In Sec. IT we introduce the model. In Sec. III we recall
the results for the quantum Ising model in the strong-coupling
regime for a chain of finite size. The many-body states are
eigenstates of the parity, defined in the direction of the trans-
verse field. The ground-state subspace is degenerate and it is
spanned by the two classical ferromagnetic states, whereas
the first excited subspace is spanned by pairs of domain
walls separating two regions of different magnetization. Ow-
ing to the finite transverse magnetic field, the excited states
correspond to the quantum coherent superposition of such
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FIG. 1. A quantum Ising chain forming a ring. The interaction
among spins, whose strength coupling is J, is along the x direction,
perpendicular to the external, transverse magnetic field B. The spins

are uniformly coupled to a single bath which induces fluctuations in
the transverse field.

classical domain walls: They are delocalized in the chain and
have even or odd parity. In Sec. IV, assuming the Markovian
and weak coupling regime with a single bath, we derive the
Lindblad equation in terms of the ladder operators associated
to the spectrum obtained in the strong-coupling regime. The
Lindblad equation can be further simplified if the thermal
bath has finite but sufficiently low temperature with respect
to the coupling strength J, which sets the excitation energy
scales. Then the dynamics can be reduced to the subspace
of the ground and first excited states. Since the dissipative
interaction preserves the parity, the ladder operators only
connect states with the same parity. For instance, for vanishing
temperature, we obtain that the system can relax only to two
ground states of fixed and opposite parity, corresponding to
the symmetric and antisymmetric superposition of the two
classical ferromagnetic states. In Sec. V we calculate the
relaxation rates between the first excited states and the ground
states in each parity sector. We found that, in the limits here
assumed, some excited states have vanishing relaxation rate,
namely, they do not decay to the ground states. We discuss
the properties of such relaxation free subspace by using a
mapping into a tight binding model. We summarize our results
in Sec. VL.

II. MODEL: SPIN LATTICE WITH
TRANSVERSE DISSIPATION

In general, there are different ways to couple a quantum
Ising lattice to the environment. A class of dissipative models
is described by the following Hamiltonian:

- N—

N-1
Ay = Z e+ 0By Y60 + Hy, (D)
n n=0 n=0

=z
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depending on two parameters o, ﬂ = x, z. A summary of all
cases is given in Table 1. Here, 6% are the Pauli matrices for
o, B =x, Y, z for the nth spin, for instance, [6,, 65 7] = 2i67.
The first term is the external transverse magnetic field acting
on each spin in z direction. The second term in Eq. (1) is the
nearest-neighbor interaction among the N spins along the axis
o, assumed ferromagnetic (J > 0) to be definite. We assume a

TABLE 1. Summary of the class of dissipative Ising models
described by Eq. (1). The transverse magnetic field B is along the
Z axis.

B Spin Dis.
inter. inter.

Model

Z Z-Z Z Exactly solvable (e.g., Appendix A)

Z X-X X Parallel dissipation (e.g., Ref. [27])

zZ Z-Z7 X Generalized Dicke model (e.g., Ref. [41])

Z X-X Z Transverse dissipation (e.g., Ref. [35] and this work)

ring geometry, namely the periodic boundary condition 6y =
60. The third term corresponds to the uniform noise operator
8By, coupled to the total spin component $# = > &7 of the
spin lattice. The last term H, is the bath Hamiltonian whose
form is not necessary to specify for deriving the Lindblad
equation.

For @ = B = z, the interaction among the spins and the op-
erator §f have the same direction of the transverse field. If we
assume a Caldeira-Leggett model for the bath, corresponding
to an ensemble of independent harmonic oscillators, with & B,
equals to the sum of position operators, then the model can be
exactly solved and the decoherence dynamics is equivalent to
the one of the noninteracting case J = 0 (see Appendix A).
This model was used as a playground to illustrate the pure
dephasing or decoherence regime for a single spin [25,40].

Moreover the interaction and the coupling to the bath can
still have the same direction for « = B = x, but they can
both be orthogonal to the transverse field. In this situation of
parallel dissipation, the phase diagram was explored using
quantum Monte Carlo simulations [26-29]. Since the interac-
tion operator and dissipative coupling operator commute, the
result in the phase diagram is that the stronger the coupling
with the environment is, the larger is the ordered phase
region (the ferromagnetic phase), namely, the critical ratio
for J/B for the quantum phase transition decreases with the
dissipation.

When the interaction among the spins has the same direc-
tion of the transverse field o = z but perpendicular to the noise
B = x, the system corresponds to a generalized Dicke model
whose phase diagram has been analyzed in the framework of
the Holstein-Primakoff transformation [41].

Finally, the case « = x and B = z is the quantum Ising
model with transverse dissipation, and it has the explicit form

N-1 N-1
A.=B) & JZW;‘HHBbZa;JFFIb. )
n=0 n=0

In this work we analyze the model Eq. (2), which can rep-
resent, for instance, a chain of coupled qubits with equal,
individual frequency of 2B. Then the interaction with the bath
describes a pure dephasing coupling.

III. STRONG-COUPLING APPROXIMATION
FOR THE SPIN INTERACTION

Before analyzing the effects of the transverse dissipation,
we first discuss the quantum Ising model in absence of the
coupling with the bath. We focus on the strong-coupling
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FIG. 2. In the limit B = 0, the ground subspace of the quantum
Ising model is double degenerate and it is spanned by two degenerate
ferromagnetic states |u) and |d). The first excited subspace is formed
by single pairs or domain walls (kinks) at energy AE = 4J. The
index n and m are the position of the domain walls, n for the domain
wall from an up-spin area (blue) to a down-spin area (red) and m for
the reversed case.

\nm n < m)

«

regime J > B. Starting from the limit B = 0, the spectrum
of the transverse Ising model assumes a simple form. The
ground-state subspace is double degenerate and it is spanned
by the two ferromagnetic states along the x direction, Fig. 2.
The excited subspaces are formed by states corresponding
to domain walls separating regions of parallel spins with
different direction. For instance, the first excited subspace
contains only one pair of domain walls (see Fig. 2), it has
energy 4J in respect to the ground states with degeneracy
N(N — 1). In the first excited subspace, we denote the state of
two pairs as |n, m) in which the first index refers to the posi-
tion of the domain wall between n and n + 1 where the
x spin component changes from up to down, whereas the
second index refers to the position domain wall between m
and m + 1, where the x spin component changes from down
to top; see Fig. 2. Notice that two states of inverted indices are
different |n, m) # |m, n).

Restoring the finite value of B, in the limit B < J, one
applies the perturbation theory for the degenerate case by
diagonalizing the states within each excited subspace with
respect to the perturbation operator $%. This removes the de-
generacy within the excited subspaces. If the interaction with
the bath (dissipation) is not too strong (see next discussion),
we can consider only the first excited subspace composed only
by one pair of domain walls, i.e., the states |n, m). Setting the
projection operator P, on the first excited subspace, we can
write $7 = P(}, 67)P; and the eigenstates of this operator
in the first excited subspace are simply given by S‘ﬂ\ll) =
&|W), which can be expanded in the basis of |n, m)

N
W) =" fomln,m)

n,m=1

N N+n—1

ZZ Z foamin,m),  (3)

n=1 m=n+1

with the condition f,=,,) = 0. In the second equality Eq. (3)
we introduced the periodic notation |n,m) = |n + N, m) =
|n, m + N). In the first excited subspace, the transverse mag-

(a) |4,3) I1,4) 2,1) 13,2)
T e e e
|1,2) 12, 3) 13,4) 4,1)
(b) 54 L5 2D B2 43)

15,3)
N=5 .-

L2 23 B 45 15.1)

FIG. 3. The states |n, m) of the first excited subspace in the limit
of B = 0 are represented on an effective lattice for the case (a) N = 4
and (b) N = 5. Restoring finite B < J, the perturbation operator
in this subspace S’f acts as hopping operator connecting these states
according to the effective lattice. States on the borders correspond to
states with kinks separation of one. Dotted lines represent periodic
boundary conditions.

netic field coupling acts similar to the hopping operator of the
tight binding model,

S'ﬂn,m): Z In+s,m)+ Z In,m+s), (4)

s=—1,+1 s=—1,+1

for 1 < |n—m| < N — 1, whereas for [n —m| =1 or |n —
m| = N — 1 we have

Sinon+1)=lnn+2)+n—1,n+1), (5)
S‘ﬂn,n—l):|n,n—2)+|n+1,n—l). (6)

The tight binding Egs. (4), (5), and (6) are associated to
an effective lattice for the states |n, m) whose examples are
reported in Fig. 3 for N = 4 and N = 5. This effective lattice
is a closed ribbon with periodic boundary condition only in
one direction, as indicated with the dotted lines, and open
boundaries in the second direction. In general, the ribbon
has the (periodic) perimeter 2N and finite size width N — 1.
States with kinks distance of one site, e.g., |n,n £ 1), are
on the borders and they have only two connections as given
by Egs. (5) and (6). The corresponding Schrodinger equation
for the wave function f, ,, can be solved and the spectrum is
described by two quantum numbers k and ¢,

ek,q) =4Bcos(wk/N)cos(mgq/N), (7

with the eigenstates

ﬁ Y . T i Zq(m+n) s (k,q)
)=~ D sin [ Tkm —m) e FOIE D In ). (8)

n,m=1

with £079 =1 for n <m and £(v8) = "¢+ for n > m

(see Appendix B for details).

IV. DERIVATION OF THE LINDBLAD EQUATION
IN THE STRONG-COUPLING REGIME

Generally, when the spin lattice interacts with the bath via
the total spin component S¢, an exact solution is not possible.
Here we analyze the problem within the Lindblad equation.
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Under the assumption of a weak dissipative interaction
between the system with the bath, in the Markovian regime
(the Born-Markov approximation) and using a rotating wave
approximation, the equation of the reduced density matrix
0 of a quantum, open systems, in the interacting picture in
respect to the bath, reads [25]

s \
/:lif) == y@) Lo 150, ©)

where we omitted the Lamb-shift renormalization of the
spectrum. The function y(w) is related to the sym-
metrized noise of the bath operator §B,, namely y(w)=
Jodte’® ({8 By(t), 8 B,(0)}),, where 8By(t) refers to the free
evolution and (...), the trace on the thermal state of the
bath (see also Appendix A for the notation). This function
describes the processes of emission or absorption of the
energy of the bath and it can be written as

Y (@) = K(){0(@)[1 +np(@)] +0(-w)np(—w)}. (10)

where K (w) (defined as even function) is the spectral environ-
mental interaction function [25]. The superoperator £, acts
as

L,1X] = 3{AN (@A) X} = Al X AT, (1)
with A(w;) corresponding to the ladder operators

Aw)= " 8u.k,-5, EHSTUEL).  (12)

Eo,Ep

Here E, is the energy level spectrum of the system H, and the
operator I1(E,) is the projector on the (degenerate) subspace
of energy E,. Compared to the case of the individual coherent
systems [25], here the spectrum corresponds to the many-
body states of the quantum Ising lattice. We remark that our
approach is different from other theoretical Lindblad models
in which the ladder operators are expressed in term of single
spin operators.

The ladder operators connect the eigenstates of the spec-
trum formed by the ground states and the excited subspaces. In
the limit of small transverse magnetic field, the energy spacing
is given by the coupling strength J (see Fig. 2). To further
proceed, we assume that the symmetrized noise decreases
with the energy spacing, such as y[4J(n + 1)] K y(4Jn),
and we can restrict the Lindblad equation to the two ground
states and the first excited subspace whose spectrum reads
E\(k,q)=Egs +4J + ¢k, q).

We first discuss the action of the ladder operators within
each energy subspace. The projectors on the ground-state sub-
space, with w; = 0, has zero matrix element in Eq. (12) since
S§7 flips always one spin of the lattice. The projectors on the
first excited subspace in Eq. (12), which has energy spacing
|w;| = e(k,q) — e(k’, q¢') a priori, give a finite contribution
only for w; =0 [e(k,q) = e(k’, q')] since the first excited
subspace is formed by the eigenstates of the operator S, and
we obtain

" ~ A k,
A =0)= Ay = A] = Z%lk,qu,m. (13)

k.q

Second, we have to discuss the ladder operators Eq. (12)
connecting the ground states with the first excited subspace

which are characterized a priori by energy spacing |w;| =
4J + e(k, q) =~ 4J. However, since 87 can flip at most one
spin, one can create only domain walls of distance one by
applying $% to one of the two ferromagnetic ground states
(Fig. 2), i.e., 8% has nonzero matrix element between the
ground states and |n, m) with [n —m|=1or|n —m| =N —
1. In the effective tight-binding lattice representation (Fig. 3),
these states are located on the borders. This condition sets
the following matrix element rule: Only the states |k, g) with
quantum number g = N have nonvanishing matrix element of
the operator §¢ with the ground state. Setting

Ey =4J +&(k, N), (14)
we denote the ladder operators
A =E) =4, Alw=-E)=4],. (15

Notice that a global sign of the operator Ak,s is irrelevant. The
explicit form of the operator Ay ; is given by

~ . wk
Ak,s = 2sin W (sssk Sk|S><k, N|, (16)

where s =4 and sy =explin(k+ N + 1)]. The state
|s = +) and |s = —) are the two ground states corresponding
to the symmetric and antisymmetric linear combination of the
two ferromagnetic ground states |u) and |d),
1
|+) = —=(u) £ |d)). a7
V2

The results Egs. (16) and (17) have a simple physical expla-
nation. The states |+) correspond to the two ground states,
which are also eigenstates of the parity operator defined as

P=[]s: (18)

The states |k, N) are also eigenstates of the parity operator
and the Lindblad operator Eq. (16) connects states with equal
parity. For instance, for N odd, the state |+) = |u) + |d) is
connected only with the states of k even, whereas the state
|—) = |u) — |d) is connected with the state of k odd, namely
the phase factor ¢/ **N+1 = 41, The situation is inverted for
a lattice of even length N.

Finally, collecting the previous results Egs. (13) and (16),
we obtain the expression for the Lindblad equation for the
quantum Ising lattice in the strong-coupling regime and with
transverse dissipation in the limit in which higher energy
subspaces are neglected,

dp | A A
o= —y(0>[5(Aép + pAG) - AO,OAO}

—y@ny. [5<A1Akp + pALA) — A pAl}, (19)
k

in which we have omitted the index s referring to each parity
subspace.
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FIG. 4. Schematic picture for the ground states and first excited
subspace whose eigenstates are described by the quantum numbers
k and g for the case N odd. The parity is preserved under the effect
of the dissipative transverse interaction with the bath. The ladders
operators appearing in the Lindblad equation are shown by arrows
and they connect the ground states with defined parity with excited
states of equal parity and quantum number g = N.

V. RESULTS AND DISCUSSION

The Lindblad Eq. (19) governs the quantum dissipative
dynamics of the system. As illustrated by Fig. 4, it is worthy
to distinguish between the three different sets:

(1) Eeyen is formed by the ground state of even parity and
its corresponding states with quantum number ¢ = N in the
first excited subspace.

(2) &oqa is formed by the ground state of odd parity and its
corresponding states with quantum number ¢ = N in the first
excited subspace.

(3) &; the states in the first excited subspace with quantum
number g # N.

Using this kind of partition, the Lindblad Eq. (19) does
not connect the three different sets Eeven, Eoda, and &;. This
is a consequence of the fact that the coupling of the Ising
chain to a single bath via the z component S of the total spin
does not break the parity symmetry as well as the discrete
translational symmetry on the lattice. Thus, the subspaces
of different parity are disconnected. Moreover the excited
states with ¢ = N are the only one coupled to the ground
state in each subspace of different parity. Indeed, considering
Eq. (8), one can observe that the index ¢ plays the role of the
wave vector associated to the center of mass of the kink pair
~ n + m, whereas k plays the role of the wave vector related
to the internal distance ~ n — m (see Appendix B for details).
The states ¢ = N correspond to a coherent superposition
of different bound states of kinks of different distance but
with vanishing total momentum, as the ground state. The
quasimomentum is described by the quantum number g and
it is conserved as the total Hamiltonian is invariant under
discrete translational transformations (e.g., n — n + 1). As
long this symmetry is not broken, for instance by disorder in
the interaction (J — J,), only excited states with total zero
quasimomentum are coupled to the ground states whereas the
rest will be decoupled.

In each one of these subspace Eeyen, Eodd, and &5, we have a
Lindblad equation with the Lindblad (jump) operators for an

effective system with nondegenerate spectrum. In this case,
a general property of the Lindblad equation is that the off-
diagonal elements of the density matrix are decoupled from
the diagonal elements (the populations) [25]. The off-diagonal
element of the density matrix satisfy an equation of the form
0o = —(1/73 ) pa.n for two arbitrary different states |A) #
|A') and we report the expression for the dephasing rates
1/t in Appendix C.

A. Equation for the populations

We report in this section the set of equations for the
populations in each parity sector. Hereafter, to be defined, we
set N odd. As example, in the subspace of even parity, we set
P, = pyy, and P, = py; for the populations of the ground
state and the excited states with k = k, even and ¢ = N. Then
the equations read

dP+ _ .o (T

ar. _ kz_4sm (ke )y @) Py = y(=40) P
(20)

dP .

T = —asin® (ke )y @4)) P =y (<4DPL 2D

and similar equations for the population P_ = p__ and P, =
pii for the populations of the states in the odd subspace (with
k =k, odd).

The sums of the populations at time ¢ = 0 in the even sector
P, =P, + Zke P, and in the odd sector P, = P_ + an P,
are invariant during the decay. By using the detailed balance
relation y(—E)/y(E) = e PE, the steady-state solutions of
the coupled equations, Egs. (20) and (21), read

1
P =P— 22
* 1+ N,e=4p7 (22)
=487
P, (23)

e= Pe_l—}—./\/‘geiélﬂ‘/’

with A, the number of the even k states with g = N in the
even subspace. Similar expressions hold for the odd sector,
P_ and P, with the constant P, and number A,. The
exponential relaxation associated to the coupled equations,
Egs. (20) and (21), is determined by the characteristic relax-
ation time. As an example, we discuss the low temperature
limit and set kg T < 4J such that y (—4J) ~ 0 exponentially.
For the even sector we have the following exponential decays:

Pu(t)= Y P (0)(1 — /™), 24)

ke
P, (t) = P (0)e™ /7% (25)

and similar expressions for the odd sector, for P_(¢) and
Py, (t). The relaxation times are given by

1 Lo (T
— —4K(4J)sin (—k) (26)
(k) N

and the states with k &~ N /2 are more rapidly decaying as the
states with k close to N — 1 or to 1. In particular, the lowest
relaxation rates scales as rk_l ~ (mk/N)* and it is strongly
reduced in the limit N > l and k < N.
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FIG. 5. Example of the wave functions of the eigenstates
|k, q) = Zn_m Jam(k, q)ln, m) of the first excited subspace in the
limit B < J, defined on the effective lattice, shown in Fig. 3, for
the kink states |n,m). For N =4, we plot Re[f, . (k, g)]. Panel
(a) is an example of the states uncoupled to the ground-state
subspace, |k =2,q = 3). Panels (b) and (c) are examples of the
states coupled to the ground-state subspace, with |k = 2, g = N) and
|k =1, g = N), respectively.

B. Relaxation-free subspace

As mentioned before, due to the translational invariance,
the states |k, g) with g #% N are decoupled from the ground
states and the states with ¢ = N in the Lindblad equation.
This implies that these states do not relax to the ground state.
Notice that decoherence among these states is still possible,
and eventually the density matrix will converge to a statistical
mixture of these state |k, g # N).

The condition for the relaxation-free subspace is given by

(k, q|8%u) = (k, q|8%|d) = 0, 27)

which is equivalent to the condition that the sum of the
amplitudes corresponding to the states of distance one as
|n,n + 1) and |n, n — 1) has to vanish, namely,

D ot = farin =0, (28)

with periodic notation fy y4+1 = fy.1 and fyyi.xv = fin-

The states |n,n + 1) and |n,n — 1) are, respectively, the
states on the two boundaries in the effective tight binding
lattice; see Fig. 3. For instance, the state |k = 2, ¢ = 3) is not
coupled to the ground state and its wave function has an anti-
symmetric behavior on the boundaries of the lattice. Opposite
examples are the state |k =2,g = N) and |k =1,q = N),
which are coupled, respectively, to the ground state |—)
and |+); see Fig. 5.

The condition by Eq. (28) for the existence of a relaxation
free subspace is more general, since it is valid even in the
presence of weak disorder of an Ising chain coupled to a
single bath via the total spin component along the z axis $%.
The discrete translational invariance is broken when the cou-
pling constants and/or the magnetic field depend on the site:
J — J+68J,, B— B+ 5B,. In the strong-coupling regime
B « J and weak disorder 8J,,8B, < J, to find the eigen-
states of the first excited subspace (of fixed parity), one has to
solve a tight binding equations similar to Egs. (B2) and (B3)
but with the on-site energies and the tunneling amplitudes
which are site dependent. In this case, the eigenstates of the
first excited subspace have a form more complex and are
not described by the two quantum number k, g. However,
the condition Eq. (28) for having relaxation-free states is still
valid and it has simple interpretation in term of the effective
tight binding lattice that describe the first excited subspace:
The sum of the wave function amplitudes on the edges of the
lattice has to vanish.

VI. SUMMARY

To summarize, we studied a quantum Ising lattice dissipa-
tively coupled to a single bath which describes the quantum
fluctuations of the transverse magnetic field. In the limit of
strong coupling among the spins, we discussed the excitations
of the first excited subspace corresponding to coherent quan-
tum superposition of the classical states formed by pairs of
domain walls (or kinks) |r, m) that divides regions of different
ferromagnetic ordering. Using Born-Markov approximation,
we derived an effective Lindblad equation with the ladder
operators associated to the transition between the many-body
states of the lattice, i.e., the ground states and the excitations
of quantum kinks. The parity symmetry of the quantum Ising
model, defined with respect to the axis of the transverse field,
is still conserved in presence of transverse dissipation. This
implies that, in the Lindblad equation, the two sectors of
different parity are decoupled and the excited states can relax
only to the ground state of equal parity. We also found that, in
the limits here assumed, some excited states can not relax to
the ground state and they form a relaxation-free subspace. For
an uniform chain, these states are characterized by a quantum
number g # N and correspond to the states of pair of kinks
having total non zero momentum. Furthermore, using the
mapping of first excited subspace |n, m) in an effective tight
binding lattice, we showed that the relaxation-free subspace
can be interpreted as the states with vanishing total amplitude
on the borders of the effective lattice, as result which is valid
even in presence of weak disorder in the chain. This result mo-
tivates future extensions of our analysis to decorated lattices
with more complex interaction beyond the Ising model.
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APPENDIX A: EXACTLY SOLVABLE CASE

The model Hamiltonian Eq. (1) for a dissipative spin chain
with @« = 8 = z reads

A =H +H + H,, (A1)

where we set
A, = Z (B—J6%,)6 (A2)
H; =8B, 87, (A3)

with §% = >, 6% This can be solved exactly for arbitrary
boundary conditions, namely, a ring or an open chain. Fol-
lowing the Caldeira-Leggett approach, we assume the bath as
a sum of independent harmonic oscillator A, = 3", ha))\lsil;,\,
8By = > ot,\(l;i + IQA) and the bosonic operator (creation

and annihilation) ISA and 13;[. Assuming the free evolution of
this operator b, () = e'"' b, e~ | the commutator at differ-
ent times for § B, (the response function) simplifies to

[6B,(11), 8By (12)] = —2i / dwK () sinfo( — o)),
0

(A4)
where we introduced the environmental spectral density
Kw)=>, afé(w — ;). In similar way, the average at ther-
mal equilibrium of the anticommutator at different times for
8By (the symmetrized noise) reads

{8By(11), 8By(12)}),, =/ dwK (w) coth (’37”)

0

x cos[w(t; — t)], (AS)

with average over the thermal state of the bath (...), =
Try[e Pt ... 1/Try[e PH],and B = h/(kgT). For the follow-
ing calculations, it is useful to introduce the two functions

P(t) = —i / dh / dt, [8By(t1), 8 By(12)], (A6)
0 0

o) = /0 dty /0 1drz<{aéb(t1>,8éh<rz>}>b. (A7)

In the interaction picture H;(t) = e/Atfnt g, o=itH+Hy)

the unitary time evolution operator U;(t) = Te= Jod'Hi(®)
(T time ordering operator) can be calculated exactly,
U,(t) = o 25°8°0() ,—i§* [ dr'8By(1) (A8)

In this way, we can calculate the reduced density matrix of the
system Hs,

p(t) = Tr,[U1(6)p(0)pp U ()],

in which p(0) the initial state of the system and p, the
thermal state of the bath. For the eigenstates of the spin lattice
we use the notation |{s}) = |s1,...,8,,...) with 5, = %1
for the spin component up or down in the z direction, and
the energies E; = Y (B — Js,41)s, and total z componet
S2|{s}) = (3, swls}). After some algebra, similar to the
case of noninteracting spins [25], the arbitrary matrix element

(A9)

of the reduced density matrix can be written as

(s pIsY) = (s} o)l (sy)le (T Zom) 50 (A 10)

The last result is exactly the same for the case J = 0 [25].

APPENDIX B: SOLUTION FOR THE EIGENSTATES
OF THE FIRST EXCITED SUBSPACE-QUANTUM
DELOCALIZED KINKS

From the tight binding Eqgs. (4), (5), and (6) we obtain the
following set of equations:

Bl fa+1,m) + fo—1m) + foum+1) + fom=1)] = eft,m),
(B1)

for [n — m| > 1, whereas we have

B[f(11+l,m) + f(n,m—l)] = gf(n,m) forn =m + 17 (B2)

B[f(nfl,m) + f(n,erl)] = Ef(n,m) forn=m — 17 (B3)

for |n —m| =1and |[n —m| = N — 1. Notice that Egs. (B2)
and (B3) are automatically included in Eq. (B1) within the
condition f(,—,) = 0. We represent this set of equations in
terms of a tight-binding model in which the lattice sites are
associated to the eigenstates |n, m) for a pair of kinks and the
lines between two sites represent the connection (hopping)
between two states due to the operator S’f (see examples in
Fig. 3). It is convenient to define the directions

_n+m for n <m
_{n—i—m:l:N for n > m, (B4)

m—n for n <m
y_{m—n—i—N for n > m, (B5)

such that the tight binding equation remains invariant,
B(fx+l,y+l + fx+l$y—l + fx—l,_v—l + fx—].y+]) = Gfx,yv
(BO)

with f,—, = 0. Then the boundary conditions in the x direc-
tion are periodic, whereas we have open boundary conditions
in the y direction,

fen = fro=0. (B7)

The latter equations suggest the ansatz,

fx+2N,y - fx,yv

*k.9)  gj (Zk) iqx B8

f sin N y)e , (B8)

for k=1,..,N—1 and g =1,.., N, which yields the
spectrum
k9

8(2;) = cos [%(k—q)] + cos [%(k—l—q)]. (B9)

However, the two coordinates x and y can be written simply
as the center of mass and the relative distance of the two kinks
function (x ~ n 4+ m and y ~ n — m) only for n < m and one
needs to consider the extra factor N for n > m as explained in
Egs. (B4) and (BS5). Taking into account this difference, the
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exact form of the eigenstates reads

T iz
f;,ky’vq) ~ sin (ﬁk[m — n]) NI forp < m,  (B10)
fx(k}q) ~ sin (%k[m —n+ N]) ol wa(ntmEN)

~ sin (%k[m — n]) N gt kHD) for S
(B11)

which corresponds to the (unnormalized) result reported in the
main text, Eq. (8).

APPENDIX C: EQUATIONS FOR THE
OFF-DIAGONAL ELEMENTS

The closed equations for the off-diagonal elements take the
form

dpy. 1
Y o C1
i — D (CD

with p; 5» = (A|p|A’) and |1} and |A") two arbitrary states.
For the states of the first excited subspace with g # N,
namely, |A) = |ki, g1 # N) and |[)') = |kz, g2 # N), we have

1 ki, q1) — e(ka, g2)?
=y(0)[6( 1,q1) — €(ka, g2)] , ©)
T(hq1,kq2) 2B

whereas for the states of the first excited subspace with g =
N, namely, [) = |k, N) = |ki) and [1') = |k, N) = |k2),
we have

1 [e(ki, N) — e(ky, N)I?

=y(0)
Ty ko) 2B

+ 2y(4])|:sin2 (%) + sin® (%‘2)] (C3)

Finally, the off-diagonal elements between the two ground
states of different parity |4) and |—) is given by

% = 2y(—4])zk:sin2 (%) = Ny(—4J). (C4)
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