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Quantum partition of energy for a free Brownian particle: Impact of dissipation
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We study the quantum counterpart of the theorem on energy equipartition for classical systems. We consider a
free quantum Brownian particle modeled in terms of the Caldeira-Leggett framework: a system plus thermostat
consisting of an infinite number of harmonic oscillators. By virtue of the theorem on the averaged kinetic energy
E; of the quantum particle, it is expressed as E; = (&), where & is the thermal kinetic energy of the thermostat
per 1 degree of freedom and (...) denotes averaging over the frequencies w of thermostat oscillators which
contribute to E; according to the probability distribution P(w). We explore the impact of various dissipation
mechanisms, via the Drude, Gaussian, algebraic, and Debye spectral density functions, on the characteristic
features of P(w). The role of the system-thermostat coupling strength and the memory time on the most probable
thermostat oscillator frequency as well as the kinetic energy E; of the Brownian particle is analyzed.
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I. INTRODUCTION

Quantum physics shows that its world can exhibit behavior
which is radically different from its classical counterpart.
Wave-particle duality, entanglement of states, decoherence,
Casimir force, quantum information: these are generic exam-
ples which in turn carry the potential for new applications in
the near or farther future. Yet, there remain new properties,
behavior, and phenomena to be uncovered in this world. In this
context, the quantum counterpart of the theorem on energy
equipartition for classical systems is still not formulated in
the general case. We attempt to take one step forward. In
classical statistical physics, the theorem on equipartition of
energy states that, for a system at thermodynamic equilibrium,
its kinetic energy Ej is shared equally among all energetically
accessible degrees of freedom (df). It also relates the average
energy Ep = kpgT/2 per 1 df to the temperature 7 of the
system (kp is the Boltzmann constant). When the thermostat
is modeled as an infinite collection of harmonic oscillators of
temperature 7', then the averaged kinetic energy of thermostat
per 1 df is also & = kgT /2. In other words, E; = & and
all degrees of freedom of both system and thermostat have
exactly the same averaged kinetic energy. This is why it
is named equipartition. It is universal in the sense that it
does not depend on the number of particles in the system, a
potential force which acts on them, any interaction between
particles, or the strength of coupling between system and
thermostat [1,2]. For quantum systems, in the general case
its counterpart is not known. In the literature, one can find
reports on energetics of selected quantum systems [3]. In
Ref. [4], an exact expression for the free energy of a quantum
oscillator interacting, via dipole coupling, with a blackbody
radiation field was derived. Next, the same authors studied
a similar problem by a more conventional method using the
fluctuation-dissipation theorem and obtained the expression
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for the kinetic energy of the quantum oscillator [5]. At the
same time, the review paper on quantum Brownian motion
has been published [6]. Formulas for the variance of the
position and momentum of the oscillator are presented in
Table 2 therein. There are also books [7—10] in which different
versions of the kinetic energy of a free Brownian particle can
be obtained directly or indirectly. Recently, the kinetic energy
of a trappped Fermi gas has been considered [11]. Many other
aspects of quantum Brownian motion have been intensively
studied in the last few years [12-20]. However, the previous
results have not been directly related to the energy equipar-
tition theorem. Very recently, some progress has been made
in the formulation of this law assuming that the thermostat
is a collection of an infinite number of quantum oscillators
[21,22]. Contrary to the classical case, the averaged kinetic
energy of the thermostat oscillator depends on its frequency,
& = & (w), and as a consequence, the kinetic energy of the
Brownian particle E; depends on all & but in a nonuniform
way determined by the probability distribution P(w) of the
thermostat oscillator frequencies w. In turn, P(w) depends
on microscopic details of the thermostat and interactions.
The latter aspect can be modeled by the spectral density of
thermostat modes, which contains necessary information on
the system-thermostat interaction. The aim of this work is to
analyze the impact of various dissipation mechanisms on the
kinetic energy Ej of the free Brownian particle.

The paper is structured as follows. The presentation starts
in Sec. II, where, for the paper to be self-contained, we
recapitulate very briefly some of the well-known key points on
quantum Brownian motion. We apply a simple yet powerful
minimal model based on the concept of the Hamiltonian for a
composite quantum system: a Brownian particle plus thermo-
stat [23]. Starting from the Heisenberg equations of motion
for all position and momentum operators, an exact effective
evolution equation can be derived for the coordinate and
momentum operators of the Brownian particle. This integro-
differential equation is called a generalized quantum Langevin
equation in which an integral (damping) kernel and a thermal
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noise term are related via the fluctuation-dissipation theorem.
We recall a solution of this equation for the momentum of
the free Brownian particle and present the quantum law for
energy partition of the Brownian particle which is derived in
Ref. [22]. In Sec. III, we comment on the energy partition
theorem and discuss relations to the fluctuation-dissipation
theorem derived in the linear response theory. In the main
part of the paper, Sec. IV, we are interested in the impact of
various dissipation mechanisms on P(w). This mechanism is
modeled via the damping kernel of the Langevin equation. We
consider two families of memory functions: (i) exponentially
and (ii) algebraically decaying. Two subfamilies are analyzed:
(a) monotonically and (b) periodically decaying functions.
It covers the majority of crucial and accessible models of
dissipation mechanisms. On one hand, we reveal similarities
for the impact of various dissipation mechanisms, and on the
other hand, there are interesting and significant differences. In
Sec. V, we analyze the first two statistical moments of the fre-
quency probability distribution. The first moment is directly
related to the averaged kinetic energy at zero temperature; the
second moment, to the first quantum correction to the classical
result in the high-temperature regime. We summarize the
results of the work in the last section, VI. In the Appendixes
we present the solution of the generalized Langevin equation,
derive the formula for the kinetic energy of the Brownian
particle, and present the fluctuation-dissipation relation.

II. PARTITION OF ENERGY FOR A FREE
BROWNIAN PARTICLE

The archetype of Brownian motion of a quantum particle is
based on the Hamiltonian description of a composite system:
the quantum particle plus thermostat. By way of explanation,
a particle of mass M is subjected to the potential U (x)
and interacts with a large number of independent oscillators,
which form a thermal reservoir of temperature 7. The typi-
cal quantum-mechanical Hamiltonian of such a closed (and
conservative) system assumes the form, a la Caldeira-Leggett
ones [7,23-31],

2 2 2 2
p P; m;w; Ci
H=—+4+U — i — .
2M T+ lZ |:2m,~ * 2 <q mia)izx) ]

The coordinate and momentum operators {x, p} refer to the
Brownian particle and {g;, p;} are the coordinate and mo-
mentum operators of the ith heat-bath oscillator of mass m;
and the eigenfrequency ;. The parameter c; characterizes
the interaction strength of the particle with the ith oscillator.
There is the counterterm, the last term proportional to x2,
which is included to cancel the harmonic contribution to the
particle potential. All coordinate and momentum operators
obey canonical equal-time commutation relations.

The next step is to write the Heisenberg equations of mo-
tion for all coordinate and momentum operators {x, p, g, p;}
and solve the Heisenberg equations for the reservoir opera-
tors to obtain an effective equation of motion only for the
particle coordinate x(z). It is the so-called generalized quan-
tum Langevin equation, which reads (for detailed derivation,

see, e.g., [21])

M)'c'(t)+/ y(t — $)i(s)ds
0

= —U'(x(2)) — y()x(0) 4 n(1), (2)
where x(t) = p(t)/M, U’(x) denotes differentiation with re-

spect to x, and y(¢) is a dissipation function (damping or
memory kernel),

2

c: o0
y)y=>y_ — la)? cos(w;t) E/O dwJ(w)cos(wt), (3)

. 1
i 1

where
2

@)=Y b — ) @)

[hag

is the spectral function of the heat bath, which contains
information on its modes and the system-heat bath interaction.
The term 7n(¢) can be interpreted as a random force acting on
the Brownian particle,

pi(0)

m;w;

)=y [q; (0) cos(w;1) + sin(wn)]. 5)
1
It depends on the initial conditions imposed on oscillators
of the thermostat. We note that effective dynamics of the
quantum Brownian particle is described by an integrodif-
ferential equation for the coordinate operator x(¢) and the
initial condition x(0) occurs in this evolution equation. This
is not typical for ordinary differential equations. Usually,
the initial conditions are separated from the equations of
motion and independently accompanied by them. Here, for the
open system, the initial conditions are an integral part of the
effective dynamics and not an independent input. The initial
preparation of the total system fixes the statistical properties
of the thermostat and the Brownian particle.
We consider the free Brownian particle for which
U'(x)=0. From Eq. (2) one obtains the equation of motion
for the momentum operator,

1 t
p() + Mfo y(t —s)p@s)ds = —y)x(0) +n(). (6)

Its solution reads (see Appendix A)

p(t) = R(1)p(0) —/O du R(t —u)y (u)x(0)

n / du R(t — u)n(u), (7)
0

where R(t) is a response function determined by its Laplace
transform,

M
Mz+9.(2)

Here, p.(z) is the Laplace transform of the dissipation func-
tion y(¢) and for any function f(¢) its Laplace transform is
defined as

Ri(z) = ®)

fuo) = /0 die¥ £ (1). ©)
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Using Eq. (7), one can calculate the averaged kinetic en-
ergy Ei(t) = (p*(t))/2M of the Brownian particle. In the
long-time limit + — oo, when a thermal equilibrium state is
reached, it has the form [see Eq. (B10) in Appendix B]

E = (&) = /0 do & (@)P(0), (10)

where

hw hw
= — coth
Er(w) 2 cot <2kBT>
(11)

is the thermal kinetic energy per 1 df of the thermostat
consisting of free harmonic oscillators [32] and (... ) denotes
averaging over the frequencies w of those thermostat oscil-
lators which contribute to E; according to the probability
distribution [see Eq. (B9) in Appendix B]

1 . N
Plw) = IR ((w) + Rp(—iw)]. 12)

Formula (10) together with Eq. (12) constitutes the quantum
law for partition of energy. This means that the averaged
kinetic energy Ej} of the Brownian particle is the averaged
kinetic energy & per 1 df of the thermostat oscillators. The
averaging is twofold: (i) over the thermal equilibrium Gibbs
state for the thermostat oscillators resulting in & (w) given by
Eq. (11) and (ii) over the frequencies w of those thermostat
oscillators which contribute to E; according to the probability
distribution P(w) > 0, which is normalized on the frequency
half-line [22], [;° dw P(w) = 1.

We rewrite formula (12) to a form which is convenient for
calculations. To this end we note that the Laplace transform
can be expressed by the cosine and sine Fourier transforms. In
particular,

)7L(iw)=/oodty(t)e_i‘“’=A(a))—iB(a)), (13a)

0

A(co):/oodt y () cos (wt), (13b)
0

B(w):/oodt y () sin (wt). (13¢)
0

We put it into Egs. (8) and (12) to get the following expres-
sion:
2M A(w)

7 A2(w) + [B(w) — Mw]?

P(w) = (14)

Let us observe that the function A(w) is related to the
spectral function J(w). Indeed, from Eq. (3), Eq. (C7a) in
Appendix C, and definition (13b) of A(w) it follows that
A(w) = (/2)J(w). Because the spectral function, (4), is
nonnegative, J(w) > 0, and the denominator in (14) is pos-
itive, the function P(w) is nonnegative as required.

Representation (14) allows us to study the influence of
various forms of the dissipation function y (¢) or, equivalently,
the spectral density J(w).

II1. PHYSICAL SIGNIFICANCE OF THE QUANTUM
ENERGY PARTITION THEOREM

As we write in Sec. I, various expressions for the kinetic
energy of a free Brownian particle can be found both in
original papers and in well-known books, e.g., Eq. (83) in
Ref. [3], Eq. (4.14) in Ref. [5], the equation for the second
moment of the momentum in Table 2 of Ref. [6], and Eq.
(3.475) in Ref. [10]. The form of Ej can also be deduced from
the fluctuation-dissipation relation obtained in the framework
of the linear response theory, which relates the relaxation of
a weakly perturbed system to the spontaneous fluctuations
in thermal equilibrium; see, e.g. Eq., (124.10) in Ref. [8],
Eq. (17.19g) in Ref. [9], and Eq. (3.499) in Ref. [10]. All
expressions for E; should be equivalent, although they are
written in different forms. However, our specific formula,
(10), allows alternative solutions to the old problem and the
formulation of new interpretations:

() The mean kinetic energy E; of a free quantum particle
equals the average kinetic energy (&) of the thermostat de-
grees of freedom, i.e., E; = (& ). Mutatis mutandis, the form
of this statement is exactly the same as for classical systems:
The mean kinetic energy of a free classical particle equals the
average kinetic energy of the thermostat degrees of freedom.

(i1) The function P(w) is the probability density; i.e., it is
nonnegative and normalized in the interval (0, co). From the
probability theory it follows that there exists a random vari-
able £ for which P(w) is its probability distribution. Here, this
random variable is interpreted as the frequency of thermostat
oscillators.

(iii) Equation (12) can be converted to the transparent
form

P(w) = ;/OOO dtR(t) cos(wt). (15)

Thus the probability distribution P(w) is the cosine Fourier
transform of the response function R(#) which solves the
generalized Langevin equation, (6).

(iv) Thermostat oscillators contribute to E; in a nonuni-
form way according to the probability distribution P(w). The
form of this distribution depends on the response function in
which full information on the thermostat modes and system-
thermostat interaction is contained.

(v) For high temperatures, Eq. (11) is approximated by
Er(w) = kpT /2, and from Eq. (10) we obtain the relation
Ey = kpT/2;i.e., Eq. (10) reduces to the energy equipartition
theorem for classical systems.

The next comment concerns the relation of Eq. (10) with
the fluctuation-dissipation theorem derived in the linear re-
sponse theory. We adapt Eq. (124.10) from the Landau-
Lifshitz book [8] in order to get the kinetic energy of the
quantum particle, namely,

() = L/mdwcoth[ "o }w(w), (16)
0

Ex = —(p’
=o' T kT

where o”(w) is the imaginary part of the generalized sus-
ceptibility a(w) = o'(w) + ia” (w). By direct comparison of
Egs. (10) and (16) we find the nontrivial relation between
the probability distribution and the imaginary part of the
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generalized susceptibility:

2 "
Plw) = ;QM(Z)-

a7

The second example is Eq. (4.14) in Ref. [5],

h o0
ZEO

ho
h Mao?*1 0"
dw cot [Zk T:| o Im[a(w +i07)],

(18)

E;

B

where a(w) is also called the susceptibility, which is not the
same as in Eq. (16). Again, if we compare Egs. (10) and (18),
we can find the relation between P(w) and Im[a(w + i0™)].
But now we get

P(w) = ;Mwlm[a(w+i0+)]. (19)

We have presented only two examples, and to avoid confusion
the reader should be careful with such relations because they
depend on the specific form of the expression for Ej. Para-
phrasing, ”Various authors present the same topic differently.”

Overall, taking into account the nontrivial relation between
the probability distribution P(w) and the imaginary part of
the generalized susceptibility «”(w), we may say that our
principle for quantum partition of energy, (10), can be seen
as a specific form of the fluctuation-dissipation theorem of
the Callen-Welton type, although it would be rather difficult
to guess the form of P(w) knowing only the formula for
fluctuation-dissipation theorem. Finally, we note that Eq. (17)
establishes the relation between the probability distribution
P(w) and the generalized susceptibility «”(w). This means
that features of the quantum environment described by P(w)
may be experimentally inferred from the measurement of the
linear response of the system to an applied perturbation given
as the corresponding classical susceptibility, e.g., electrical or
magnetic. Consequently, according to our results the latter
quantity may open a new pathway to study quantum open
systems.

IV. ANALYSIS OF THE PROBABILITY
DISTRIBUTION P(w)

In the case of classical systems the averaged kinetic energy
of the Brownian particle equals E; = kpT /2 and all thermo-
stat oscillators have the same averaged kinetic energy & =
kpT /2, which does not depend on the frequency of a single
oscillator. In the quantum case, & = & (w) depends on the
oscillator frequency w and oscillators of various frequencies
contribute to Ej; with various probabilities. Therefore it is
interesting to reveal which frequencies are more or less prob-
able depending on the dissipation mechanism. The impact of
various dissipation mechanisms can be analyzed via one of
three quantities: the dissipation kernel y(¢), the correlation
function C(¢) of the random force 7(t), or the spectral density
J(w). In our view, this mechanism can be intuitively modeled
by various forms of the damping kernel y (¢). Therefore in the
following section we examine the properties of the probability
distribution P(w) for several classes of y (z).

A. Drude model

As the first step we assume the dissipation function y (¢) to
be in the form
yo(t) = Je i/, 20)
21,
with two nonnegative parameters, y, and .. The first one yy
is the particle-thermostat coupling strength and has units of
[vo] = [kg/s], i.e., the same as the friction coefficient in the
Stokes force. The second parameter 7. characterizes the time
scale on which the system exhibits memory (non-Markovian)
effects. Due to the fluctuation-dissipation theorem 7. can
be also viewed as the primary correlation time of quantum
thermal fluctuations. This exponential form of the memory
function is known as the Drude model and it has been fre-
quently considered in colored noise problems. We choose the
above scaling to ensure that if . — 0, the function yp(?) is
proportional to the Dirac delta and the integral term in the
generalized Langevin equation reduces to the frictional force
of the Stokes form. Other damping kernels considered in the
latter part of this section also possess this scaling property.
With (3), instead of determining y(¢), one can equivalently
specify the spectral density of thermostat modes, which for
the Drude damping reads

1
Ip(@) = i

e @h

From Eq. (14) we get the expression for the probability
density
1 poe* (@ + &2)
Plw) = = —— 3 T
T w*w* + (e — po/2)* + ppet/4
where o = y9/M defines the rescaled coupling strength of
the Brownian particle to the thermostat and ¢ = 1/7, is the
Drude frequency. There are two control parameters, ¢ and
Lo, which have units of frequency or, equivalently, two time
scales: the memory time 7, and t, = M/yy = 1/, which
in the case of a classical free Brownian particle defines the
velocity relaxation time.
If we want to analyze the impact of the particle mass M or
the coupling yy, we should use the scaling

(22)

X =wil, = g, (23)
€
which yields the expression
2 (x> + 1
Pp(x) = eP(ex) = = o +1) (24)

7 X Ra(x2+ 1) - 12 +1°
where

M e T,

= — == (25)
TcYo Mo Tc
is the ratio of two characteristic times. It is remarkable that
this probability distribution does not depend on these three
parameters separately but only on one parameter, o, being
their specific combination. We should remember that 7, is
fixed in this scaling. In Fig. 1 (left) we present the probability
distribution Pp(x) for different values of the parameter «.
We can observe that the thermostat oscillators contribute to
the kinetic energy E} in a nonhomogeneous way. There is

o =
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FIG. 1. Exponential decay of the dissipation function y5(t) = (y9/27.)e™"/%, known as the Drude model. Probability distributions Pp(x)
and Pp(y) in two scalings are shown for selected values of the dimensionless parameter o = 7, /7.. Left: 7. is fixed and t, is changed. Right:

T, is fixed and 7. is changed.

the most probable value of Pp(x), indicating the optimal
oscillator frequency x,; which makes the greatest contribution
to the kinetic energy of the Brownian particle. As illustrated
in the figure, x,, is inversely proportional to «: for small
values of «, mainly oscillators of high frequency contribute
to Ey; for large values of o, primarily low frequencies. As
« increases xp — 0 and Pp(x) becomes a monotonically
decreasing function (not depicted). In other words this means
that, e.g., when the coupling strength between the system
and the thermostat y; is strong then the contribution of high-
frequency oscillators to Ey, is most pronounced; if the particle
mass M increases, the optimal frequency x,, decreases.

Next we analyze the influence of the memory time 7, on
the probability distribution P(w). For this purpose we should
use another scaling:

(26)

It leads to the expression

1 a?(y? +a?)

7 YAy +ale — 1/ +at/4’
27

Pn(y) = woP(uoy) =

with the same dimensionless parameter o defined in (25).
In the right panel in Fig. 1 we present this distribution for
selected values of «. It follows that for small values of the
parameter «, or equivalently for long memory times z., the
distribution is notably peaked in the region of low-frequency
modes. Then it rapidly decreases to 0. Consequently only

J

slowly vibrating thermostat oscillators contribute significantly
to the kinetic energy of the particle. The situation is quite
different for short memory times 7. (large values of «).
Then the distribution is flattened, meaning that a much wider
window of oscillator frequencies contributes to Ej in a similar
way.

In the remainder of the paper, we present the probability
distribution P(w) without any scaling. The reader can easily
reproduce both scalings. For the scaling as in Eq. (23), one
can put € = 1 and rescale ug — po/€ to get the distribution
P; (x) (the index i indicates the form of the memory function).
For the scaling as in Eq. (26), one can put ;1o = 1 and rescale
& — &/ to get the distribution P;(y). In the first scaling,
one can analyze the influence of the particle mass M and the
particle-thermostat coupling yy; in the second scaling, of the
memory time 7.

B. Gaussian decay

Another possible choice of the dissipation kernel y(¢) is
the rapidly decreasing Gaussian function, namely,
Yo —12)72
1) = —/—— <,
Yo (1) NS e
for which the corresponding spectral density is also Gaussian
and reads

(28)

Jo(w) = ?awlﬁ/“. (29)

In order to have notation identical to that in the previous case,
we present the probability distribution in the form (¢ = 1/7,)

o (@/4e)

Pe(w) =

where Erf(z) is the error function

2 z
Erf(z) = 7 f dte .
0

In Fig. 2 we present this probability distribution P (x) [in the
scaling, (23)] for selected values of « (r, = M/ is changed
and 7. is fixed). Similarly to the case of the Drude model, the
oscillator frequency x,; which makes the greatest contribution

€29

o [2w/ o + ie= @4 Erf(—iw/2e)][2w/ o — ie~ @4’ Brf(iw/2¢)]’

(30)

(

to the kinetic energy of the particle is inversely proportional to
the parameter o. However, here we observe two differences:
(i) at some interval of « the maximum of Pg(x) decreases as
« increases, and (ii) the half-width of Ps(x) increases as «
increases, while for the Drude model it is almost constant in
a wide interval of «. In this case, the impact of the memory
time 7, is similar to that for the Drude dissipation (see Fig. 1,
right).
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FIG. 2. Left: The case of Gaussian decay of the memory kernel y (1) = (yo//7 tt)e"z/ % The probability distribution Pg (x) is presented
for different values of the dimensionless parameter o (M and/or y, is changed, 7. is fixed). Right: The probability distribution P,(x) is
depicted for different values of the power exponent n appearing in the generalized algebraic decay of the dissipation kernel y, (1) = [(n —

1)/2] yora’,’*‘ /(t + t.)". The dimensionless parameter o = 0.1.

C. n-Algebraic decay

Apart from the two exponential forms of the memory
functions presented above, one could model the dissipation
function y (¢) with algebraic decay. It is noteworthy that the

spectral density reads

(n = Dyo

[efia)n En(_ia)Tc) + eiwtg En (l(,()'[c)]
2

-]n(w) =

power-law decay of the memory functions has been consid- 33)
ered as a model of anomalous transport processes [33,34]. ) o
Here, we consider the class of functions and E,(z) is the exponential integral,
n—1 )/o‘rél_l 0o
Yu(t) = > m, (32) E,(z) = / dt ra (34)
1
where n € N and n > 2. It has the same limiting Dirac delta
form for 7, — 0 as in two previous cases. The corresponding The probability distribution takes the form
|
P.(0) = 2(n—1) el E (—iw/e) + e/ E,(iw/¢) 35)

In Fig. 2 we present the influence of the power exponent n
appearing in the dissipation function y,,(¢) on the probability
distribution P,(x) for fixed « = 0.1. The conclusion is that
an increase in the exponent n causes progressive flattening
of the probability density function. In other words, if the
memory function decreases to 0 more and more rapidly, the
wider spectrum of frequencies of the thermostat oscillators
contributes to Ey.

D. Lorentzian decay

It is interesting to compare the algebraic case for n = 2
with the Lorentzian memory function, which reads

Y0 T

—_ 36
w2472 (%6)

yr(t) =

In the probability theory it is termed the Cauchy distribution.
Alternatively, it may be imposed by the following spectral
density of thermostat modes:

T (o) = ?(W (37)

T [(n— De @l E,(—iw/e) — 2iw/uoll(n — el E,(iw/e) + 2iw/ ol

(

Such a choice of the dissipation kernel leads to the probability
distribution (¢ = 1/7,)

4r e /¢

Pw)= — ———
L(w) o 722 T @)

(38)
where
_ . . 2
c(w) = e “?Ei(w/e) — ¢*/*Ei(—w/e) — —w  (39)
Ho
and Ei(z) is the exponential integral, defined as

IM@:/Z%m. (40)

—00

We illustrate this probability distribution in Fig. 3 for differ-
ent values of the dimensionless parameter « = M /t.)p. The
oscillator frequency x which makes the greatest contribution
to the kinetic energy of the particle is inversely proportional
to the parameter «. Again, as in the previous cases, the
magnitude of the maxima in the probability distribution P, (x)
also depends on «. For very small values of o one can note

052107-6



QUANTUM PARTITION OF ENERGY FOR A FREE ...

PHYSICAL REVIEW A 98, 052107 (2018)

FIG. 3. The probability distribution P, (x) is depicted for the
Lorentzian dissipation kernel y; (t) = yot./7 (t? + t) and selected
values of the dimensionless parameter o (M or y; can be changed
and 7. is fixed).

that high-frequency modes almost exclusively contribute to
the kinetic energy of the particle.

4

E. Debye-type model: Algebraically decaying oscillations

The next example of this series is the oscillatory memory
function [35]

Vo(t) = %) sin (t/rc)’

- ; 41

which takes both positive and negative values. One can show
that, via the fluctuation-dissipation relation, the quantum
noise 1(¢) exhibits anticorrelations. The spectral density is of
the Debye type [35],

Ts(w) = ?9(1 —a)),

c

(42)

where 6(x) denotes the Heaviside step function. This spectral
density is constant, J(w) = /7, on the compact support
[0, 1/7.] determined by the memory time t. or the cutoff
frequency & = 1/7.. Under this assumption the probability
density Pg(w) reads

0(c — w)

Ps(w) = —

and has the same support as J(w) in the interval [0, ¢]. In
Fig. 4 we present the probability density Ps(x) for selected
values of the dimensionless parameter « in two various scal-
ings. In the left panel, the memory time is fixed and the
coupling yp or the mass M is changed. Again, when, e.g., v
decreases (i.e., a increases), more and more oscillators of low
frequency contribute to Ey.

F. Slow algebraic decay

In this subsection we consider slow algebraic decay of the
memory kernel assuming
Yo
4t
This dissipation function does not tend to the Dirac delta when
7, — 0 (the limit does not exist) and therefore is not placed in

ya(t) = (44)

5x, a=1
-\ o= 2 o
41 a=3
\ a=4 --
— 3 ‘\
A 2 : \\\\\
N
1 e
\~\~\.:.~ ____________ ,|
ol TSSaSaanaca =1
0 0.2 0.4 0.6 0.8
x

o 712(1 + 4a)2/u%) + 4darctanh(w/¢)[arctanh(w/e) — 2w w/ 14o]

(43)

[
Sec. IV C. The corresponding spectral density has the form

Ja(w) = % a(w). (45)

b4

The probability distribution reads

a(w)
P = , 46
M= s @)+ ) — ol 0
where (¢ = 1/7,)

a(w) = —ci(w/e)cos(w/e) — si(w/e) sin(w/e), (47)
b(w) = ci(w/e) sin(w/e) — si(w/e)cos(w/e).  (48)

QO
(11
[ISNJL) NoF

Y-

FIG. 4. The probability distribution Ps(x) is presented for the oscillatory decay ys(t) = (yo/m)sin(¢/t.)/t (the Debye-type model)
and selected values of the dimensionless parameter o = 7,/7.. Left: 7, is fixed and 7, = M/yy is changed. Right: 7, is fixed and 7, is

changed.
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FIG. 5. Algebraic decay of the dissipation function y,(t) =
Yo/ (t + t.). The probability distribution P4 (x) is presented for dif-
ferent values of the dimensionless parameter «.

The functions ci(z) and si(z) are cosine and sine integrals
defined as

o0
. cost
ci(z) = —/ —dt,
z t

o
t

mm:—/ ey
z t

In Fig. 5 we depict P4(x) for different values of the dimen-
sionless parameter «. As before, the optimal frequency of the
oscillator which has the largest impact on the kinetic energy
is inversely proportional to «. Qualitatively, this looks similar
to the case of the Drude model (cf. Fig. 1). However, only for
large values of o does the contribution of harmonic modes of
the lowest frequency x — 0 differ significantly from O.
Overall, the common characteristic of all the cases pre-
sented above is that the probability distribution P(x) occurring
in the quantum law for energy equipartition depends on only
one dimensionless parameter, « = M /t.yy. Moreover, for
a small value of this parameter (strong particle-thermostat
coupling) one typically finds a bell-shaped probability density
with a pronounced maximum for high frequency x;, which is
inversely proportional to the magnitude of «. For large values
of «, thermostat oscillators of low frequency dominate the
contributions to the kinetic energy of the Brownian particle.

(49)

(50)

G. Exponentially decaying oscillations
As the last example, we consider a generalization of
the Drude model in the form of exponentially decaying
oscillations [21],

ye(t) = Lo cos (), (51)
T,

(o
where, in addition to the previously defined parameters yy
and 7., now Q is the frequency in the relaxation process
of the particle momentum. Also in this case, the quantum
noise 7(¢) exhibits anticorrelations. The limiting case 2 = 0
corresponds to the Drude model of dissipation. This choice of
damping kernel leads to the spectral density

2 Yo (e* + w* + Q2)
7 (82 + w?)? +2Q%(e? — w?) + Q27

Je(w) = (52)

where ¢ = 1/1.. From the quantum law for the partition of
energy we obtain the probability distribution in the form [21]

uosz(a)2 +e2 4 Qz)
0 [(@? + &2 — Q2 — poe)? + 4e2Q2] + pget’
(53)

2

The parameter o= yo/M defines the rescaled coupling
strength of the Brownian particle to the thermostat. We note
that in the considered case there are three characteristic fre-
quencies, (o, €, and €2, or, equivalently, three time scales
which are equal to the reciprocals of these frequencies. This
observation must be contrasted with all previously considered
damping kernels leading to two characteristic time scales. The
kinetic energy of the free Brownian particle with exponen-
tially decaying oscillations in the dissipation function was
analyzed in detail in Ref. [21]. Instead, here we focus on the
properties of the probability density occurring in the quan-
tum energy partition theorem. The influence of the coupling
strength o on P(w) is similar to that of the Drude model:
there is only one maximum for a fixed value of the coupling
strength 1. For larger values of the latter it is shifted to the
right, indicating that oscillators of higher frequency make the
greatest contribution to the kinetic energy of the particle.

The influence of the reciprocal of the correlation time
& = 1/t is depicted in Fig. 6(a). In this case, we scale Eq. (53)
as in (26), namely, y = w/u. The dimensionless parameters
are o = &/po and Q = Q/uo. Due to the interplay of two
characteristic time scales associated with the parameters « and
Q2 we observe here qualitatively new features. For large values
of o > Q the distribution is almost flat, indicating that all
oscillators of the thermostat contribute equally to the kinetic
energy of the system. When the characteristic frequency « is
slightly higher than the other one, @ > , a single maximum
is born. When the opposite situation occurs, i.e., < €, then
the distribution INP’(y) exhibits a clear bimodal character. This
means that oscillators of both low and moderate frequency
play an important role. A further decrease in « extinguishes
the contribution of higher frequencies in favor of near-zero
frequency modes, which are then the most pronounced ones.

Last but not least, we elaborate on the impact of the
oscillation frequency 2. We keep the scaling with respect to
the system-thermostat coupling strength . In Fig. 6(b) we
present the probability distribution P(y) for a few values of the
dimensionless frequency Q = Q/uo and fixed @ = ¢/7. =
0.2. The result confirms our earlier observation that, due to
interplay of two characteristic time scales, the probability
density may be bimodal. It is realized when the magnitudes
of € and & are comparable. For very small  the distribution
P(y) possesses one very pronounced maximum, whereas for
large €2 it becomes a monotonically decreasing function of the
dimensionless frequency y.

V. STATISTICAL MOMENTS OF THE PROBABILITY
DISTRIBUTION P(w)

Let us now discuss statistical moments of the ran-
dom variable & distributed according to the probability
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FIG. 6. (a) The probability distribution P(y) scaled according to Eq. (26) is depicted for exponentially decaying oscillations with
ve(t) = (Yo/T.)e™"™ cos () and different values of o = &/ and fixed Q= Q/uo = 0.285. (b) The same P(y) is presented for selected
dimensionless frequencies 2 of the memory function and fixed o = 0.2.

density P(w),

(") = / " do " P(w). (54)
0

Caution is needed since not all moments may exist, e.g., for
distribution (22). The first two moments have a clear physical
interpretation [22]. The first moment, i.e., the mean value
(&) of the random variable &, is proportional to the kinetic
energy Ej of the Brownian particle at zero temperature, T =0,
namely,

h
Ey=E(T =0)= 1 (&). (55)
1 r\\ ) P
:l \\ (a‘ eit -
0-8 i % 1/(t+1
o 06 5 /(4 1) <
& IR (t+ 1) -
= \“\\ X 1/(t+ 1)4
- 0.2 NN sint/t --
VSRS e
0 \\,_ \-:—:. ,’/ ~ .-
0.2
0 2 4 6 8 10

The second moment (£2) is proportional to the first correction
of the kinetic energy Ey in the high-temperature regime,

By = \ksT + n
FT B T DakeT

(&), (56)
We note that the averaged kinetic energy Ey at zero tempera-
ture T = 0 is nonzero for all values of the system parameters.
This is so because of intrinsic quantum vacuum fluctuations.
Moreover, E; monotonically increases from some nonzero
value to oo when the temperature goes to oo. If we want to
compare the impacts of various dissipation mechanisms on
E}, we have to change the scaling of all dissipation functions
y (t). Now, we redefine y (¢) in such a way that for all memory

functions y (0) = 7, where 7 still characterizes the particle-

~e
S

L/(

/(2 + 1
& \ 1/(t+1)? -
=2 042 O )

SN sint/t --
0.08 S~
5 10 15 20
&

FIG. 7. (a) The normalized memory functions y (t)/, representing various dissipation mechanisms. (b) The dimensionless kinetic energy
E, = 1.E, /1 of the free Brownian particle presented versus the dimensionless temperature T =t.kgT /h and various forms of y (¢). (¢) The
first moment (£) = 7.(&) and (d) the second moment (£2) = rcz (€%) depicted versus the dimensionless parameter & = M/ )707:C2 for different

variants of the damping kernel y (¢).
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thermostat coupling but now has the units [{] = [kg/ s2]. For
example, for the Drude model yp(t) = 7% exp(—t/t.) or for
the Lorenzian shape y(t) = ;70/[(t/7c(.)2 + 1] [see Fig. 7(a)],
where all y (t) assume the same value for + = 0. In the clas-
sical case, this would correspond to the fixing of the second
moment of the random force n(¢). In Sec. IV, we define y(¢)
in such a way that y(¢) tends to the Dirac delta when the
memory time 7, — 0, which in the classical case corresponds
to Gaussian white noise of the random force 7(z).

In Fig. 7(b) we compare the kinetic energy E} for different
forms of the memory function y(¢). The various curves Ej
versus temperature never intersect each other for the same set
of parameters. Therefore it is sufficient to analyze the energy
only at zero temperature Ey < (§). We present this charac-
teristic in Fig. 7(c), where we depict the dimensionless first
moment (£) = 7.(&) of the probability density P(w) versus
the dimensionless parameter & = M /,7>. In calculations we
scale w = x /7. as in (23) with fixed t.. First, we note that
in all cases the averaged kinetic energy at zero temperature
decreases when the parameter & increases. We recall that it
translates to either (i) an increase in the particle mass M
or (ii) a decrease in the coupling strength 7. Moreover, we
can see that for the n-algebraic decay (n = 4 for green and
n = 2 for red curves, respectively) the kinetic energy at zero
temperature Ej is lower than for other memory functions.
A negligible difference is observed for Drude and Gaussian
decay. The highest kinetic energy is induced by the Debye-
type dissipation. In the high-temperature regime [Fig. 7(d)],
the correction (£2) = t2(£2) depends very weakly on the form
of y(¢) and the differences are indistinguishable. Finally, at
T =0, the energy Ej increases starting from 0 for 7, — 0
and saturates to a finite value as t. is longer and longer (not
depicted).

VI. SUMMARY

In this work we have revisited an archetype model of quan-
tum Brownian motion formulated in terms of the generalized
quantum Langevin equation for a free particle interacting with
a large number of independent oscillators that form a thermal
reservoir. In particular, we have analyzed the impact of various
dissipation mechanisms on the averaged kinetic energy Ej
of the Brownian particle. For this purpose we harvested the
recently formulated quantum law for partition of energy. It
expresses the kinetic energy Ej of the particle as the mean
kinetic energy per 1 df of the thermostat oscillators E; =
(). Averaging over the frequencies w of those oscillators
is performed according to the probability distribution P(w),
which is related to the dissipation kernel y (¢) via the quantum
partition theorem. We focused mainly on the influence of the
form of the dissipation function on the characteristic features
of the probability density P(w).

We have analyzed a multitude of dissipation mechanisms,
which are grouped into two classes: algebraic and exponential
decay. Within each of these we have considered monotonic as
well as oscillating decay. For dissipation functions possessing
two characteristic time scales associated with the relaxation
time of the particle momentum M /y, and the correlation time
of quantum thermal fluctuations t., typically we observed
a bell-shaped probability distribution P(w). This means that

there is an optimal oscillator frequency which makes the
greatest contribution to the kinetic energy of the particle.
The magnitude of this optimum is inversely proportional to
the system-thermostat coupling strength y,. For large values
of the latter the contribution of high-frequency oscillators is
most pronounced. We have studied also the impact of the
memory time 7. on the shape of the distribution P(w). For
a long memory time 7, the probability density is noticeably
peaked, whereas for a short 7. the distribution is almost
flat. Consequently, a decrease in the memory time t. causes
flattening of the probability density P(w). In this class of
dissipation functions we have considered the peculiar case
of algebraically decaying oscillations y(¢) o sint/¢. This
choice leads to the distribution P(w)’s possessing a finite
cutoff frequency which curiously depends on the correlation
time of quantum fluctuations t.. For a dissipation mechanism
with an additional characteristic time scale associated with
the period of oscillations 27 /€2, qualitatively new features
emerge in the density P(w). We exemplify this observation
for the case of exponentially decaying oscillations. When the
magnitudes of 7, and 27 /2 are similar then the probability
distribution displays a bimodal character. This means that
there are two characteristic frequencies of the thermostat
oscillators which make a significant contribution to the kinetic
energy of the system.

We have demonstrated that the quantum law for energy
partition in the present formulation is a conceptually simple
yet very powerful tool for analysis of quantum open systems.
We hope that our work will stimulate further successful
applications.
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APPENDIX A: SOLUTION OF THE LANGEVIN
EQUATION (6)

Equation (6) is a linear integrodifferential equation for
the momentum operator p(t). Because its integral part is
a convolution, it can be solved by the Laplace transform
method, yielding

1
2p1(2) = pO) + - 70(2)pr(z) = —P1(2)x(0) + AL (2),
(AL)

where py(z), P.(z), and 7, (z) are the Laplace transforms of
p(t), vy (), and n(z), respectively [see Eq. (9)]. The operators
p(0) and x(0) are the momentum and coordinate operators
of the Brownian particle at time ¢t = 0. From this equation it
follows that

PL(@) = RL(2)p(0) — RL(2)PL(2)x(0) + RL(2)L(z), (A2)

where
M

Rp(z) = Mt @)

(A3)
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The inverse Laplace transform of (A2) gives the solution p(t)
for the momentum of the Brownian particle, namely,

p(1) = R()p(0) —/0 du R(t —u)y (u)x(0)

+f du R(t — u)n(u), (A4)
0

where the response function R(¢) is the inverse Laplace
transform of the function ﬁL(z) in Eq. (A3). Because the
statistical properties of thermal noise 7(¢) are specified, all
statistical characteristics of the particle momentum p(¢) can
be calculated, in particular, its kinetic energy.

APPENDIX B: KINETIC ENERGY
IN THE EQUILIBRIUM STATE

In order to derive the averaged kinetic energy of the
Brownian particle in the equilibrium state, we first calculate
the symmetrized momentum-momentum correlation function
([p(t); p(s)],). For long times, ¢ > 1,s > 1, only the last
term in (A4) contributes and then

(lp(0); p(s)]4) =/0 dr /0‘ dty R(t —t1)R(s — 1)

x ([n(t1); n(t2)]4). (BI)

Now, we express the correlation function C(¢ — 1) =
([n(t1); n(t2)1,) of quantum thermal noise by its Fourier trans-
form [see Eq. (C6b) in Appendix C],

([p(2); p(s)]+) :f do CF(w)/ dtl/ dn, R(t — 1)
0 0 0
X R(s — 1) cos[w(t; — 1r)]. (B2)

In particular, for = s, it is the second statistical moment of
the momentum,

(P(0)) = /0 do Cr() /0 i, /0 di R(t— 1)
X R(t — ty) cos[w(t; — tr)]. (B3)

We introduce new integration variables, t =t — ¢, and u =
t — tp, and convert Eq. (B3) to the form

(P2(1)) = /OOO dow CF(w)/O dr/o du R(T)R(u)
x cos[w(t — u)]. (B4)

We perform the limit # — oo to derive an expression for the
average kinetic energy in the equilibrium state, namely,

Ek = lim
—>00

2y L [T
21 \P (l))—ZM/O do Cr(0)(w), (BS)

where
I(w) = /OO dt /00 du R(t)R(u)cos[w(t — u)]
0 0

=R (iw)R,(—iw) (B6)

is the product of the Laplace transform of the response
function R(?). At this point, we can exploit the fluctuation-
dissipation relation, (C8) (Appendix C), to express the noise
correlation spectrum Cr(w) by the dissipation spectrum
7r(w) and convert (BS5) to the form

E /.Ood hwcoth fiw Pr(w)RL(i0)R L (—iw)
= w— —_— w iw —iw).
=, aM 2epT ) VHIOIRLNOITL
(B7)
‘We observe that
hw hw
& = — coth B8
(@) 1 © (2k3T> (B8)

is the averaged (thermal) kinetic energy per 1 df of the
thermostat consisting of free harmonic oscillators [32]. The
remaining part of the integrand in Eq. (B7) reads

P(w) = —Pr(@)Rp(iw)R(—iw)

1< X[~

PLlw) + Pr(—iw)
[Vrliw) +iMol[y(—iw) —iMo]

A= 9

[R.(iw) + Ry (—iw)], (B9)

where we have used Eq. (A3) for R;(z) and the relation
between the Laplace and the cosine Fourier transforms. With
these two expressions for & (w) and P(w), the final form of
the averaged kinetic energy Ej of the Brownian particle reads

E, = /Ooda) Er(w)P(w). (B10)
0

APPENDIX C: FLUCTUATION-DISSIPATION RELATION

We assume a factorized initial state of the composite
system, i.e., p(0) = ps ® pg, where pg is an arbitrary state
of the Brownian particle and pg is an equilibrium canonical
state of the thermostat of temperature 7, namely,

pe = exp(—Hg/kpT)/Trlexp(—=Hg/kgT)],  (Cl)

where

2
p; 1
Hp = Z [% + Emiw%q,?} (C2)

is the Hamiltonian of the thermostat. The factorization means
that there are no initial correlations between the particle and
the thermostat. The initial preparation turns the force n(t) into
the operator-valued quantum thermal noise, which in fact is a
family of noncommuting operators whose commutators are ¢
numbers. This noise is unbiased and its mean value is 0:

(n(0)) = Tr[n(t)pe] = 0. (C3)

Its symmetrized correlation function

C(t,u) = ([n(@); n()l+) = 5 (nOnw) + () (C4)
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depends on the time difference

C(t,u)=C(t —u)

hc? ho;
= L coth T cos[w; (t — u)]

Y d how i hw 7
= /0 w - co (m) (w)cos[w(t — u)],
(C5)

where the spectral function J(w) is given by Eq. (4). The
higher-order correlation functions are expressed by C(#; —t;)
and have the same form as the statistical characteristics for
classical stationary Gaussian stochastic processes. Therefore
n(t) defines a quantum stationary Gaussian process with time
homogeneous correlations.

The dissipation and correlation functions can be presented
as cosine Fourier transforms,

y(t) = fo " do 71 (@) cos(at), (C6a)
C@)= /Oooda) C‘p(w)cos(a)t), (C6b)

with their inverses,
Vr(w) = %/Ooodty(t)COS(wt), (C7a)

PN

Cr(w) = %foodt C(t) cos(wt). (C7b)
0

If we compare Egs. (3) and (C5)—(C6b), we observe that

& ) ho h ho
w) = — CO
F 2 2kpT

) Vr(w). (C8)
This relation between the spectrum pr(w) of dissipation and
the spectrum € (w) of thermal noise correlations is the body
of the fluctuation-dissipation theorem [36,37] in which quan-
tum effects are incorporated via the prefactor on the right-
hand side of Eq. (C8). We want to stress that definition (4)
of the spectral density J(w) differs from another frequently
used form, J(w) = wJ(w). We prefer definition (4) because
of the direct relation to the Fourier transforms of (3) and
(C6a), i.e., J(w) = Pr(w). Here, the ohmic case corresponds
to J(w) = const.

For a finite number of thermostat oscillators, all dynamical
quantities are almost-periodic functions of time, in particular,
the dissipation function y(¢) and the correlation function
C(t). In the thermodynamic limit, when the number of os-
cillators tends to oo, the dissipation function y(¢) decays to
0 as ¢+ — oo and the singular spectral function J(w) defined
by Eq. (4) tends to a (piecewise) continuous function. From
this point of view, the dissipation mechanism is determined
by the memory kernel y (¢) or, equivalently, by the spectral
density of thermostat modes J(w), which contains necessary
information on the particle-thermostat interaction.
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