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As shown recently [H. F. Hofmann, Phys. Rev. A 96, 020101(R) (2017)], it is possible to demonstrate that
quantum particles do not move along straight lines in free space by increasing the probability of finding the
particles within narrow intervals of position and momentum beyond the “either/or” limit of 0.5 using constructive
quantum interference between a component localized in position and a component localized in momentum. The
probability of finding the particle in a corresponding spatial interval at a later time then violates the lower
bound of the particle propagation inequality which is based on the validity of Newton’s first law. In this
paper, the problem of localizing the two state components in their respective target intervals is addressed by
introducing a set of three coefficients that describe the localization of arbitrary wave functions quantitatively.
This characterization is applied to a superposition of Gaussians, obtaining a violation of the particle propagation
inequality by more than 5% if the width of the Gaussian wave function is optimized along with the size of the
position and momentum intervals. It is shown that the violation of the particle propagation inequality originates
from the fundamental way in which quantum interferences relate initial position and momentum to the future
positions of a particle, indicating that the violation is a fundamental feature of causality in the quantum limit.
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I. INTRODUCTION

Quantum mechanics replaces the precise concepts of parti-
cle position and particle momentum with the rather less clear
concept of a quantum state that describes only the statistical
distributions of possible particle positions and particle mo-
menta. Since statistical statements are by their very nature
incomplete, there is much room left for speculation regarding
the quantum limit of motion for individual pointlike particles
[1–6]. Interestingly, very little of the discussion has focused
on the simplification of quantitative criteria for the evaluation
of particle propagation, and most of the proposed experimen-
tal approaches involve quite a bit of complicated data analysis
[7–12]. Yet, it seems obvious that quantum interference effects
significantly modify the motion of particles even in free space.
For instance, it has been observed that the probability currents
in the time evolution of particles in free space can flow
backwards even when the probability of negative momentum
is virtually zero. Unfortunately, this quantum backflow effect
is rather difficult to isolate, and clear experimental evidence
may be hard to obtain [13,14]. It might well be that the
problem with much of the previous discussion is an element
of circular reasoning by which we automatically associate mo-
tion with differential shifts in time. However, such differential
shifts in time are difficult to define in quantum mechanics
since no realistic state or measurement achieves the necessary
precision, and the theoretical assumption of zero position
uncertainty at one time always implies infinite uncertainties
at all other times. It may therefore be necessary to change our
perspective on the problem: instead of formulating the laws
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of motion in terms of differential shifts and their associated
probability currents, we should consider the large-scale pat-
terns that relate the statistics of positions observed at different
times to each other, where the time difference t should be
large enough to unambiguously identify changes in position
even in the presence of unavoidable position and momentum
uncertainties.

As has been shown recently, it is possible to derive a
statistical limit for free-space propagation in a straight line
that refers only to initial position, initial momentum, and a
second position obtained at a later time t [15]. The advantage
of this approach is that it relates to the practical problem of
controlling the position at time t by choosing the appropriate
combination of position and momentum at time zero. Intu-
itively, it would seem obvious that a simultaneous control
of position and momentum would allow us to control the
complete path of a particle, so that any trick by which we
could improve the joint definition of initial position and mo-
mentum would have to result in a corresponding improvement
of the probability of finding the particle at the target position
at time t . However, quantum mechanics proves this expec-
tation wrong. As pointed out in [15], quantum interference
between a state with a rectangular wave function confined
in a position interval of width L and a corresponding state
confined in a momentum interval of width B increases the
probabilities of finding the particle in these intervals beyond
50%, resulting in a minimal joint probability of position and
momentum that allows us to test whether this joint control of
position and momentum results in the arrival of the particle
at the intended position at a later time t . Specifically, we
can compare the minimal joint probability obtained from
the separate measurements of position and momentum
with the actual probability of finding the particle in the
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corresponding position interval at time t . In the case of
quantum interferences between position and momentum, the
probability observed at time t can be lower than the minimal
joint probability, and this violation of Newton’s first law can
be quantified by the defect probability which is defined as the
difference between the observed probability and the minimal
joint probability determined from the separate distributions
of position and momentum. The problem can be optimized
by choosing the propagation time t = mL/B, where the con-
tributions of the momentum uncertainty B to the position
uncertainty is exactly equal to the contribution of the initial
position uncertainty L. It is then possible to show that the
probability of finding the particle in the target interval can be
significantly lower than the minimal joint probability of initial
position and momentum, with a maximal defect probability
of more than 7% for an optimized interval product of LB =
0.024(2πh̄) [15].

In the initial analysis, rectangular wave functions were
used to achieve perfect confinement within the intended posi-
tion and momentum intervals. Projections on these rectangu-
lar states correspond to the detection of a particle within the
respective interval, providing an easy method of evaluating
the relevant probabilities involved in the particle propagation
paradox. Rectangular wave functions also appear to be an
optimal choice for the simultaneous control of position and
momentum since their interference terms are fully local-
ized within both the position and the momentum intervals.
Moreover, the preparation of a rectangular wave function
is not uncommon in optical systems, as demonstrated by
experiments on spatial qubits [16–19]. However, it may be
important to test whether the observed effect is robust against
changes of the wave function, and how wave functions that
are not perfectly confined in the respective intervals change
the statistics used to demonstrate the failure of Newton’s first
law in [15]. In the following, I will therefore consider the
violation of the statistical limits for free-space propagation
along straight lines for a wider class of superposition states,
evaluating the localization in the position and momentum
intervals for arbitrary wave functions. In particular, it is
shown that superpositions of two Gaussian wave functions
can achieve a defect probability of more than 5%, a result
that can be predicted using an optimization based on only a
few characteristic coefficients describing the localization of
the wave functions in the superposition.

The rest of the paper is organized as follows. In Sec. II, the
problem of controlling particle propagation in the presence of
statistical uncertainties is introduced. In Sec. III, it is shown
that a defect probability of more than 5% can be obtained
using a superposition of two Gaussian wave functions. The
particle propagation paradox is therefore robust against the
specific waveform and should be observable with a wide
variety of superpositions. In Sec. IV, the localization of a
wave function in the intervals L and B is characterized by
introducing appropriate coefficients. In Sec. V, the superpo-
sition of a state localized in position and a state localized in
momentum is introduced and its localization statistics are dis-
cussed. In Sec. VI, the probability distribution is analyzed at
a propagation time of t = mL/B where the two components
of the state have equal width and approximately equal shapes.
It is shown that quantum interferences between position and

momentum generally result in a lower probability than the one
required by propagation in a straight line. An estimate for the
minimal defect probability describing the violation of the par-
ticle propagation inequality is derived for the coefficients that
characterize the localization of the quantum state components.
In Sec. VII, the characteristic coefficients of Gaussian wave
functions are derived. The optimized result corresponds to the
more precise calculation in Sec. III. In Sec. VIII, the relation
between quantum interference and causality discussed and
the possibility that quantum interference may provide the
correct microscopic explanation of all causality relations is
considered [20,21]. Finally, Sec. IX summarizes the results
and concludes the paper.

II. UNCERTAINTIES IN THE CONTROL
OF PARTICLE PROPAGATION

As mentioned in the Introduction, the scenario considered
in the following concerns the possibility of controlling the
trajectory of a particle in free space by jointly controlling the
initial position and the initial momentum. The mathematical
formalism of quantum theory seems to suggest that such
a joint control of position and momentum would result in
the corresponding propagation along a straight line since the
Heisenberg equations of motion describe the time dependence
of the position operator in the same manner that is suggested
by Newton’s first law,

x̂(t ) = x̂(0) + 1

m
p̂(0)t. (1)

The obvious problem with this equation is that it refers to
operators, and not to individual values of position and mo-
mentum. This means that we are unable to assign specific
values to the physical properties, except in the special case of
eigenstates. The Hilbert space formalism itself thus dictates an
uncertainty tradeoff between the initial position and the initial
momentum that will be carried over into the quantum statistics
of future positions x̂(t ).

Any practical scenario of control must deal with the prob-
lem of statistical uncertainty in a suitable quantitative manner.
The traditional approach to uncertainty uses the variance of
the distribution as a quantitative measure, but this is not a
useful measure if the intention is to derive precise constraints
on the properties of individual systems. For this purpose, it
is necessary to consider the actual probabilities of obtaining
specific measurement results instead. This alternative concept
of a statistical uncertainty is close to the approach that has
been developed within the frameworks of joint measure-
ments and of entropic uncertainty relations [22–25]. In the
following, joint control over position and momentum will
be defined in terms of the probability of finding the initial
position in an interval of width L and the probability of finding
the initial momentum in an interval of width B. Choosing
intervals centered around x = 0 and p = 0, respectively, the
corresponding probabilities can be determined for any given
quantum state | ψ〉 through the integrals of the probability
densities

P (L) =
∫ L/2

−L/2
|〈x | ψ〉|2dx (2)
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and

P (B ) =
∫ B/2

−B/2
|〈p | ψ〉|2dp. (3)

Quantum uncertainty imposes a limit on these probabilities
whenever the product of the intervals L and B is smaller
than 2πh̄. As discussed in [22,23], this uncertainty limit
can be expressed as an upper bound of the sum of the two
probabilities given by

P (L) + P (B ) � 1 +
√

U, (4)

where the value of U represents the ratio of the product of L

and B to Planck’s constant

U = LB

2πh̄
. (5)

Since 2πh̄ describes the phase-space area associated with
conventional uncertainties, the ratio U defines the suppression
of uncertainty achieved by a simultaneous confinement of the
particle in L and in B. To achieve a high level of control, low
values of U are necessary. At the same time, Eq. (4) shows that
values of U < 1 make it impossible to simultaneously achieve
P (L) = 1 and P (B ) = 1. However, Eq. (4) also indicates that
it is possible to achieve probability sums larger than one. This
means that there will be a minimal joint probability of (L
and B ) = (L,B ) since the maximal probability of (L or B)
is one, and this probability consists of (L, not B), (B, not L),
and (L,B ). Adding P (L) and P (B ) counts the probability of
(L,B ) twice, so the exact joint probability of (L,B ) could be
obtained by subtracting the value of the probability of (L or B)
from this sum. Since the probability of (L or B) is necessarily
smaller than one, the minimal joint probability of (L,B ) is
given by

P (L,B ) � P (L) + P (B ) − 1. (6)

This equation shows that the highest value of the minimal
joint probability P (L,B ) is obtained from states that saturate
the uncertainty relation given in Eq. (4) [22,23]. However,
a sufficient joint control of position and momentum can
also be obtained with nonoptimal states. In the following,
the focus will be on the precise mechanisms that result in
values close to the uncertainty limit of

√
U . In this context,

it is interesting to note that the superposition of rectangular
wave functions introduced in [15] saturates the uncertainty
bound for small values of U , indicating the optimized wave
functions derived in [22,23] converge on such superpositions
in the limit of U → 0. It is also interesting to note that the
value of

√
U by which the optimized wave functions exceed

a probability sum of one is directly related to the overlap
between the rectangular wave function in position and the
rectangular wave function in momentum, indicating that the
main physical effect that is responsible for the saturation of
the uncertainty bound in Eq. (4) is the same interference
effect between position and momentum that also proves that
quantum particles do not move in straight lines. To clarify
the latter effect, the goal of the following discussion will
be the analysis of the interference effect between a state
component described by an arbitrarily shaped wave function
localized in position and a state component similarly localized
in momentum. Ultimately, the idea behind this analysis is

that the quantum interference effect that produces the mini-
mal joint probability P (L,B ) represents a different causality
from the straight-line propagation suggested by the operator
relation in Eq. (1), which is demonstrated by the fact that the
minimal probabilities that would be associated with P (L,B )
for motion in a straight line do not show up in the probability
distributions of x(t ) at later times t .

To describe the control of future positions x̂(t ) associated
with the probabilities P (L) and P (B ) for initial position and
momentum, it is necessary to introduce an additional proba-
bility P (M ) that describes the probability of finding the freely
propagating particle at a time t in an interval that contains all
straight-line solutions obtained from combinations of position
and momentum from the intervals L and B. Specifically,
a particle found in the position interval of width L and a
momentum interval of width B at time zero should be found
in a position interval of width L + Bt/m at any later time t .
For reasons of symmetry, the most interesting time to consider
is t = mL/B, where the contributions of the initial intervals
are equal. Newton’s first law would require that a particle
satisfying the initial conditions L and B would also satisfy
the condition M , which can be given as

|x(t = mL/B )| � L. (7)

We can evaluate the probability P (M ) that the condition M

is satisfied by integrating the probability density at time t =
ml/B over the interval of width 2L running from x = −L to
x = +L:

P (M ) =
∫ L

−L

|〈x | Û (t = mL/B ) | ψ〉|2dx. (8)

Since the condition M is a necessary consequence of motion
in a straight line for particles that satisfy both the spatial
condition L and the momentum condition B, it is possible to
derive an experimentally testable criterion for Newton’s first
law based on the probabilities of the conditions L, B, M . This
condition is the particle propagation inequality introduced in
[15]:

P (M ) � P (L) + P (B ) − 1. (9)

As shown in [15], this inequality can be violated by super-
positions of rectangular states of position and momentum,
where the quantum interference effect observed at t = mL/B

describes a probability that can be about 7% lower than
the minimum given by the right-hand side of Eq. (9). This
result appears to be close to the maximal value for the defect
probability allowed by the Hilbert space expressions for the
probabilities involved.

For practical reasons, it would be good to know whether
the effect observed for rectangular wave functions is robust
against changes of the waveform. If it is correct that the phys-
ical reason for the violation of the inequality in Eq. (9) is the
difference between quantum interference and joint realities,
it should be possible to formulate simple quantitative condi-
tions for the violation of the inequality based on only a few
characteristic coefficients of the wave functions describing
the localized components of the state. In the following, the
possibility of observing the particle propagation paradox with
superpositions of different types of localized wave functions
will be considered.

052104-3



HOLGER F. HOFMANN PHYSICAL REVIEW A 98, 052104 (2018)

III. PARTICLE PROPAGATION PARADOX FOR A
SUPERPOSITION OF GAUSSIAN WAVE FUNCTIONS

In order to identify the essential physics responsible for
the particle propagation paradox, it is necessary to distinguish
the most important quantitative contributions in the integrals
that define the probabilities of L, B, and M from less relevant
details of the specific wave functions. Such an identification
necessarily corresponds to an approximate description of the
wave functions. Based on the analysis presented in [15],
the hypothesis examined in this paper is that the observable
violation of Eq. (9) originates from an interference between
a state component localized in position and a state compo-
nent localized in momentum. If this assumption is valid, it
is natural to assume that the momentum distribution of the
state component localized in position is much wider than the
interval L and the spatial wave function within that interval
can be approximated by the value at x = 0. Likewise, the
momentum distribution of the state localized in position can
be approximated by its p = 0 value within the interval B.
These approximations are a natural consequence of the choice
of states investigated, and their reliability for values of U well
below one should be quite high. However, all of the results
obtained with such approximations should be confirmed by
a more precise calculation. It may therefore be good to start
the discussion with a specific example for which the relevant
probabilities can be calculated without any approximations.

The example of Gaussian wave functions presents itself
as a very good option for such a precise analysis since both
the integration and the propagation of Gaussian states can be
solved without any approximations. We can therefore confirm
that the superposition of Gaussian wave functions that will be
analyzed in more detail in Sec. VII does indeed violate Eq. (9)
by calculating the precise probabilities for an appropriate
choice of Gaussians. In general, a superposition of Gaussian
wave functions with different variances σ1 and σ2 is given by

〈x | ψ+〉 = 1√
2
(

1 +
√

2σ1σ2

σ 2
1 +σ 2

2

)
[

1(
2πσ 2

1

)1/4 exp

(
− x2

4σ 2
1

)

+ 1(
2πσ 2

2

)1/4 exp

(
− x2

4σ 2
2

)]
. (10)

For σ1 � σ2, the Gaussian with variance σ1 is localized in
position and the Gaussian with σ2 is localized in momentum.
The momentum distribution will be given by a superposition
of Gaussians with variances of h̄/(2σ1) and h̄/(2σ2). Since
the Fourier transform of the two Gaussians is a similar sum of
two Gaussians with the same ratio of variances, the state | ψ+〉
is symmetric under the Fourier transform that transforms the
position representation into the momentum representation and
vice versa. Since the variances exchange their roles, the ratio
of the momentum scale B and the position scale L is given by
2σ1σ2 = h̄L/B. The uncertainty suppression factor U must
therefore satisfy the relation 4πUσ1σ2 = L2.

Because of the symmetry of the state under Fourier trans-
forms, the probabilities P (L) and P (B ) are equal. It is a
straightforward matter to determine the value of P (L) =
P (B ) using the integral of the probability density of the state

in Eq. (10). Here, the goal is to observe a maximal violation of
the article propagation inequality in Eq. (9). As the following
analysis will show, a particularly strong violation can be
obtained for a combination of σ1 = 0.16L and σ2 = 22.67L.
For this set of variances, the right-hand side of the particle
propagation inequality is given by

P (L) + P (B ) − 1 = 0.114 569. (11)

The value of the uncertainty suppression factor for this combi-
nation of variances is U = 0.021 939, and the corresponding
uncertainty limit for the right-hand side of Eq. (9) given
by Eq. (4) would be

√
U = 0.148 118. The minimal joint

probability P (L,B ) for the superposition of Gaussians is
therefore not too far from the theoretically possible maximum
at this value of the uncertainty suppression U .

The time evolution of Gaussian wave functions is well
known and merely results in a time-dependent change of the
variance and the phases that represent correlations between
position and momentum. At t = mL/B, both quantum state
components will have evolved to the same spatial variance of√
σ 2

1 + σ 2
2 . The superposition of the two components will then

show up as an interference pattern given by

|〈x | Û (t = mL/B ) | ψ+〉|2

= 1

2
(
1 +

√
2σ1σ2

σ 2
1 +σ 2

2

) 1√
2π

(
σ 2

1 + σ 2
2

)

× exp

[
− x2

2
(
σ 2

1 + σ 2
2

)
]

[1 + cos(φ(x))], (12)

where φ(x) represents the quadratic function of x that de-
termines the phase differences between the two components.
Although it would be possible to consider the precise interfer-
ence pattern given by the phase function φ(x) in an integration
of complex Gaussians, it seems to be sufficient to find an
upper bound of the probability based on cos(φ) � 1. It is
then possible to determine the corresponding upper bound for
the probability P (M ) of finding the particle in the interval
M between x(t ) = −L and x(t ) = +L by integrating the
envelope function of the interference pattern. The result is

P (M ) � 0.062 894 4. (13)

Clearly, this probability violates the particle propagation in-
equality given by Eq. (9). Specifically, the difference between
the lower bound of Eq. (9) and the maximal value of P (M ) is
equal to 0.051 674 6, a difference of more than 5% .

The example given in this section demonstrates that a
superposition of Gaussians can indeed violate the particle
propagation inequality. No approximations were used in the
determination of the results, and the precision of the calcu-
lations leaves no room for ambiguity. However, the specific
combination of variances was not chosen by accident. As
will be shown in the following, it is possible to optimize
the localization of any form of wave function in such a way
that a superposition of a state localized in position with a
state localized in momentum results in a maximal violation
of Eq. (9).
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IV. COEFFICIENTS FOR LOCALIZED QUANTUM
STATE COMPONENTS

In general, it is possible to construct candidates for the vi-
olation of Eq. (9) by using a superposition of a state localized
in position with a state localized in momentum. If the local-
ization is sufficiently strong, it is possible to assume that the
Fourier transform of the wave function will be approximately
constant in small intervals around zero. This approximation
can be used to determine the probabilities P (L), P (B ), and
P (M ) from only a small number of coefficients that charac-
terize the localization of the wave function.

Let us first consider states | φL〉 that are localized in L,
so that P (L) is close to one and the probability amplitudes
〈x | φL〉 of positions with |x| � L/2 are negligible. We can
then determine the probability of finding the particle in the
momentum interval |p(0)| � B/2 by using the Fourier trans-
form of 〈x | L〉. In this Fourier transform, the phase of the
contribution at p(0) = B/2 for x = L/2 is given by πU/2.
For sufficiently small uncertainty suppression factors U , the
probability amplitudes within the momentum interval |p| <

B/2 will therefore be approximately constant. The probability
of finding the particle in the momentum interval |p(0)| �
B/2 is then

P (B|φL) ≈ B|〈p = 0 | φL〉|2. (14)

The probability amplitude of momentum 〈p = 0 | φL〉 is de-
termined by an integral of the wave function 〈x | φL〉 that can
also serve as a measure of localization. It is convenient to
define the coherent spread C of the wave function as

C = 1√
L

∫ +∞

−∞
〈x | φL〉dx. (15)

For a rectangular wave function such as the one discussed in
[15], the coherent spread is equal to one, which is the maximal
value obtained for any wave function with P (L|φL) = 1. The
probability of finding the particle in B can now be expressed
in terms of the uncertainty suppression factor U and the
coherent spread C:

P (B|φL) = |C|2U. (16)

The coherent spread |C| can be larger than one for wave func-
tions that are not completely localized in the interval |x| �
L/2. To evaluate the lack of localization, we can introduce
the statistical mismatch η, which is defined as the probability
of finding the particle outside of the interval |x| � L/2:

η = 1 −
∫ +L/2

−L/2
|〈x | φL〉|2 dx. (17)

With this definition, the minimal joint probability P (L,B ) for
a state localized in L can be given as

P (L|φL) + P (B|φL) − 1 = |C|2U − η. (18)

If the state is given by a rectangular wave function of width L,
the minimal probability is equal to U . Most other states will
achieve lower values because of the tradeoff between coherent
spread |C| and mismatch η.

Equation (18) applies only to states localized in the in-
terval |x| � L/2. A similar result can be obtained for states
localized in the momentum interval |p| � B/2. As shown in

[15], constructive quantum interferences between two states
will enhance both P (L) and P (B ), resulting in a value of the
probability sum that exceeds the uncertainty limit suggested
by Eq. (18). In the following, we will therefore take a look
at the effects of an equal quantum superposition of a state
localized in position and a state localized in momentum on the
probabilities of finding the particle in the intervals |x| � L/2
and |p| � B/2, respectively.

V. QUANTUM INTERFERENCE OF POSITION
AND MOMENTUM

In a superposition of two nonorthogonal states, the interfer-
ence term contributes a positive or negative value to the total
probability of one for the normalized state, depending on the
phase relation between the two states of the superposition. It
is therefore convenient to define the global quantum phases of
the states in such a way that the inner product of the Hilbert
space vectors is a positive real number. This convention will
be used throughout the following discussion. Since the goal
is to increase the probabilities of finding the particle in L and
of finding the particle in B, we will now consider constructive
interferences of a state | φL〉 localized in |x| � L/2 and a state
| φB〉 localized in |p| � B/2. The normalized quantum state
| ψ+〉 is then given by

| ψ+〉 = 1√
2 + 2〈φL | φB〉 (| φL〉+ | φB〉). (19)

Since we wish to control both position and momentum equally
well, it is natural to choose the same shape of the wave
function for both states. Specifically, this means that the
probability amplitudes are related by

〈p | φB〉 =
√

L

B

〈
x = L

B
p

∣∣∣∣φL

〉
. (20)

The inner product of the two state vectors can be determined
by using the approximate Fourier transform of 〈x | φL〉 intro-
duced in the previous section:

〈φL | φB〉 =
∫ +∞

−∞
〈φL | p〉〈p | φB〉 dp

≈ 〈φL | p = 0〉
∫ +∞

−∞
〈p | φB〉 dp

≈
√

LB

2πh̄

∣∣∣∣ 1√
L

∫ +∞

−∞
〈x | φL〉 dx

∣∣∣∣
2

. (21)

The localization of | φL〉 in space and the localization of | φB〉
in momentum allow us to approximately determine the inner
product as a function of the uncertainty suppression factor U

given by Eq. (5) and the coherent spread C given by Eq. (15):

〈φL | φB〉 = |C|2
√

U. (22)

The quantum state overlap is therefore fully determined by
the same two coefficients that also determine the value of
P (B|φL). Comparison with Eq. (16) shows that the overlap
〈φL | φB〉 is exactly 1/

√
U times larger than the probabil-

ity P (B|φL) [or, equivalently, P (L|φB )], indicating that the
relative magnitude and importance of interference effects is
enhanced by small uncertainty suppression factors U .
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We can now examine the effect of the interferences on
the probabilities of finding the particle in the intervals |x| �
L/2 and |p| � B/2. For this purpose, it is useful to express
the density matrix of the state as a sum of projectors and
interference terms

| ψ〉〈ψ | = 1

2 + 2〈φL | φB〉 (| φL〉〈φL | + | φB〉〈φB |
+ | φB〉〈φL | + | φL〉〈φB |). (23)

The contributions of the projectors are already known from
the discussion in the previous section. The contribution of the
interference terms can be found by integrating the product of
the wave functions in the corresponding intervals of position
or momentum. For the momentum interval, the integral reads
as∫ B/2

−B/2
〈p | φB〉〈φL | p〉 dp ≈ 〈φL | p = 0〉

∫ B/2

−B/2
〈p | φB〉 dp.

(24)

This integral is very similar to the one used to determine the
inner product between the state vectors in Eq. (21). However,
the integral only runs from −B/2 to B/2. If the wave function
〈p | φB〉 has nonvanishing values outside of the interval |p| �
B/2, it is necessary to evaluate the reduction of the integral.
This can be achieved by defining the coherent cross section γ

as

γ = Re

(∫ +L/2
−L/2 〈x | φL〉 dx∫ +∞
−∞ 〈x | φL〉 dx

)
. (25)

We can evaluate the statistical contribution of the interference
term and express the probability P (L) of finding the particle
in the interval |x| < L/2 and the probability P (B ) of finding
the particle in the interval |p| < B/2 in terms of the uncer-
tainty suppression factor U and the coefficients C, η, and γ

that characterize the localization of the states | φL〉 and | φB〉
in the respective position and momentum intervals. The results
for the superposition state | ψ+〉 read as

P (L|ψ+) = P (B|ψ+) = 1

2 + 2|C|2√U

× (1 − η + |C|2U + 2γ |C|2
√

U ). (26)

Importantly, the interference term results in an increase of
the probabilities that is proportional to the square root of U .
Since the suppression factor U is much smaller than one,
this contribution outweighs the contribution associated with
P (B|φL) [or, equivalently, P (L|φB )], which is proportional
to U .

The minimal joint probability P (L,B ) is given by

P (L|ψ+) + P (B|ψ+) − 1

= 1

1 + |C|2√U
[|C|2U + (2γ − 1)|C|2

√
U − η]. (27)

If η is close to zero, it is possible to obtain minimal joint
probabilities at small values of U , where the main contribution
is associated with the interference term. As a result, quan-
tum interference greatly enhances the fraction of particles
with both well-defined position and well-defined momentum.
Based on this statistical limit, it is then possible to examine

how the initial conditions determine the time evolution of
position in the extreme quantum mechanical limit. As initially
demonstrated in [15], the results clearly indicate that quantum
mechanics modifies the laws of motion by replacing the
simple quantitative relation between momentum and the time
evolution of position suggested by Eq. (1) with a qualitatively
different notion of causality.

VI. STATISTICS OF PARTICLE PROPAGATION

The time evolution of the wave functions is determined by
the unitary operator Û (t ) that represents the general solution
of the time-dependent Schrödinger equation in free space.
Since the time evolution of the wave function is given by
a linear operator, we can look at the time evolution of the
two components separately. This is particularly important
because the contributions to the probability distributions of
position at t = mL/B originate mostly from the very wide
momentum distribution for the component | φL〉 localized in
position, while the probability distribution for the component
| φB〉 localized in momentum is almost unchanged from the
initial distribution. As a result, both wave functions can be ap-
proximated by the waveforms associated with their maximal
uncertainties.

The contribution of the component | φL〉 is initially local-
ized in space and spreads out as a result of its substantial mo-
mentum uncertainty. At t = mL/B, the spatial wave function
is almost completely determined by the initial momentum dis-
tribution, with a curved wavefront that represents the expected
correlations between position and momentum:

〈x | Û (t ) | φL〉 = exp

(
i

B

2h̄L
x2 − i

π

4

)√
B

L

〈
p = B

L
x

∣∣∣∣φL

〉
.

(28)

It is possible to simplify this expression by using the position
distribution of the state | φB〉 instead of the momentum dis-
tribution of the state | φL〉 since the two are related by their
definitions. Furthermore, the relation between B and L can
be expressed in terms of the uncertainty suppression factor U ,
resulting in a more convenient expression of the time-evolved
wave function given by

〈x | Û (t ) | φL〉 = exp

[
iπ

(√
U

x

L

)2
− i

π

4

]
〈x | φB〉. (29)

At time t = mL/B, the initially localized wave function has
spread out to a shape and width equivalent to the shape and
width of the initially delocalized wave function described by
| φB〉. On the other hand, the comparatively precise definition
of a momentum of zero by the state | φB〉 means that its time
evolution at t = mL/B is nearly negligible, as seen by the
rather small phase modulation of the momentum components

〈p | Û (t ) | φB〉 = exp

[
iπU

( p

B

)2
]
〈p | φB〉. (30)

In the momentum representation of the time evolution of |
φB〉, all phase shifts in the interval |p| � B/2 are smaller than
U , and hence much smaller than one. It is therefore possible
to conclude that the time evolution leaves the quantum state
| φB〉 mostly unchanged. Note that this can also be understood
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as a consequence of energy-time uncertainty: since the low
uncertainty of momentum corresponds to a low-energy uncer-
tainty, it will take a time considerably larger than t = mL/B

until the time evolution significantly changes the Hilbert space
vector of the quantum state. Consequently, the spatial wave
function at time t can be approximated by the initial wave
function

〈x | Û (t ) | φB〉 ≈ 〈x | φB〉. (31)

For the superposition state | ψ+〉, it is essential that the
interference between | φL〉 and | φB〉 is described by the local
phase difference, which is characterized by a slowly varying
phase near the interval M . The probability distribution of x(t )
at t = mL/B is given by∣∣∣∣〈x | Û

(
mL

B

)
| ψ+〉

∣∣∣∣
2

= 2|〈x | φB〉|2
1 + 〈φL | φB〉

{
cos

[
π

2

(√
U

x

L

)2
− π

8

]}2

. (32)

Note that the phase shift of −π/8 is a result of the construc-
tive interference between the two localized state vectors. As
a consequence of this phase shift, the interference pattern
contributes a nonvanishing probability of 〈φL | φB〉 to the
integral over the probability distribution given by Eq. (32).
The width of the interference fringes scales with L/

√
U while

the envelope function of the interference pattern is determined
by the position distribution of | φB〉.

The probability P (M ) of finding the particles in the inter-
val |x(t )| � L can be estimated using the upper limit set by
constructive interference:

P (M ) � 4

1 + |C|2√U
|C|2U. (33)

This probability is closely related to the result for P (B | φL)
given by Eq. (16) since the probability density at x(t ) = 0
corresponds to the momentum density at p = 0 for | φL〉, with
a maximal enhancement by a factor of 2 due to constructive
interference. An additional factor of 2 originates from the
width of the interval M , which is exactly twice the width of the
correspondingly scaled intervals for L and B. Significantly,
quantum interference enhances the probability P (M ) much
less than it enhances the probability sum of P (L) and P (B ),
resulting in a violation of inequality (9). The precise amount
of the violation can be given in terms of the defect probability

Pdefect = P (L) + P (B ) − 1 − P (M ). (34)

Using the relations for arbitrary localized states | φL〉 and
| φB〉 derived above, we can find a lower limit for this defect
probability in terms of the localization constants that charac-
terize the states. The result reads as

Pdefect �
1

1 + |C|2√U
[(2γ − 1)|C|2

√
U − 3|C|2U − η].

(35)

This relation generalizes the result obtained for rectangular
wave functions in [15]. The choice of rectangular wave func-
tions in [15] was motivated by the fact that they are completely
localized inside their respective intervals, so that the statistical
defect is η = 0 and the coherent cross section is γ = 1. Under

these conditions, which require that the wave function must
be zero outside the localization interval, the rectangular wave
function also maximizes the coherent spread at a value of
C = 1. The defect probability is then given as a function of
uncertainty suppression U , with

Pdefect (rectangle) �
√

U

1 + √
U

(1 − 3
√

U ). (36)

This result corresponds to the lower limit given in Eq. (13)
of [15] since for |C|2 = 1,

√
U is equal to the inner product

given by Eq. (22). As discussed in [15], the maximal value of
the lower bound for rectangular wave functions is obtained at
an uncertainty suppression factor of 0.024, where the defect
probability has a minimal value of 0.072. Using the more
general relation given by Eq. (35), it is now possible to find the
lower bounds for defect probabilities achieved with a wider
variety of wave functions.

VII. LOCALIZATION CHARACTERISTICS OF
GAUSSIAN WAVE FUNCTIONS

Probably the most widely used mathematical description
of localized wave functions is the Gaussian wave function. As
discussed in Sec. III, the integration and propagation of Gaus-
sian states can actually be solved without any approximations
since the time evolution of a Gaussian wave function in free
space retains its Gaussian shape at all times. In the following,
we will apply the general formalism for the evaluation of
superpositions of states localized in position and in momen-
tum to Gaussians in order to optimize the particle propagation
paradox for a superposition of two Gaussians. The localization
of the Gaussians in the intervals |x| � L/2 and |p| � B/2 can
be described by the coherent spread C. Applying the definition
of Eq. (15) to Gaussian wave functions, the wave function for
a specific value of C can be given as

〈x | φL〉 =
√

2

|C|2L exp

[
−2π

(
x

|C|2L
)2

]
. (37)

The position uncertainty σ1 of this Gaussian is equal to
|C|2/√2π times L/2, or about 0.2L at |C|2 = 1. A coherent
spread smaller than one therefore guarantees that most of the
wave function is localized inside the interval of |x| � L/2.
For comparison with Eq. (10), it may be useful to consider
the relation between the position uncertainty of the state
localized in momentum and the position uncertainty of the
state localized in momentum. The first of these two relations
is given by

σ1 = 1√
8π

|C|2L. (38)

As mentioned in Sec. III, the value of the second variance can
be derived from the requirement that the ratio between σ1 and
the momentum uncertainty h̄/(2σ2) of the state localized in
momentum must be equal to the ratio of the intervals L/B.
Specifically, the product of the spatial variances is directly
related to the uncertainty suppression factor U by

σ1σ2 = 1

4πU
L2. (39)
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Therefore, the value of σ2 is given by

σ2 = 1√
2πU |C|2 L. (40)

With these relations, it is possible to derive the corresponding
spatial variances σ1 and σ2 for any combination of uncertainty
suppression factor U and squared coherent spread |C|2. As
demonstrated in Sec. III, it is then possible to confirm the
validity of the general relation between localization coeffi-
cients and defect probability given by Eq. (35) using the
precise integrations of the corresponding Gaussians. However,
the errors tend to be rather small for values of U that are
much smaller than one. Since the observation of the particle
propagation paradox requires values of U < 1

9 , the difference
between the precise calculation and the approximate results
used to derive the localization coefficients are negligible
throughout the region of interest. It is therefore sufficient to
analyze the results in terms of the dependence on the coeffi-
cients U and |C|2 given by Eq. (35) without any corrections
for the small deviations between the values of 〈x | ψ+〉 at
x = 0 and at x = L/2, or the values of 〈p | ψ+〉 at p = 0 and
at p = B/2.

Since the value of |C|2 completely determines the shape
of the Gaussian wave function, the remaining coefficients that
characterize the localization of the wave function can all be
expressed as functions of |C|2. The statistical mismatch η for
the Gaussian state is found by solving the integral in Eq. (17):

η = 1 − erf

( √
π

|C|2
)

. (41)

As expected, the statistical mismatch drops to zero for small
coherent spreads |C|. At a coherent spread of |C|2 = 1, the
value of the statistical mismatch is η(|C|2 = 1) = 0.012 19,
which is still too large to be ignored when compared with the
expected values of the defect probabilities. However, η rapidly
drops to zero as the coherent spread decreases, reaching a
value of 0.0017 at |C|2 = 0.8. The coherent cross section γ

can be determined by solving the integrals in Eq. (25):

γ = erf

(√
π/2

|C|2
)

. (42)

Note that γ is always smaller than 1 − η due to the additional
factor if 1/

√
2 in the argument of the error function. Specifi-

cally, the value at |C|2 = 1 is γ (|C|2 = 1) = 0.9237 and the
value at |C|2 = 0.8 is γ (|C|2 = 0.8) = 0.9733.

Equation (35) indicates that the lower limit of the defect
probability increases as |C|2 increases, but decreases with
increasing η and decreasing γ . Since an increase of |C|2
represents an increase in the spread of the wave function,
it naturally results in an increase of the statistical defect η

and a decrease of the coherent cross section γ , as shown
by Eqs. (41) and (42). For Gaussians, these effects of the
mismatch between the wave functions and the intervals start to
be relevant in the vicinity of |C|2 = 0.8 and increase rapidly
for higher values of |C|2. Figure 1 shows a contour plot
of the lower bound achieved for various combinations of
uncertainty suppression U and squared coherent spread |C|2.
A violation of the particle propagation inequality is obtained
for a wide range of combinations between U = 0 and 0.111,

Minimal value of Pdefect

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

|C|2

U

0.05

0.04

0.03

0.02

0.01

0.00

FIG. 1. Contour plot of the lower bound for the defect probability
Pdefect as a function of uncertainty suppression factor U and squared
coherent spread |C|2 for Gaussian wave functions. A violation of
the particle propagation inequality by more than 5% is obtained near
U = 0.022 and |C|2 = 0.8. The outer contour (Pdefect = 0.00) marks
the boundary of the inequality violation.

and between |C|2 = 0 and |C|2 ≈ 1.3. The maximal violation
is obtained at a squared coherent spread of about |C|2 = 0.8
with an uncertainty suppression factor of about U = 0.022.
The minimal defect probability in this region is slightly below
0.052. As seen in Fig. 1, a minimal defect probability of 0.05
can be obtained for squared coherent spreads from |C|2 = 0.7
to |C|2 = 0.9 and for uncertainty suppression factors between
U = 0.015 and 0.03. The violation of the particle propagation
inequality (9) is therefore sufficiently robust against small
variations of width in both the detection intervals and the wave
functions.

Using the relations at the start of the section, we can
express the optimal conditions in terms of the spatial Gaussian
variances σ1 and σ2 used in Sec. III. Specifically, |C|2 = 0.8
corresponds to σ1 = 0.1596L and U = 0.022 results in a
value of σ2 = 22.667L for the other variance. The values used
in the example in Sec. III are therefore close enough to the
optimum to permit a direct comparison of the approximate
results with the precise integrations of the Gaussian wave
functions. The calculations show that the minimal defect
probability of 0.52 obtained from the localization coeffi-
cients of Gaussian states is very close to the precise value
of 0.051 674 6 determined from the exact envelope function
of the interference pattern. It is therefore possible to con-
clude that the approximations used to derive the propagation
statistics from the coefficients |C|2, η, and γ are sufficiently
reliable to permit optimizations of the particle propagation
paradox for a wide variety of different wave functions.
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|C|2
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FIG. 2. Lower bound of the defect probability Pdefect as a func-
tion of squared coherent spread of the Gaussian wave function for the
optimal uncertainty suppression factor of U = 0.022. Initially, the
defect probability is proportional to the squared coherent spread |C|2.
As the coherent spread increases, an increasing part of the Gaussian
wave function extends beyond the localization intervals, resulting in
a rapid drop of Pdefect for |C|2 > 0.8.

As indicated above, the optimal value of 0.8 for the squared
coherent spread |C|2 originates from the tradeoff between
the increase of the probability density P (B|φL) = |C|2√U

and the decrease of the localization of the wave function in
the interval |x| � L/2 given by the cross sections 1 − η and
γ . The effect of this tradeoff is illustrated for the optimal
uncertainty suppression of U = 0.022 in Fig. 2. The defect
probability increases nearly linearly with |C|2 until it starts
to level off near the maximal value of 0.052 at |C|2 = 0.8.
Beyond the maximum, there is a rather steep drop in the
minimal defect probability, with no violation of the particle
propagation inequality beyond |C|2 ≈ 1.25 where too much
of the wave function 〈x | φL〉 is located outside of the interval
x � L/2.

The performance of the Gaussian wave functions is com-
pared with the performance of the rectangular wave function
in Fig. 3. The figure shows the dependence of minimal defect
probability Pdefect (min) on the uncertainty suppression factor
U for the rectangular wave function discussed in [15], for
the Gaussian with optimal coherent spread of |C|2 = 0.8,
and for the Gaussian with |C|2 = 1. As expected, the rect-
angular wave function achieves the highest possible defect
probabilities for all uncertainty suppression factors. Likewise,
the Gaussian with optimal coherent spread |C|2 = 0.8 out-
performs the nonoptimized Gaussian with |C|2 = 1 at all U .
Comparing the rectangular wave function with the nonopti-
mized Gaussian is interesting because they share the same
value of coherent spread |C|2 = 1. The difference in defect
probability is therefore a direct consequence of the statistical
defect of η = 0.012 19 and the reduced coherent cross section
of γ = 0.9237. The effects of these mismatches between the
wave functions and the target intervals reduces the observed
violation of the particle propagation inequality by about 3% .

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Minimal value of Pdefect

U

rectangle

|C|2 =0.8

|C|2 =1

FIG. 3. Comparison of defect probability optimization for rect-
angular wave functions (topmost curve), Gaussian wave functions
with squared coherent spread of |C|2 = 0.8 (middle curve), and
Gaussian wave functions with squared coherent spread of |C|2 =
1 (lowest curve). In all three cases, the defect probability Pdefect

rises sharply at small uncertainty suppression factors, achieving a
maximum around U = 0.02, followed by a gradual drop to zero.

The optimization of defect probabilities results in a well-
defined match between the width of a particular wave function
and the target interval, representing the optimal tradeoff be-
tween localization in the interval and the overall width of the
distribution given by |〈x | φL〉|2. The probability distribution
of the optimal Gaussian with |C|2 = 0.8 is compared with
the probability distribution of the rectangular state in Fig. 4.
The narrowness of the Gaussian distribution illustrates the
importance of fitting most of the wave function into the

− 0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

2.5
|〈x | φL〉|2 in units of 1/L

x in units of L

FIG. 4. Comparison of the probability density of the optimized
Gaussian wave function with the probability density of the rectangu-
lar wave function. The optimized Gaussian with a squared coherent
spread of |C|2 = 0.8 is almost completely localized inside the inter-
val of |x| � L/2, with a statistical mismatch of only η = 0.0017 and
a coherent cross section of γ = 0.9733.
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FIG. 5. Comparison of the probability distribution at time t =
mL/B given by Eq. (32) with the minimal joint probability of
P (L,B ) concentrated in the interval |x(t )| � L for a Gaussian wave
function with |C|2 = 0.8 and an uncertainty suppression factor of
U = 0.022. The minimal joint probability is P (L, B ) = 0.115 and
the upper bound of the probability P (M ) in the interval |x(t )| � L is
P (M ) < 0.063, for a minimal defect probability of Pdefect = 0.052.
The actual value of P (M ) is closer to 0.054, so the actual defect
probability is Pdefect ≈ 0.061.

interval between x = −L/2 and +L/2. Based on Eq. (35), it
can be concluded that a nonvanishing defect probability can be
obtained for any wave function with negligible statistical
defect η and coherent cross section γ close to one, even if
the squared coherent spread |C|2 is very low. This means that
most wave functions can be narrowed down sufficiently to
localize them in their target intervals. The essential mecha-
nism that results in the violation of the particle propagation
inequality (9) is the interference between momentum and
position that is seen in the interference pattern at time t =
mL/B.

VIII. QUANTUM LIMIT OF CAUSALITY

It is possible to illustrate the deviation of particle propa-
gation from Newton’s first law by comparing the probability
distribution at time t = mL/B given by Eq. (32) with the
minimal joint probability P (L,B ) concentrated in the inter-
val |x(t )| � L. The result for the optimized Gaussian wave
function is shown in Fig. 5. In this illustration, the magnitude
of the violation appears as a ratio of probabilities

P (M|ψ+)

P (L|ψ+) + P (B|ψ+) − 1
=1− Pdefect

P (L|ψ+) + P (B|ψ+) − 1
.

(43)

On both sides of the equation, the denominator is equal
to the minimal joint probability P (L,B ) obtained from the
initial position and momentum distributions. In the opti-
mized case shown in Fig. 5, this minimal joint probability
is equal to 0.115 (0.114 569 in the more precise calculation
of Sec. III). The upper estimate for the probability P (M ) is
0.063 (0.062 894 4 in the more precise calculation of Sec. III).

The result is a ratio of less than 0.55, corresponding to a
probability density that is nearly half of the density expected
from propagation in a straight line. Experimentally, it might
therefore be easier to identify the contrast between the ex-
pected probability density and the actual probability density
at x(t ) = 0.

If small probability densities can be resolved, the suppres-
sion of probability densities near x(t ) = 0 by the ratio given in
Eq. (43) continues to decrease as the uncertainty suppression
factor U drops to zero. Specifically, the minimal joint proba-
bility P (L|ψ+) + P (B|ψ+) − 1 drops to zero with

√
U , but

the probability P (M ) of finding the particle in the interval
|x(t )| � L at time t = mL/B drops to zero with U . As a
result, the suppression of probability densities near x(t ) = 0
is actually more extreme at very low values of U . If absolute
count rates are not an issue, it might thus be worthwhile to
explore extremely low values of U to better understand the
microscopic causes of this suppression of probabilities. The
dependence of the ratio on the uncertainty suppression factor
U and the localization coefficients |C|2, η, and γ is given by

P (M|ψ+)

P (L|ψ+)+P (B|ψ+)−1
� 4|C|2U

|C|2U+(2γ −1)|C|2√U − η
.

(44)

As we have seen in the previous section, it is possible to
suppress η and 1 − γ to zero by decreasing the squared
coherent spread |C|2. In this highly localized limit, the ratio
of the probabilities in Eq. (44) is given by

P (M|ψ+)

P (L|ψ+) + P (B|ψ+) − 1
� 4

√
U

1 + √
U

. (45)

This limit does not depend on |C|2 and is smaller than the limit
of one set by the particle propagation inequality (9) for any
uncertainty suppression factor smaller than 1

9 . It is therefore
possible to violate the particle propagation inequality by any
superpositions of wave functions that are completely local-
ized inside their respective position and momentum intervals,
where the ratio of observed probability P (M ) to the minimal
probability P (L,B ) required by Newton’s first law can be
suppressed to arbitrarily low values by choosing correspond-
ingly low uncertainty suppression factors U .

Experimentally, the problem of using highly localized
wave functions (|C|2 � 1) is that the actual probabilities
P (L|ψ+) and P (B|ψ+) will only be slightly higher than
0.5, making it difficult to obtain sufficiently reliable data
about the excess probability P (L) + P (B ) − 1. Specifically,
it is necessary to determine the slight increase of probability
approximately given by

P (L|ψ+) = P (B|ψ+) ≈ 1
2 (1 + |C|2

√
U ), (46)

where |C|2√U � 1. This difficulty is the reason why the
wave-function localization should be optimized for maximal
Pdefect, and not to the ratio of probability densities near
x(t ) = 0. However, the physical origin of the violation of
Newton’s first law is easier to understand when looking at the
dependence of the probability ratio in Eq. (45) on uncertainty
suppression U . If we concentrate on the case of η = 0 and
γ = 1, we can scale the interference pattern observed at
t = mL/B using the minimal probability density required by
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Newton’s first law,

2L|〈x | Û ( mL
B

) | ψ+〉|2
P (L|ψ+) + P (B|ψ+) − 1

≈ 4
√

U

1 + √
U

{
1

2
+ 1

2
cos

[
π

(√
U

x

L

)2
− π

4

]}
. (47)

In this representation of the probability distribution observed
at t = mL/B, the upper limit of the ratio of probabilities given
in Eq. (45) appears as the amplitude of the scaled quantum
interference pattern. Importantly, this interference pattern is
also responsible for the enhancement of the probabilities
P (L|ψ+) and P (B|ψ+) beyond 0.5, as explained in Sec. V.
According to the logic of classical causality, the probability
associated with quantum interference should be concentrated
exclusively in the interval |x(t )| � L, resulting in the minimal
ratio of one expected for the scaled probability distribution.
However, the actual probability densities near x(t ) = 0 are
much lower, suggesting that the probability contributed by
quantum interference is distributed over a much wider inter-
val. This can indeed be verified by considering the shape of the
interference term. The interference is constructive because the
integral over the complete interference pattern is positive:∫ ∞

−∞
cos

[
π

(√
U

x

L

)2
− π

4

]
= L√

U
. (48)

Constructive interference dominates because the phases of
the cosine are close to zero in a wide region around x = 0.
Since the values of the cosine in this region are close to
one, the integral in Eq. (48) defines an effective width of the
interference pattern. At L/

√
U , this width can be significantly

wider than the width of 2L expected for particles with initial
position |x| � L/2 and momentum |p| � B/2 according to
Newtonian laws of motion. It is therefore possible to identify
the origin of the violation of Newton’s first law in the exper-
imentally observable data: the joint contribution of quantum
interference to the position and momentum probabilities P (L)
and P (B ) is spread out in a quantum interference pattern that
is widened by a factor of

√
U at the time t = mL/B where the

joint control of position and momentum would have its max-
imal effect. We can therefore conclude that quantum interfer-
ence provides us with a nontrivial modification of the relations
between physical properties at different times. The fact that
this modification is not dependent on the detailed shape of the
wave function and is instead given by a very general feature
of interferences between low uncertainties in position and low
uncertainties in momentum indicates that a better practical
understanding of these modifications is possible if we shift
the focus of our investigations towards the relation between
quantum interference and causality relations between physical
properties, as previously suggested in [20,21].

IX. CONCLUSIONS

Particle propagation is the most accessible example of
causality relations in physics, and the idea of controlling
the path of a particle by defining its initial position and
momentum corresponds to our intuitive understanding of the
laws of motion. It is therefore important to understand how
these intuitive notions appear in their quantum mechanical

limit, where the manipulation and control of physical objects
is limited to the preparation of quantum states with uncertain
physical properties. In [15], it was pointed out that the su-
perposition of a quantum state localized in a position interval
L and a quantum state localized in a momentum interval B

can overcome the conventional uncertainty limit by providing
a minimal statistical fraction of particles whose position and
momentum is defined by both L and B, so that the uncertainty
of the fraction of the ensemble of particles described by the
superposition can be below the uncertainty limit of 2πh̄ by an
arbitrary uncertainty suppression factor of U . If it was correct
to assume that the combination of position and momentum
determined the future positions of the particles according to
Newton’s laws of motion or any similar geometric relation, we
would have to find this minimal fraction of particles within a
corresponding spatial interval at any later time t . Interestingly,
quantum mechanics instead describes the effects of superposi-
tion as an interference pattern, where the additional probabil-
ity of constructive quantum interferences between | φL〉 and |
φB〉 appears as an oscillation with a quadratic phase. As shown
by Eq. (48), this interference pattern spreads out the additional
probability over an interval that is about 1/(2

√
U ) times wider

than the interval determined by applying Newton’s laws of
motion to the position and momentum intervals.

The effect that quantum interference spreads out the pattern
of probability associated with the simultaneous definition of
position and momentum is independent of the specific wave
function used to describe the respective definitions of position
and momentum. However, care must be taken to quantify the
fractions of the wave functions that lie outside of the localiza-
tion interval. As shown above, this can be done by evaluating
the statistical mismatch η as defined by Eq. (17) and the co-
herent cross section γ as defined by Eq. (25). In addition, the
effective width of the wave function can be evaluated using the
coherent spread C as defined by Eq. (15). It is then possible to
show that the particle propagation inequality (9) which defines
the statistical limit for propagation in a straight line can be
violated by superpositions of any kind of wave functions
localized in position and momentum, respectively, with the
quantitative value of the defect probability Pdefect given as a
function of the wave-function localization characteristics in
Eq. (35). As noted above, it is usually possible to arbitrarily
reduce the statistical mismatch η and the coherent mismatch
1 − γ at the expense of lowering the quadratic coherent
spread |C|2, so that violations of the particle propagation
inequality (9) can always be achieved in the limit of very low
uncertainty suppression factors Û . The detailed optimization
of Gaussian wave functions shows that defect probabilities
of more than 5% can be obtained under conditions that are
very similar to the ones for rectangular wave functions given
in [15]. In particular, the optimal uncertainty suppression
factor of U = 0.022 is rather close to the optimal factor of
U = 0.024 obtained for rectangular wave functions.

The analysis above provides the necessary theoretical tools
to analyze the localization of wave functions with regard to
specific intervals of position or momentum. This approach
may also be useful in other contexts where continuous vari-
ables need to be adapted to statistical arguments about well-
defined measurement outcomes. In general, quantum inter-
ferences describe necessary corrections to classical laws of
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causality, and this modification is expressed mathematically
in the interference terms between the nonorthogonal states
that represent complementary conditions of control such as
position and momentum. It may be interesting to note that
the mathematical expression of this interference term also
appears in weak measurements, and hence in the analysis of
quantum paradoxes using weak values [26–33]. The violation
of the particle propagation inequality discussed above thus
establishes a connection between the rather abstract logic of of
quantum paradoxes in few level systems and the more intuitive
concept of motion in continuous spaces. This connection
would seem to support the idea that quantum mechanics is
essentially about a modification of the deterministic relations
between physical properties, as suggested in [34]. Specifi-
cally, the discussion above shows how quantum interferences
modify the physical meaning of the operator relation given
in Eq. (1). Operators and their expectation values tend to
obscure the essential role of quantum coherence and quantum
phase in the definition of causality and the related means of
control. For a complete understanding of quantum physics,
it may be necessary to investigate the physics described by
quantum phases in more detail, especially with regard to the
definition of dynamics and its classical limit [35,36]. The
detailed analysis of the interference pattern at time t = mL/B

in Sec. VIII might be seen as a first step towards such an

investigation since it not only identifies the origin of the
violation of the particle propagation inequality (9), but also
points the way to a constructive explanation of causality
and control in the quantum limit. Significantly, the maximal
level of microscopic control is always achieved by quantum
interference, which provides the means for statistical control
beyond any conventional uncertainty limits. However, this
higher level of control reveals fundamental differences in the
actual causality relations described by quantum phases and
the classical limit described by differential geometry. It is
essential to identify these differences and to develop a better
understanding of the relation between the correct quantum
mechanical description of motion and its approximate repre-
sentation in classical physics. The quantitative demonstration
of deviations from Newton’s first law demonstrates that it
is indeed possible to investigate these differences based on
experimentally testable criteria, and could therefore point the
way towards a better understanding of the fundamental laws
of physics.
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