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Broken-Hermiticity phase transition in the Bose-Hubbard model
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For the two-mode and (N − 1)-bosonic Bose-Hubbard quantum system a less usual phase transition controlled
by the parameter ε representing the on-site energy difference is studied. In the literature the parameter is
considered either real (ε > 0) or purely imaginary (with, say, γ = Im ε > 0), so the phase transition is analyzed
here at the interface ε = γ = 0. The evolution in the γ -controlled phase is required unitary so that the main
task for the theory is found in the (quasi-)Hermitization of the Hamiltonian, achieved by a suitable amendment
of the inner product in Hilbert space, 〈·|·〉 → 〈·|�|·〉. In the most relevant domain of small γ the linearized
Hilbert-space metric �(γ ) [constrained by the requirement limγ→0 �(γ ) = I of the smoothness of the change
of the Hilbert space at the phase transition] is constructed in closed form. Beyond the phase-transition instant,
several forms of the systematic non-numerical recurrent construction of the exact metrics �(γ ) are also shown
user friendly and feasible, at the not too large matric dimensions N at least.
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I. INTRODUCTION

The bosonic version of the Hubbard model is called the
Bose-Hubbard model [1]. It describes the zero-spin particles
on a lattice at zero temperature in a way which is well adapted,
in the context of solid-state physics, to the study of the
phase transition between its superfluid and insulator phases
induced by the variation of the density [2]. In the conventional
many-body setting the Bose-Hubbard (BH) Hamiltonian is,
typically, able to deal with the Bose-Einstein condensation
[3]. The amendments of the model can also offer a theoretical
background to various other forms of the quantum phase
transitions, say, in optical lattices [4].

The well-known user-friendly mathematical tractability of
the model [5] can be perceived as originating from its Lie-
algebraic background. Thus, one can write the two-mode
version of the conventional self-adjoint BH Hamiltonian
in terms of the two angular-momentum generators Lx,z of
Lie algebra, su(2), using just three real parameters, ε, v,
and c [6],

h(BH )(ε, v, c) = 2ε Lz + 2v Lx + 2c L2
z = h

†
(BH )(ε, v, c).

(1)

Obviously, the most efficient treatment of the changes caused
by the variations of the physical quantity 2c representing the
strength of the interbosonic interactions will be provided by
perturbation theory. Still, even if we restrict attention to the
zero-order approximation, we are left with the variability of
the two independent parameters, viz., of the quantity 2v which
measures the intensity of the single-particle tunneling, and of
the value 2ε which characterizes the bosonic on-site energy
difference. One of these quantities may be fixed via a suitable
choice of the units. Thus, once we set, say, v = 1, we only
have to study the one-parametric problem.
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In such a setting the authors of Refs. [6,7] imagined that it
is far from obvious that the parameter in question must be real.
They gave several tenable arguments supporting the study of
the possible inclusion of non-Hermiticities. In particular, the
authors of Ref. [6] proposed the replacement of the bosonic
on-site energy by a purely imaginary quantity,

2ε → 2iγ . (2)

Naturally, the change created some interpretational chal-
lenges. The main one was that the new, complexified Bose-
Hubbard (CBH) Hamiltonian ceased to be a self-adjoint
operator,

H(CBH)(γ, v, c) = −2 iγ Lz + 2v Lx

+ 2c L2
z �= H

†
(CBH)(γ, v, c). (3)

In [6] the problem has been settled by an open-quantum-
system upgrade of the underlying physics. In essence, an
ad hoc external field has been assumed to mimic the influence
of the environment causing the parameter-controlled gains
and/or losses of the bosons.

The authors of the idea felt inspired by the recent growth
of interest in the Hamiltonians which are non-self-adjoint but
PT symmetric (cf., e.g., reviews [8–10]). With this back-
ground it was possible to conclude that in the CBH model
one can clearly distinguish between its “stable” and “unsta-
ble” dynamical regimes, separated by a new form of phase
transition. In the former case, indeed, all of the eigenenergies
remain real because the PT symmetry of the system is ob-
served not only by the Hamiltonian but also by its eigenstates.
In the “unstable” case, on the contrary, the PT symmetry
becomes spontaneously broken. This means that some of the
energies complexify while the related eigenstates cease to be
PT symmetric.

The CBH-related research found one of its central topics in
the study of the “instants” of the breakdown of PT symmetry.
The existence of such “exceptional points” (EPs) in the
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analytic quantum Hamiltonians is well known to mathemati-
cians [11]. Still, the occurrence and the role of EPs in various
physical systems has only been clarified rather recently [12].
In particular, the careful localization of the EP singularities
γ

(EP)
(CBH)(v, c) helped the authors of Ref. [6] to clarify further

the connection between the CBH Hamiltonians (3) and the
Bose-Einstein condensation.

In [13] we pointed out that besides the CBH class of the
phenomenological models it is also possible to construct and
use their various complex-symmetric N by N matrix general-
izations for the same phenomenological purposes and in the
same EP-related context. We concluded that one of the most
characteristic physical features of any Hamiltonian of the EP-
supporting type is that in the apparently most interesting EP-
controlled dynamical regime, in which the system can perform
a quantum phase transition, the operator itself is strongly non-
Hermitian [14]. This leads to a rather paradoxical situation
in which the study of the weakly non-Hermitian regime
(which is closer to the conventional Hermitian regime) is
almost completely neglected in the literature. Now we intend
to fill the gap. On an entirely abstract conceptual level such
a project is promising because the popular concentration of
attention to the strongly non-Hermitian EP-related quantum
phase transitions is unnecessarily restrictive [15]. Here, we
shall accept a different philosophy.

Our present project is inspired by our methodological
study [16] in which our generic model-building strategy has
been outlined. In essence, we described there a type of
EP-unrelated quantum phase transition using just a weak-
non-Hermiticity mathematical background. Our return to this
subject was recently re-encouraged when we noticed that the
phenomenon of the EP-unrelated quantum phase transition
was also revealed and predicted in several non-Hermitian
multidimensional-oscillator examples [17] as well as in the
realistic-physics context of the dissipative photonic systems
[18] and/or, on experimental level of classical-physics simu-
lations, of synthetic circuits [19].

In [16] our specific interface-passage considerations were
illustrated by a schematic two-by-two matrix Hamiltonian. We
in fact did not pay too much attention to the details of the
evolution after the passage. We were aware that a realistic
illustration would be highly desirable and that such an illustra-
tion might have been provided by the CBH Hamiltonians (3).
Still, we felt that the task might be prohibitively complicated,
especially because after the passage the consistent descrip-
tion of the stable evolution of the system in question would
necessarily require the explicit construction of the so-called
operator of charge [8] or, in a more general quasi-Hermitian
setting of Refs. [20,21], of the so-called Hilbert-space
metric �.

Only recently, having reread Sec. 3 of paper [6] we imag-
ined that a compromising solution might have been sought,
and the purpose could have been served, by the simplified,
unperturbed CBH model with c = 0. The idea proved produc-
tive and it led to the results presented in what follows. Their
presentation will be preceded by Sec. II in which the reader
finds a compact outline of the current stage of development
of the concept of quantum phase transition, with special
emphasis upon its non-Hermitian descriptions. In subsequent
Sec. III we shall describe the necessary technical aspects

of the CBH model in its separate finite-dimensional N by
N matrix representations. In particular, we shall point out
that the consistent presentation of the model necessitates, via
the construction of �(CBH), the explicit specification of the
“standard” physical Hilbert space H(S)

(CBH) in which one only
can clarify the notion of the observability [9].

It is worth re-emphasizing that we will treat the CBH
Hamiltonian (3) (with c = 0) as the quasi-Hermitian oper-
ator [20,22], i.e., as the generator of the evolution which
is unitary in H(S). In contrast to the open-system theories
[23], our present version of the CBH model will be built
differently, as a closed quantum system without any implicit
or explicit reference to an interaction with the environment.
The feasibility of such a project will be facilitated by the
solvability of the model guaranteeing the reality (i.e., the
potential observability) of the spectrum in a sufficiently large
interval of γ ∈ (0, γmax).

As we already indicated, our main (and, in practice, almost
always most difficult) technical task will be the construc-
tion of the after-the-transition Hamiltonian-dependent Hilbert
space H(S) = H(S)

(CBH)(γ ) or, more precisely, of its acceptable
physical inner product. This will be done in Sec. IV (for the
first nontrivial choice of N = 3), in Sec. V (for N = 4) and
in Sec. VI [where we will discuss the extrapolation of our
knowledge to all N , with tests performed at N = 5 (in Sec.
VI A) and N = 6 (in Sec. VI B)]. Finally, our message will be
summarized in Sec. VII.

II. HERMITIAN–QUASI-HERMITIAN
PHASE TRANSITION

A. Analytic Hamiltonians and phase transitions at
exceptional points

During the study of the phenomena called quantum phase
transitions one might often hesitate as to whether certain
abrupt changes of properties of a given system should still
be given the name of phase transition. One does not always
find guidance in parallels between classical and quantum
physics [24]. In one direction, for a given quantum model it
is not always easy to deduce the classical h̄ → 0 limit. The
situation is even worse in the opposite direction in which the
correspondence principle leads to quantization recipes which
may be ambiguous [25].

Examples of the incompleteness of the parallels abound,
especially after the physics community accepted the idea that
it may be useful to study stable quantum systems in their
non-Hermitian (usually called PT symmetric alias pseudo-
Hermitian) representations (cf., e.g., the respective compre-
hensive reviews [8] and [9]). In such a framework several
new theoretical ideas emerged during the last 25 years (cf.,
e.g., the introductory chapter in Ref. [10]). In 1992, for
example, the well known, exactly solvable N -fermion Lipkin-
Meshkov-Glick model of Ref. [26] has been generalized, by
Scholtz et al. [20], in a way which sampled, in the context of
many-particle quantum physics, several new forms of phase
transitions. Between 1997 and 1998 Bender with coauthors
[27,28] discovered, in a different context of quantum field the-
ory, an equally interesting class of innovative quantum phase
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transitions which they called the spontaneous breakdown of
PT symmetry.

These discoveries were followed by the identification of
several quantum phase transition phenomena reflecting the
presence of Kato’s exceptional point (EP, [11]) in the Hamil-
tonian. In the most frequently encountered phase transition of
this type the energies become complex so that the physical
interpretation of the original, unitarily evolving and stable
quantum system was lost. For the similar situations it is
characteristic that one must introduce some new degrees of
freedom so that the initial Hamiltonian �

(before)
0 as well as

at least some of the other observables �
(before)
1 ,�

(before)
2 , . . .

must be replaced, after the passage of the system in question
through its EP singularity, by some entirely different operators
�

(after)
j with j = 0, 1, . . ..
In general, the description of the latter (also known as

“‘first kind”) quantum phase transition requires also the
change of the underlying physical Hilbert space, H(before) →
H(after). Still, for some rather special quantum systems there
also exist exceptions. In these cases one can admit the survival
of kinematics (with H(before) ≡ H(after)) as well as of the dy-
namics (controlled by the same, EP-possessing and unchanged
non-Hermitian Hamiltonian). This scenario (called “quantum
phase transition of the second kind”; cf. [15]) is characterized
by the mere partial loss of the observability involving just a
subset of all of the relevant �j s with j �= 0.

In the latter scenario the evolution may be required to
remain unitary. This is rendered possible by the fact that
after the phase transition the bound-state energies are still real
and observable. Nevertheless, as long as the change always
involves at least some of the j > 0 observables �

(before)
j , one

encounters a full freedom in the choice of their descendants
�

(after)
j . As a consequence, the change of operators �

(before)
j →

�
(after)
j (which are all, under our overall unitary-evolution

hypothesis, necessarily quasi-Hermitian [20]) may imply, in
general, a parallel consistent change of the metric operator,
�(before) �= �(after). An analogous scenario will be also used
and built in our present paper.

B. Instant of onset of non-Hermiticity

In the toy model of Ref. [16] the conventional Hermiticity
of observables was lost and replaced, at an ad hoc phase-
transition interface, by the so-called quasi-Hermiticity. Sev-
eral features of the passage of the system through such a
boundary were discussed, with emphasis upon the method-
ological aspects of the problem. The passage from the Her-
mitian to quasi-Hermitian dynamical regime was illustrated
by the most elementary two-by-two-matrix toy model. Our
Hamiltonian H was time dependent and non-Hermitian but
PT symmetric, with a real spectrum. Its elementary nature
helped us to clarify the basic features of the mathematically
correct treatment of the dynamics of the system. The question
of a more realistic physical applicability of the formalism
remained open.

Let us now return to Eq. (3) representing one of the most
interesting non-Hermitian but still deeply realistic Hamilto-
nians. In subsequent sections we shall review some of the
basic properties of the model, emphasizing the difference

between its two possible physical probabilistic interpretations.
We shall explain that in a way outlined in Refs. [23] and
[9] this difference reflects the freedom of the choice between
the nonunitarity and unitarity of the evolution or between
the theoretical framework of the open and closed quantum
systems, respectively.

We shall restrict our attention to the unitary case. It has an
advantage that our knowledge of the dynamics is complete,
not involving any hypothetical environment. Due to the “hid-
den” form of the Hermiticity of the observables the dynamical
information about the evolution may be carried not only by
the Hamiltonian but also by the above-mentioned operator �.
Indeed, the latter Hilbert-space-metric operator carries such
information because it determines the correct physical inner
product in the standard Hilbert space H(S) [29].

Needless to add, in many models a guarantee of the com-
patibility between the information carried by H and � can be
nontrivial [30]. In fact, the necessity of this guarantee has been
perceived, in the past, as one of the key obstructions of the
applicability of the pseudo-Hermitian alias PT -symmetric
constructions in realistic situations.

C. Non-Hermitian phase and the unitarity of its evolution

The authors of paper [6] circumvented the search for the
Hilbert space H(S) via the open-system physical treatment
of their manifestly non-Hermitian quantum CBH Hamilto-
nians. They only studied the localization of the spontaneous
breakdown of PT symmetry in the strongly non-Hermitian
dynamical regime. In this case, the parameter γ measuring
the strength of the non-Hermiticity was assumed large, close
to its maximal, transition-responsible EP value γ (EP).

Incidentally, we should add that even in the latter, truly
extreme dynamical regime it should still be possible to fol-
low the unitary-evolution philosophy and constructions, in
principle at least. In practice one can of course expect that
these constructions will be perceivably easier in the weakly
non-Hermitian regime.

In the latter regime the main phenomenological advantages
of the closed-system approach are twofold. First, the unitary
picture of the evolution generated by matrices H

(N )
(CBH)(γ ) is

complete. There is no need of referring to an unspecified
environment [31]. In H(S) the underlying quantum theory
becomes fully compatible with the conventional textbooks
[32]. Second, the conservation of the unitarity during the non-
EP phase transitions may open the way towards a matching of
two alternative Hilbert-space representations of the quantum
world in a unified picture.

The replacement (2) may acquire, in this spirit, a smooth-
transition meaning at an interface where ε = γ = 0. For the
sake of definiteness let us agree that we shall follow the very
slow adiabatic change of the initially Hermitian BH model
(1) in the limit of vanishing small ε → 0. After the system
touches the interface and after it performs the Hermiticity–
non-Hermiticity phase transition (2), the subsequent evolution
will be controlled by the complexified model (3), with a small
γ , i.e., with the small imaginary on-site energy difference.

In the new regime one must discuss several mathemati-
cal components of the model requiring, e.g., the reality of
the energies and, second, a phenomenologically sufficiently
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well motivated choice of the correct physical Hilbert space.
The latter process involves not only an explicit and correct
constructive assignment of the metric � = �(H ) to the pre-
selected Hamiltonian H but also an appropriate suppression
of the ambiguity of such an assignment (cf., e.g., [33] for
an eligible “minimality” criterion and technique of such a
suppression).

III. HERMITIAN VS QUASI-HERMITIAN
BOSE-HUBBARD MODEL

A. Matching at ε = γ = 0

After the introductory considerations let us now turn at-
tention back to the exactly solvable interaction-free (i.e.,
c = 0) Bose-Hubbard model in its versions (1) and (3). No
special remarks have to be added to the former case which
is an entirely conventional Hermitian model. In our present
notation it will be assigned, at any value of its real variable
parameter ε � 0, the trivial metric �Hermitian = I .

Once we intend to speak about the Hermiticity-to-quasi-
Hermiticity quantum phase transition in the limit ε → 0
(i.e., say, at time t = 0), we only have to describe the post-
transition quantum system using the elementary complex
upgrade (2) of the parameter at any t > 0. The unitarity of
the t > 0 evolution may be then guaranteed by the proper
interpretation of Schrödinger equation in an adiabatic ap-
proximation [34], i.e., for the sufficiently small times and γ s
at least [35]. Our upgraded quasi-Hermitian Bose-Hubbard
Hamiltonian (3) will be, subsequently, assigned a nontrivial
metric � = �(H ).

The resulting pair of operators H(CBH)(γ ) and �(CBH)(γ )
describing the dynamics after t = 0 must necessarily satisfy
the Dieudonné’s constraint

H †� = �H. (4)

In what follows we intend to satisfy such a requirement
constructively. Our construction will be facilitated by the
knowledge of some basic properties of operators H(CBH)(γ )
as provided by the authors of paper [6]. As long as they did
not pay attention to the construction of �(CBH)(γ ), we will
have to address the following questions:

(i) We will have to solve Dieudonné’s Eq. (4) interpreted
as an implicit definition of metric.

(ii) As long as the latter definition is ambiguous [36],
we will restrict the class of solutions to the subclass of the
candidates for metric which are positive definite.

(iii) We will have to reduce the resulting set of eligible
metrics � = �j (γ ) to such a subfamily �

(0)
j (γ ) for which

the phase transition at t = 0 would be smooth, i.e., for which
the metric candidate trivializes in the limit γ → 0+, i.e.,

lim
γ→0+

�
(0)
j (γ ) = I. (5)

(iv) Subsequently, we will be allowed to fix all of the remain-
ing free parameters arbitrarily.

B. Quasi-Hermitian dynamical regime with γ > 0

The unperturbed models with c = 0 remain exactly
solvable in both the Hermitian and non-Hermitian cases

(cf. Sec. 3 in [6]). Their mutual relationship (2) is usually
perceived as purely formal. In Ref. [6], for example, the
authors claim that the study of complexified model (3) is
most interesting in the strongly non-Hermitian domain, near
the above-mentioned Kato’s exceptional points γ (EP), and far
from the onset-of-non-Hermiticity limit γ → 0. This makes
a false impression that the model is only interesting very
far from its possible phase-transition-like transmutation into
its self-adjoint partner (1), say, at a hypothetical interface
with ε ≈ 0 ≈ γ . We believe that the opposite is true. A truly
exciting physics might be expected to emerge at small ε and
γ . First of all, the passage of a quantum system in question
through the γ = ε = 0 interface would be a rather unusual
and specific quantum phase transition. Second, the study of
passages through an interface of such a type might throw new
light on the range of validity of the recent discoveries of the
failure of adiabatic hypothesis in the strongly non-Hermitian
regime [35]. Third, the study of the interface in a weakly non-
Hermitian representation might prove technically feasible.

1. Representation by matrices

In the light of the representation theory of su(2) the
toy-model operator (3) may be decomposed into an infinite
family of its finite-dimensional N by N matrix representations
H

(N )
(CBH)(γ ). They may be sampled by the N = 2 matrix

H
(2)
(CBH)(γ ) =

[−iγ 1

1 iγ

]
(6)

(with the bound-state spectrum E± = ±
√

1 − γ 2 and EPs
γ

(EP)
± = ±1) or, at N = 3, by

H
(3)
(CBH)(γ ) =

⎡
⎢⎢⎣

−2 iγ
√

2 0
√

2 0
√

2

0
√

2 2 iγ

⎤
⎥⎥⎦ (7)

(with E0 = 0, E± = ±2
√

1 − γ 2, and γ
(EP)
± = ±1), etc. The

key formal advantage of the complex symmetric structure
of these matrices has been found, in Refs. [37], in a tech-
nically friendly nature of the incorporation of perturbation
corrections. In this framework the authors of [6] studied the
dynamical regime in which γ ≈ γ (EP) and in which the bosons
sit in a double-well potential endowed with the respective
sink- and source-simulated additional couplings to an external
continuum. In this language they were really able to clarify
certain specific features of the Bose-Einstein condensation
treated as an EP-related phase transition.

2. Physical inner product

It is easy to show that at c = 0 and all N , the real line of the
CBH parameter γ splits into an open interval D = (−1, 1) (in
which the spectrum is real and nondegenerate), the comple-
ment (−∞,−1)

⋃
(1,∞) of the closure of D (in which the

spectrum is not real), and the boundary ∂D = {−1, 1} formed
by the Kato’s exceptional points γ

(EP)
± = ±1. In our present

paper we will exclusively pay attention to the interior of D,
treating Hamiltonian (3) as a standard self-adjoint operator of
a standard quantum observable.
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In the spirit of Stone’s theorem [38] the latter operator
plays just the role of the generator of unitary evolution. After
the phase transition such a role will be rendered possible
by the replacement of the conventional “friendly but false”
Hilbert space H(F ) (endowed with inner product 〈·|·〉) by its
“standard” physical amendment H(S) in which the Banach-
space topology remains unchanged and only the correct inner
product is different,

〈·|·〉 → 〈·|�|·〉.
Once we are given any diagonalizable Hamiltonian with real
spectrum, the construction of the necessary physical Hilbert
space can be perceived, in our present finite-dimensional cases
at least, as equivalent to the construction of the Hermitizing
operator � = �(H ) via Dieudonné’s equation (4). In such
a unitary-evolution approach also every CBH matrix (6), (7)
(etc.) must be assigned its sophisticated inner product render-
ing this matrix Hermitian. Without an additional information
about dynamics, we may simply consider any set of the
positive definite solutions of the Dieudonné’s Eq. (4) and
declare any one of them “physical.”

3. Metrics at N = 2

The insertion of Hamiltonian (6) converts Eq. (4) into the
definition of all of the eligible CBH Hilbert-space metrics at
N = 2 [13],

�(2)(β ) = I (2) +
[

0 β + i γ

β − i γ 0

]
,

−
√

1 − γ 2 < β <
√

1 − γ 2. (8)

The new free real parameter β numbers the complete set
of the different physical inner products, i.e., the different
classes of the eligible observables � = �

(2)
j (β ) which must

be compatible with the same metric, i.e., which must be self-
adjoint in the same Hilbert space H(S),

�
†
j (β )�(2)(β ) = �(2)(β )�j (β ) , j = 1, 2, . . . , J. (9)

Naturally, we must satisfy conditions (9) even if we decide
to preselect the physics-dictated observables �

(2)
j in advance.

Nevertheless, the metric � compatible with all of them need
not then exist at all [30].

In the conventional Hermitian quantum mechanics the
ambiguity of the assignment H → �(H ) is ignored. The
“formally optimal” choice of trivial � = I is practically never
questioned. The situation is different for the non-Hermitian
Hamiltonians with real energy spectra because it is much
less obvious which one of the available Hermitizations based
on the necessarily nontrivial inner product is “optimal.” One
could, for example, follow our recent recommendation [33]
and require that the difference � − I should be kept, in some
sense, minimal.

This may be also required at N = 2. The most natural
measure of the difference between � and the unit operator I

may be then based on our knowledge of all of the eigenvalues
of the general CBH metric,

θ
(2)
± (β ) = 1 ±

√
β2 + γ 2. (10)

The difference between these eigenvalues specifies, in the lan-
guage of geometry, the extent of anisotropy in the vector space
C2(�). The “minimal anisotropy choice” would be unique,
achieved at constant β = 0. This value is also sufficient and
acceptable in the whole interval of γ ∈ (0, 1) [or rather of
γ ∈ (−1, 1)] in which the energies remain real and, hence,
potentially observable.

IV. UNITARITY OF EVOLUTION AFTER THE PHASE
TRANSITION (N = 3)

A. Matrices of the metric at small γ

After we abbreviate G = √
2 γ we may insert Eq. (7),

together with a general ansatz for �, in Eq. (4). The two-
parametric solution is immediate [13],

�(3)(β, δ) = I (3) +

⎡
⎢⎣

0 β + i G δ + i Gβ

β − i G δ + G2 β + i G

δ − i Gβ β − i G 0

⎤
⎥⎦.

(11)

The guarantee of the positive definiteness does have a purely
algebraic form, in principle at least [39]. In practice the
localization of the boundaries of the domain of positivity of
the metric-operator roots remains prohibitively complicated
because the underlying secular polynomial contains as many
as 21 separate terms.

For our present purposes it will be sufficient to construct
the metric at small γ . We will only have to require that the
onset of the non-Hermiticity should be smooth, i.e., that the
metric should not differ too much from the unit matrix.
The inspection of Eq. (11) reveals that the free parameters β

and δ should be then small.
Once we start from β = δ = 0 we get the exact eigenvalues

of � in closed form. Besides the constant θ0 = 1, the other
two roots,

θ± = 1 ± 1

2

√
8 G2 + G4 + 1

2
G2 = 1 ± γ

√
4 + γ 2 + γ 2,

− 1/
√

2 < γ < 1/
√

2, (12)

of the underlying secular polynomial are γ dependent and
positive. In the weakly non-Hermitian dynamical regime, all
of the eigenvalues of the most general metrics (11) remain
perturbatively close to 1.

The simplest metric with trivial β = δ = 0 ceases to be
invertible at the reasonably large value of γcritical(β, δ) =
1/

√
2 ≈ 0.707.

B. Corrections

In the search for corrections let us set θ = 1 + s and get
the polynomial secular equation

0 = s3 − δ s2 + (−2 β2 − 4 γ 2 − δ2)s − 2 δ β2 + 4 δ γ 2 + δ3

in which we omitted all of the fourth- and higher-order
terms. This polynomial is quadratic in some parameters mak-
ing the approximate solutions expressible in the elementary
implicit-function forms γ = γ (s, β, . . .) or β = β(s, γ, . . .).
Although the resulting formulas are slightly tedious, their
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graphical and/or Taylor-series analysis remains straightfor-
ward. At δ = 0 one obtains, in particular, the same elementary
parameter dependence as above,

s0 = 0, s± = ±
√

2 β2 + 4 γ 2.

The message delivered by such an analysis is encouraging
because at the higher matrix dimensions we may expect the
following:

(i) the candidates for the metric may be written in the form
of the unit matrix plus corrections;

(ii) the correction matrix may be sought in the form which
is complex symmetric with respect to the second diagonal.

C. Metric covering the whole range of admissible γ

In contrast to the preceding N = 2 model our β = δ = 0
formula (12) fails to hold up to the EP supremum of γ →
γ (EP) = 1. The failure may be attributed to the trivial choice
of parameter δ. This may be tested at γ = γcritical(0, 0) =
1/

√
2. At this value of γ , our two-parametric family of metric

candidates,

�γ=1/
√

2(β, δ) =

⎡
⎢⎣

1 β + i δ + iβ

β − i δ + 2 β + i

δ − iβ β − i 1

⎤
⎥⎦,

may be assigned the secular polynomial

Pγ=1/
√

2(s) = s3 + (−4 − δ)s2 + (3 − δ2 − 3 β2 + 2 δ)s

− δ β2 + δ3 + δ + 2 δ2,

for which all of the roots may happen to be positive at a
nontrivial δ.

After the omission of the higher, subdominant powers of
parameters the localization of the amended δs degenerates to
the simplified secular equation

0 = s3 + (−4 − δ)s2 + (3 + 2 δ)s + δ,

which, incidentally, does not depend on β at all. Numerically
we localized its three roots which remained positive inside
a finite interval of negative δ � −0.382 478. On this ground
one can extend the admissible interval of γ at the expense
of using a tentative and, presumably, negative γ -dependent
function δ = δ(γ ).

In the most elementary implementation of such an idea let
us set β = 0 and δ = −γ . This leads to a new γ -dependent
metric candidate,

�(3)(0,−γ ) =

⎡
⎢⎢⎣

1 i
√

2γ −γ

−i
√

2γ 1 − γ + 2 γ 2 i
√

2γ

−γ −i
√

2γ 1

⎤
⎥⎥⎦,

with the three (exact) eigenvalues

θ1 = 1 − γ, θ2,3 = 1 ±
√

5 γ 2 + γ 4 − 2 γ 3 + γ 2.

These eigenvalues are, obviously, positive in the whole
(open) interval of physically relevant CBH parameters γ ∈
(0, γ (EP)) with γ (EP) = 1. The related metric remains accept-
able, therefore, up to the maximally non-Hermitian domain of
γ � γ (EP).

The amended construction introduces a more pronounced
anisotropy in the “standard,” metric-dependent physical
Hilbert space H(S) at the smallest γ s. Thus, the amendment
is less suitable for the study of the phase-transition onset of
the non-Hermiticity at γ ≈ 0.

V. CONSTRUCTIONS OF METRIC AT N = 4

The wisdom gained via the N = 2 and N = 3 results (8)
and (11) is that it might make sense to search for the general
N by N metrics �(N )(γ ) in the form which remains complex
symmetric with respect to its second diagonal.

A. Nine-parametric ansatz

The first nontrivial N = 4 CBH Hamiltonian,

H
(4)
(CBH)(γ ) =

⎡
⎢⎢⎢⎢⎢⎣

−3 iγ
√

3 0 0
√

3 −iγ 2 0

0 2 iγ
√

3

0 0
√

3 3 iγ

⎤
⎥⎥⎥⎥⎥⎦, (13)

yields the bound-state energies E±,± = ±(2 ± 1)
√

1 − γ 2

which are real inside a finite interval bounded by its
exceptional-point boundaries γ

(EP)
± = ±1. We must find now

such a “standard” Hilbert space H(S) in which the evolution
generated by our “closed-system” Hamiltonian H

(4)
(CBH)(γ )

would be unitary. Thus, we must find at least one invertible
and Hermitian matrix,

�
(4)
(CBH)(γ ) =

⎡
⎢⎢⎢⎢⎣

1 β + ix δ + iz κ + iy

β − ix ρ τ + iu δ + iz

δ − iz τ − iu ρ β + ix

κ − iy δ − iz β − ix 1

⎤
⎥⎥⎥⎥⎦, (14)

compatible with the Dieudonné’s hidden-Hermiticity con-
straint (4) in an interval of γ ∈ (0, γ (4)

max).
Lemma 1: Up to an arbitrary overall multiplication fac-

tor, ansatz (14) leads to the fully general CBH solution of
Dieudonné’s Eq. (4) at N = 4.

Proof. Elementary linear algebra converts Eq. (4) into the
set of definitions of the real diagonal element,

ρ = 1/3 (4 γ 2
√

3 +
√

3 + 2 δ)
√

3 = 1 + 4 γ 2 + 2δ/
√

3,

as well as of all of the imaginary parts of the matrix elements,

x =
√

3γ, z = 2 γ β, u = 2 γ 3 + 2 γ + γ δ/
√

3,

y = γ (2 γ 2 +
√

3 δ).

The last Dieudonné’s constraint,

τ = (4 γ 2β + 2 β +
√

3κ )/
√

3,

defines the last redundant real parameter so that Eq. (14)
acquires the status of the fully general three-parametric def-
inition of the candidates �(4)(γ ) = �(4)(γ, β, δ, κ ) for the
metric. �

The latter observation can be extrapolated to any matrix
dimension N .
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Theorem 1: For the matrix form of the c = 0 CBS Hamil-
tonians (3) of any dimension N Dieudonn’e’s Eq. (4) defines,
recurrently, all of the matrix elements of all of the eligible
(though not yet necessarily positive definite) Hamiltonian-
dependent metric candidates � = �(H ) in terms of the freely
variable N -plet of the real parts of the elements in the first row.

Proof. For the proof it is sufficient to realize that as long as
our Hamiltonians are tridiagonal, Dieudonné’s Eq. (4) can be
rearranged, row-wise, as a set of recurrences. A fully detailed
account of this idea and the explicit form of the arrangement
of the recurrences in an analogous real-matrix case may be
found in Ref. [40]. �

B. Zero-parametric ansatz for the metric at N = 4

When we compare the (N − 1)-parametric candidates for
the metrics as obtained at N = 2 [cf. Eq. (8)] and at N = 3

[cf. Eq. (11)] we notice that they are positive definite at the
vanishing parameters [cf. β → 0 at N = 2 in Eq. (10), or
β → 0 and δ → 0 at N = 3 in Eq. (12)]. Such a regularity
feature survives also at N = 4: for the proof we merely select
β = δ = κ = 0 and check.

Lemma 2: For β = δ = κ = 0 and for sufficiently small γ ,
all of the four eigenvalues of matrix (14) will be positive and
will have the following leading-order form:

θ±,1 = 1 ± γ + O(γ 2), θ±,2 = 1 ± 3 γ + O(γ 2). (15)

Proof. The leading-order minimization (15) of the physical
Hilbert-space anisotropy finds its immediate inspiration in
the general recipe of Ref. [33]. For our particular model the
formula can be obtained directly from the reduced β = δ =
κ = 0 version of Eq. (14),

�(4)(γ, 0, 0, 0) =

⎡
⎢⎢⎢⎢⎢⎣

1 i
√

3γ 0 2 iγ 3

−i
√

3γ 4 γ 2 + 1 2 iγ
(
γ 2 + 1

)
0

0 −2 iγ
(
γ 2 + 1

)
4 γ 2 + 1 i

√
3γ

−2 iγ 3 0 −i
√

3γ 1

⎤
⎥⎥⎥⎥⎥⎦. (16)

Elementary algebra yields the four eigenvalues θj in the
respective closed forms,

1 + 2 γ 2 − γ ± 2
√

γ 2 + 2 γ 4 − γ 3 + γ 6 − 2 γ 5

and

1 + γ + 2 γ 2 ± 2
√

γ 2 + γ 3 + 2 γ 4 + γ 6 + 2 γ 5,

which can be Taylor expanded,

θ1 = 1 + γ + γ 2 + O(γ 3), θ2 = 1 − 3 γ + 3 γ 2 + O(γ 3),

θ3 = 1 + 3 γ + 3 γ 2 + O(γ 3), θ4 = 1 − γ + γ 2 + O(γ 3).

�
The low-order terms may be checked to stay unchanged

when we omit the higher-order terms directly from the matrix
�. After such a simplification the secular equation yields the
same leading-order roots in the closed linear form (15) more
quickly. Such a simplification proves useful at the higher N .

At N = 4 the confirmation of this trick may rely on the
split of eigenvalues θj = 1 + sj and on the search of the roots
sj of the rearranged secular equation,

0 = s4 − 8 s3γ 2 + (−8 γ 6 − 10 γ 2 + 8 γ 4)s2

+ (32 γ 8 + 24 γ 4)r + 24 γ 6 + 9 γ 4

+ 40 γ 8 − 32 γ 10 + 16 γ 12. (17)

Under the assumption that the roots sj are all small for
small γ s, we may now order the coefficients and keep just
the leading-order terms. Equation (17) then degenerates to
the solvable problem 0 = s4 − 10 γ 2s2 + 9γ 4 possessing the
same leading-order roots as above, with s±,1 = ±γ + · · · and
s±,2 = ±3γ + · · · .

On the basis of such an experience one could recognize a
reemergence of angular-momentum matrices L(N )

x,y,z and prove
the following general-N result.

Theorem 2: Up to the first order in γ one of the simplest
physical CBH metrics may be given, at any N , the closed form

�(N )(γ ) = I − 2 γ L(N )
y + O(γ 2). (18)

Proof. It is sufficient to recall Eq. (7) and the commutation
relations in su(2). �

Corollary 5: The first-order eigenvalues of metric (18)
form the equidistant set

{θj } = {1 − 2 J γ , 1 − 2 (J − 1) γ , . . . , 1 − 2 γ , 1,

1 + 2 γ , 1 + 4 γ , . . . , 1 + 2 J γ }
at odd N = 2J + 1, and the equidistant set

{θj } = {1 − (2 J + 1) γ , 1 − (2 J − 1) γ , . . . , 1 − γ ,

1 + γ , 1 + 3 γ , . . . , 1 + (2 J + 1) γ }
at even N = 2J + 2.

The higher-power corrections will start playing a role when
the strength γ of the non-Hermiticity ceases to be small. Still,
the smallest eigenvalue 1 − (N − 1)γ + c γ 2 + · · · will van-
ish, in the leading-order approximation, at γcritical ≈ 1/(N −
1). At this boundary the metric will lose its invertibility and
positivity.

The estimate of γcritical decreases with N . Its second-order
amendment becomes c dependent so that once we return to
the N = 4 example (in which c is positive—cf. the Taylor-
series formulas in the proof of Theorem 2), the incorporation
of the second-order correction makes the amended estimate of
γcritical slightly larger. Incidentally, for our N = 4 matrix (16)
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j=1

j=2
j=3

0.99 1

0

10-4

jθ

γ
FIG. 1. The decrease of the three lowest eigenvalues θj (γ ) of the

N = 4 matrix (14) to zero for the growth of γ to its maximal physical
value γ (EP) = 1. The fourth root is much larger and lies out of the
picture.

the nonapproximative, exact value of γcricical = 1/
√

2 happens
to be even larger.

C. N = 4 metric covering the whole range of γ

With trivial β = κ = 0 and a tentative choice of δ = δ(γ )
one obtains vanishing z = τ = 0 and nontrivial y, u, and ρ.
All of the matrix elements of � appear to be nonzero and
strictly real or purely imaginary. In a trial and error manner
we verified that for δ(γ ) = −√

3(γ + ν γ 3)/(ν + 1) with ν =
1, ν = 2, ν = 3, or ν = 4 the metric remains regular and
positive along the whole physically relevant interval of γ ∈
(0, 1). Even at the smallest ν = 1 the graphical illustration
of the collapse of the invertibility in the EP limit γ → 1
displayed in Fig. 1 is persuasive. Omitting the fourth root
[such that limγ→1 θ4(γ ) = 8] the picture shows that all of the
other eigenvalues of the metric move to zero at a very different
rate with γ reaching its EP maximum γ = 1.

In the domain of small γ and at δ = 0, the
γ proportionality coefficients (−3,−1, 1, 3) as given by
Theorem 2 and its Corollary 5 get modified and replaced
by the less compact set of quantities −3/2 ± √

3 and
1/2 ± √

7, i.e., numerically, −3.23,−2.15, 0.23, 3.15,
obtained as the roots of the leading-order secular polynomial
s4 + (2) s3 + (−21/2) s2 + (−39/2) s + 81/16.

VI. CONSTRUCTION OF METRICS AT N � 5

A. Physical Hilbert space at N = 5

In the domain of very small γ the process of the Hermi-
tization of the CBH matrix Hamiltonians may be based on
Theorem 2 at any N . Nevertheless, as long as the estimated
γcritical ≈ 1/(N − 1) decreases quickly with the growth of N ,
the range of applicability of the linear approximation becomes
more and more restricted. The higher-precision constructions
become of enhanced interest at N � 5.

1. General four-parametric metric

For

H
(5)
(CBH)(γ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4 iγ 2 0 0 0

2 −2 iγ
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 2 iγ 2

0 0 0 2 4 iγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

we may consider the general Hermitian candidate for the
metric with normalization �

(5)
1,1(γ ) = 1,

�(5)(γ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 X + ix Y + iy Z + iz W + iw

X − ix R U + iu V + iv Z + iz

Y − iy U − iu T U + iu Y + iy

Z − iz V − iv U − iu R X + ix

W − iw Z − iz Y − iy X − ix 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

Its insertion in Eq. (4) yields the sequence of definitions of the
four imaginary components of the first-row elements,

x = 2 γ, y =
√

6γ X, z = 1/3 γ (3 Y + 2 γ 2
√

6)
√

6,

w = v + γ Z − 3 X γ,

as well as the two imaginary components of the second-row
elements,

u = 1/6 γ (6 + 12 γ 2 +
√

6Y )
√

6,

v = 4 γ 3X + 3 X γ + γ Z.

The real parts to be defined are the two off-diagonal items,

U = 2 γ 2
√

6X + 1/2
√

6X + 1/2
√

6Z,

V = W + γ 2
√

6Y + 4 γ 4 + 1/2
√

6Y ,

and their two diagonal partners,

R = 1 + 1/2
√

6Y + 6 γ 2,

T = 1/6 (4 Y+8 γ 2
√

6+8 γ 4
√

6+8 γ 2Y +
√

6 +
√

6W )
√

6.

The resulting �(5)(γ ) = �(5)(γ,X, Y,Z,W ) is a fairly com-
pact candidate for the general four-parametric metric.

2. Requirement of positivity

The key technical obstacle arises when one wishes to
specify the exact boundaries of the physical domain of the
parameters for which the metric remains well defined, i.e.,
invertible and positive definite. For our present purposes we
only need to know the metric at the small γ . In a way indicated
by Corollary 5, the eigenvalues of the metric are then revealed
positive and equidistant.
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At N = 5 the approximate metric candidate which is linear
in γ reads

�
(5)
0 (γ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 iγ 0 0 0

−2 iγ 1 iγ
√

6 0 0

0 −iγ
√

6 1 iγ
√

6 0

0 0 −iγ
√

6 1 2 iγ

0 0 0 −2 iγ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The quintuplet of its exact eigenvalues θj = 1 + rj coincides
with the roots of the exact secular polynomial which gets
completely factorized,

0 = (θ − 1)(θ − 1 + 2 γ )(θ − 1 − 2 γ )

× (θ − 1 − 4 γ )(θ − 1 + 4 γ ).

For the proof it is sufficient to turn attention to the deviations
rj from the unit value. Then, the exact secular equation is
again easily derived.

As long as its explicit form becomes rather lengthy (con-
taining as many as 22 terms), the detailed discussion of
the mutual dependence of its parameters and roots would
be a formidable task. Fortunately, once one omits all of
the higher-order corrections, the reduced equation reads

r5 − 20 γ 2r3 + 64 rγ 4 = 0 and remains solvable easily yield-
ing the roots r proportional to γ (i.e., small).

3. Two-parametric subfamily of metrics

In the models with N = 2, 3, and 4 we saw that an
important simplification resulted from the purely imaginary
choice of �1,2. One of the consequences was the purely real
form of �1,3. Let us now try to generalize this experience
and introduce, tentatively, a chessboard-inspired ansatz with,
in general, Im �i,j = 0 for i + j = even and Re �i,j = 0 for
i + j = odd. At N = 5 it reads

�(5)(y,w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ix y iz w

−ix ρ iu v iz

y −iu τ iu y

−iz v −iu ρ ix

w −iz y −ix 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, in the light of Eq. (4) we have x = 2 γ , z = √
6y γ +

4 γ 3, u = y γ + γ
√

6 + 2
√

6γ 3, while v = √
6y γ 2 +

4 γ 4 + 1/2 y
√

6 + w. On the main diagonal we get ρ =
6 γ 2 + 1 + 1/2 y

√
6 and τ = 1 + w + (4 y + 8 y γ 2)/

√
6 +

8 γ 2 + 8 γ 4. The resulting remarkable pattern of the
distribution of the powers of γ is best visible when we
choose trivial y = w = 0 and get the maximally elementary
metric without free parameters,

�(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 iγ 0 4 iγ 3 0

−2 iγ 6 γ 2 + 1 iγ
√

6(1 + 2 γ 2) 4 γ 4 4 iγ 3

0 −iγ
√

6(1 + 2 γ 2) 1 + 8 γ 2 + 8 γ 4 iγ
√

6(1 + 2 γ 2) 0

−4 iγ 3 4 γ 4 −iγ
√

6(1 + 2 γ 2) 6 γ 2 + 1 2 iγ

0 −4 iγ 3 0 −2 iγ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

This matrix is positive definite (i.e., eligible metric) in
the reasonably large interval of γ ∈ (0, γ (5)

max) where γ (5)
max =

1/2
√√

5 − 1 ≈ 0.555 892 970 0. The γ dependence of the
five eigenvalues θj is shown in Fig. 2.

B. Physical Hilbert space at N = 6

Our last explicit chessboard-inspired ansatz reads

�(6) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 i x y i z w i μ

−i x ρ i u v i ζ w

y −i u τ i σ v i z

−i z v −i σ τ i u y

w −i ζ v −i u ρ i x

−i μ w −i z y −i x 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

Its imaginary matrix elements are all defined by formulas
x = √

5γ , z = 2
√

5γ 3
√

2 + 3 y γ , and μ = 16 γ 5 +
2 γ 3

√
2
√

5y + √
5w γ for the first row and by formulas u =

2 γ
√

2 − 6/5
√

5y γ + 3/5 (2
√

5γ 3
√

2 + 3 y γ )
√

5, ζ =

0 0.5 1
0

0.5

1

jθ

γ
FIG. 2. The γ dependence of the eigenvalues of the N = 5 ma-

trix (21) and their positivity in the interval of γ ∈ [0, γmax) with

γmax = 1/2
√√

5 − 1.

2/5
√

2(2
√

5γ 3
√

2+3 y γ )
√

5+3/5
√

5w γ+16 γ 5+2 γ 3
√

2√
5y, and σ=3 γ−6/5

√
2
√

5y γ+3/5
√

2(2
√

5γ 3
√

2 +
3 y γ )

√
5−2/5 γ 2

√
2(2

√
5γ 3

√
2+3 y γ )

√
5+1/5

√
5w γ +

16 γ 5 + 2 γ 3
√

2
√

5y for the second and the third rows.
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As long as y and w are kept as independent variables, we
only have to define the remaining real matrix elements ρ =
8 γ 2 + 1 + 2/5

√
5y

√
2 and τ = 3/5

√
5y

√
2 + 12 γ 2 −

6/5
√

2
√

5y γ 2 + 6/5
√

2γ (2
√

5γ 3
√

2 + 3 y γ )
√

5 + 1 +
3/5 w

√
5 on the main diagonal, and, last but not least,

v = 4/5 γ (2
√

5γ 3
√

2 + 3 y γ )
√

5 + 3/5 y
√

5 + 2/5√
5w

√
2.

These results confirm the expectations and
extrapolation hypotheses. Once we accept the most
natural simplification y = w = 0 and once we keep
just the terms which are linear in γ we get again
the tridiagonal metric (18) with the factorized secular

equation,

0 = (θ − 1)(θ − 1 + 2 γ )(θ − 1 − 2 γ )

× (θ − 1 − 4 γ )(θ − 1 + 4 γ ).

After one incorporates the higher-order corrections we get the
parameter-free version of the metric. The simplification of
its matrix elements included z = 2

√
5γ 3

√
2, μ = 16 γ 5, u =

2 γ
√

2 + 6 γ 3
√

2, ζ = 8 γ 3 + 16 γ 5, and σ = 3 γ + 12 γ 3 +
8 γ 5, as well as ρ = 1 + 8 γ 2, τ = 1 + 12 γ 2 + 24 γ 4 and,
finally, v = 8 γ 4

√
2. This enables us to display here the

whole matrix, with its symmetry-determined matrix elements
omitted,

�
(6)
(CBH) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 i
√

5γ 0 . . . 16 iγ 5

−i
√

5γ 1 + 8 γ 2 2 i
√

2 γ (1 + 3 γ 2) . . . 0

0 −2 i
√

2 γ (1 + 3 γ 2) 1 + 12 γ 2 + 24 γ 4 . . . 2 i
√

10γ 3

−2 i
√

10γ 3 8
√

2 γ 4 −i γ (3 + 12 γ 2 + 8 γ 4) . . . 0

0 −8 i γ 3(1 + 2 γ 2) 8 γ 4
√

2 . . . i
√

5γ

−16 iγ 5 0 −2 i
√

10 γ 3 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

From the exact value of its smallest eigenvalue, inciden-
tally, we managed to deduce the exact value of the domain-
boundary quantity γ (6)

max = 1/2. Moreover, we also managed
to evaluate the second-order corrections to the eigenvalues of
the metric θj = 1 + Aj γ + Bj γ 2 + · · · . This result, summa-
rized in Table I, may be read as a strong encouragement of
extrapolations towards N > 6.

Presumably, also many other features of the N = 6 CBH
model may be expected to find their analogs at the general ma-
trix dimensions N . Among the clearest candidates, tendencies,
and patterns of possible extrapolations let us mention the last
few hypotheses which could help us to reduce, in the future,
the recurrences for the matrices �(N ) with polynomial entries
to the recurrences for the mere arrays of the coefficients.

(i) At any N , the chessboard-inspired complex ansatz for
�(N )(γ ) may be required to be a strictly real matrix after
a formal analytic-continuation replacement of γ by iα with
real α.

(ii) The powers γ Kn entering the matrix element �
(N )
i,j (γ )

may be conjectured to be limited by the following empirical
rules:

TABLE I. Coefficients in the approximation θ
(6)
j (γ ) = 1 +

Aj γ + Bj γ 2 + · · · .

j Aj Bj

1 5 10
2 3 6
3 1 4
4 −1 4
5 −3 6
6 −5 10

(a) Kn = even iff i + j = even; Kn=odd iff i + j = odd;
(b) min Kn = |i − j |; max Kn = min(|i + j − 2|, |i +

j − 2N − 2|).

VII. SUMMARY

Quantum theory offers a counterintuitive picture of reality.
One has to replace, e.g., the energy of a classical system by an
operator. In the most common unitary-evolution scenario such
an operator (i.e., Hamiltonian) must be self-adjoint, h = h†.
Once we admit a “hidden” interaction with environment, it
may cause the loss of the self-adjointness of the “effective”
Hamiltonian, H �= H † [23]. In parallel, the spectrum becomes
complex and, due to the possible losses or gains from the
environment, the evolution ceases to be unitary.

For a long time it escaped the attention of physicists that
there also exists a fairly large family of quantum systems in
which the Hamiltonians are admitted non-Hermitian but still
the system remains closed, exhibiting no interaction with an
“environment.” The evolution is unitary, in an apparent contra-
diction with Stone’s theorem. Fortunately, the paradox results
from a misunderstanding: the “false” non-self-adjointness is
detected in an ill-chosen Hilbert space H(F ).

Such an innovative use of non-Hermitian generators H

of the unitary evolution found its most persuasive success
in nuclear physics [20] or in condensed-matter physics [41].
The more ambitious theoretical implementations of the idea
were pursued in perturbation theory [42], in certain rela-
tivistic [43] and supersymmetric [44] extensions of quan-
tum mechanics plus, perhaps, in quantum cosmology [45],
and in quantum theory of catastrophes [46]. In all of these
applications, Dieudonné relation (4) appeared to connect a
given non-Hermitian observable Hamiltonian H with all of
its admissible Hermitizations, i.e., with all of the eligible
physical Hilbert-space metrics � = �(H ). For our present
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Bose-Hubbard family (3) of quantum Hamiltonians, in par-
ticular, we were able to guarantee the stable, unitary evolution
of the system via the construction of the operator � = �(H )
at small γ . For each representation (i.e., matrix dimension N )
we recommended the direct solution of Dieudonné’s Eq. (4)
and we showed that it is feasible.

For the first nontrivial matrix dimension N = 3 we admit
that the purely algebraic part of the task already looks rather
complicated. Still, a suitable amendment of the approach
made the construction feasible. The essence of the simpli-
fication lies in the ansatz for �(H ) with symmetry with
respect to the second diagonal. We revealed that such an
assumption leads to the fully general three-parametric family
of the candidates for the metric at N = 3, and that it might
open the way towards the study of models with general N .

At the higher N � 4 we encountered another obstacle
during the determination of the boundary of the domain D
of the “admissible” free parameters rendering the matrix of

metric positive definite. This goal appeared overambitious and
hopeless. It turned out that the construction could hardly be
algebraic and/or non-numerical. Due to the enormous growth
of the unfriendliness of secular polynomials the task of the
proof of positivity of the candidates for the metric appeared
next to impossible. Fortunately, in a climax of our paper we
arrived at an innovative, feasible resolution of the problem.
The proof has been found, thanks to the restriction of atten-
tion to the sufficiently small vicinity of the Hermitian limit
�(H ) → I , in the omission of the higher powers of γ and in
the ultimate discovery of the elementary Lie-algebraic form of
the leading-order difference �(H ) − I ∼ γLy + O(γ 2) and
of the elementary factorizability of the secular polynomial.
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