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Coherent propagation of laser beams in a small-sized system of weakly coupled optical light guides
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The features of the self-action of a wave field in a small-sized optical system consisting of 2N identical light
guides, which are disposed equidistantly along a ring, and an isolated fiber in the center are studied analytically
and numerically. Stable exact solutions are found for intense wave beams in such a system, allowing long-
distance coherent transport of radiation in a set of optical fibers. The total beam power in this case can exceed
several times the critical power of self-focusing in the continuous medium. This is clearly manifested for the out-
of-phase spatial distribution of un = (−1)nf , which is stable at arbitrary powers. Direct numerical simulation of
the nonlinear unidirectional wave propagation equation confirms the stability of found wave field distributions.
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I. INTRODUCTION

The successful development of fiber-optic technologies in
recent decades has stimulated research on replacement of the
components of solid-state laser systems by fiber components,
which can radically change attractiveness of relevant appli-
cations. Although inferior to the solid-state systems from the
viewpoint of their power characteristics, fiber lasers and non-
linear optical devices have such advantages as high efficiency
of conversion of the pump energy into the radiation energy
associated with the light-guide geometry and high quality of
the spatial profile of the laser beam, as well as the low cost,
small size, and lack of necessity to perform alignment in
the process of operation. Note that the maximum achievable
radiation power in a single fiber is limited primarily by the
self-focusing process and nonlinear absorption in the medium,
which leads to fiber damage.

Recently, the idea of amplifying wave packets in an array
of independent light guides [1,2] is being discussed as a way
to obtain laser pulses with an extremely high power level.
Recent works [3,4] experimentally demonstrate the possibility
of synchronizing laser radiation at the output of an array
of independent optical fibers. One of the difficulties of the
proposed approach is the high sensitivity of the method of
coherent combining of fields with respect to various nonlinear
perturbing factors.

The use of a multicore fiber (MCF) consisting of identi-
cal equidistantly disposed weakly coupled cores allows for
initially coherent propagation of laser radiation with a total
power being significantly higher than that capable of being
transmitted in the single core. This stimulates the study of
nonlinear wave processes in spatially periodic media, i.e., a set
of weakly coupled light guides [5–7]. A number of interesting
results were obtained in this field, in particular, the possibility
of generating a supercontinuum [8,9] and shortening the laser
pulse duration [10–12], controlling the structure of the wave
field, and forming of light bullets [12–15]. However, as shown
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by theoretical and experimental studies, in the system under
consideration there exists its own critical power [16–18],
at which self-focusing of the quasihomogeneous wave-field
distribution and its fibration into a set of incoherent structures
occurs [11].

In this paper, the theory of self-action of the wave field
in the little studied case of small-sized discrete systems is
developed for the purposes of transporting coherent laser
radiation with a total power much higher than the critical
self-focusing power in the medium. As a specific example,
we consider propagation of laser beams in a multicore fiber,
which is an array of 2N identical cores surrounding the
central core (see the example in Fig. 1). The value of N

is rarely very large due to technological limitations in the
production of an array of coupled light guides. It is known
[19,20] that homogeneous wave-field distributions in such
MCFs are unstable with respect to azimuth disturbances at
a high beam power. In our work, inhomogeneous stationary
nonlinear distributions of the wave field are found and their
stability is demonstrated even at the total power being much
higher than the critical self-focusing power. Direct numerical
simulation of the nonlinear unidirectional wave propagation
equation confirm the stability of found nonlinear distributions.

The paper is organized as follows. The basic equations are
formulated in Sec. II. Their solutions in the linear limit are
given in Sec. III. Nonlinear isotropic distributions of the wave
field are considered in Sec. IV. Section V is devoted to mirror-
symmetric nonlinear solutions. Amplitude-rugged nonlinear
solutions (the “crown”) are considered in Sec. VI. The phase-
modulated nonlinear mode and analysis of its stability are
presented in Sec. VII. Section VIII contains the comparison
of found analytical solutions with results of direct numerical
simulation of the nonlinear unidirectional wave propagation
equation.

II. BASIC EQUATIONS

Let us consider self-action of wave beams in a multicore
fiber, which is an array of 2N identical cores surrounding
the central core. Figure 1 shows schematically this MCF fiber
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FIG. 1. Schematic representation of MCF with cores located
equidistantly around the central one.

with N = 3. The analysis of this problem will be carried out
on the basis of the standard theoretical model [6,11,17,18,21],
where it is assumed that the fundamental directional modes of
the optical cores oriented parallel to the z axis are weakly cou-
pled. In this case, propagation of laser radiation in a multicore
fiber can be described approximately as a superposition of the
modes localized in each core:

E (z, x, y) �
∑

n

An(z)F (x − xn, y − yn)eiknz + c.c., (1)

where F is the structure of the fundamental spatial mode in
the core and An is the envelope of the electric field in the
nth core, which varies slowly along the z axis. The evolu-
tion of the envelope in the nth core during the propagation
of a wave field along the z axis can be influenced by the
Kerr nonlinearity of a single core and its interaction with
the nearest-neighboring cores, which arises from the weak
overlap of the modes directed by them. Assuming that the
connections between the cores are weak and do not perturb the
structure of the fundamental mode, we obtain the following
system of equations for the envelope of the electric field An

in the nth core:

i
∂An

∂z
= βn|An|2An +

2N∑
m=0

χmnAm. (2)

Here, the index n changes from zero to 2N , the parameter βn

is the coefficient of nonlinearity in the nth core, the coefficient
χmn = χnm determines the connection strength between the
mth and nth cores, and χnn = kn is the wave number in the
nth core.

We assume that all the cores are identical, i.e., the wave
number kn = χnn, the nonlinearity coefficients βn, and the
coupling coefficients (χn,n+1, χn,0 for n > 0) are the same
for all the cores. Then, the change in the variables un =
Ane

iknz
√

βn/χn,n+1 and the evolutionary coordinate z →
zχn,n+1 leads to the following system of equations for the
complex field amplitudes:

i
∂a

∂z
= χ

2N∑
n=1

un + |a|2a, (3a)

i
∂un

∂z
= χa + un+1 + un−1 + |un|2un. (3b)

Here, a = u0 and un are the amplitudes in the central and
nth cores, respectively, and χ = χn,0/χn,n+1 is the normalized
coefficient of connection to the central core. Equations (3)
preserve the total power of the wave beam

P = |a|2 +
2N∑
n=1

|un|2 = const. (4)

The applicability of Eqs. (3) is limited by the applica-
bility of the approximation of the single-mode propagation
of the wave field in each core. It will be violated when the
nonlinear wave-number shift βn|An|2 will be of the order of
the gap between the fundamental and the second modes. It
will occur [22] (see also Fig. 7) when the radiation power
Pn = |An|2

∫∫ |F |2dx dy in any core approaches the critical
self-focusing power in the medium, i.e., at

|un|2 = βn

χn,n+1

Pn∫∫ |F |2dx dy
� 4π

χn,n+1
∫∫ |F |2dx dy

≫ 1.

(5)

Here, the small factor χn,n+1
∫∫ |F |2dx dy � 1 determines

the degree of localization of the fundamental mode on the
scale of the distance between the cores.

III. LINEAR CASE

We turn first to analysis of Eqs. (3) in the linear case
(|un|2, |a|2 � 1). Due to the homogeneity of the equations,
the solution in this limit is sought conveniently in the form of
an expansion in the Bloch functions

un(z) =
∑
m

fm(z)ei�mn, �m = πm

N
. (6)

Substituting expression (6) into the system of equations (3),
we obtain equations for the amplitude fm(z) of the modes:1

i
∂fm

∂z
= −2 cos(�m)fm, m �= 0, (7a)

i
∂a

∂z
= 2Nχf0, (7b)

i
∂f0

∂z
= χa + 2f0. (7c)

It is clear from Eqs. (7) that, in the linear case, the evolution
of the amplitudes of the modes with m �= 0,

fm(z) = e−ihmzf (0)
m , f (0)

m ≡ fm(z = 0), (8)

splits off from the dynamics of the wave field in the central
core a and the averaged field f0 on the ring. Here, the value
hm = 2 cos(�m) plays the role of the inherent “wave number”
of the mth mode.

Equations (7b) and (7c) have the form of an oscillator
equation for the complex amplitudes a and f0, and describe
the periodic transfer of energy (“beats”) between the central
core a and the averaged field on the ring f0 of the multicore
fiber. The general solution of Eqs. (7b) and (7c) can be

1Here and in what follows, by “modes” we mean the distributions
(eigenmodes) in the discrete linear problem.

043857-2



COHERENT PROPAGATION OF LASER BEAMS IN A … PHYSICAL REVIEW A 98, 043857 (2018)

represented as a superposition of normal oscillations with
eigenfrequencies λ1,2 = 1 ±

√
1 + 2Nχ2:

a(z) = J+e−iλ1z + J−e−iλ2z, (9a)

f0(z) = −χJ+
λ2

e−iλ1z − χJ−
λ1

e−iλ2z. (9b)

Here, J+ and J− are found based on the initial values of the
wave field in the central core a(0) and the averaged field on the
ring f

(0)
0 of the multicore optical fiber

J± = ±χN

π (λ1 − λ2)

[
χa(0)

λ1,2
± f

(0)
0

]
. (10)

Analogous solutions (8) and (9) of a linear problem with N =
3 were found in [23].

It follows from the analysis of formulas (9) and (10)
that injection into the MCF of a specially prepared initial
distribution of the wave field

a(0) = −λ1

χ
f

(0)
0 , (11a)

a(0) = −λ2

χ
f

(0)
0 (11b)

will result in zero coefficients J+ [for the case of Eq. (11a)]
or J− [for the case of Eq. (11b)]. Consequently, there will be
no “beats,” and the distribution of the wave field will remain
unchanged for wave field distributions (11).

The cubic nonlinearity of the medium will disrupt coherent
propagation of high-power laser beams in the MCF. However,
as will be shown below, the wave structures containing a
small number of linear modes will be exact stable solutions in
the nonlinear case as well. Therefore, we investigate various
configurations of the spatial distribution of the wave field
to ensure coherent radiation propagation in the MCF under
consideration.

IV. ISOTROPIC DISTRIBUTIONS

Let us consider the case of uniform distribution of the wave
field over the ring (fm�=0 = 0). In this case, the system of
equations (3) will take the form

i
∂a

∂z
= 2Nχf0 + |a|2a, (12a)

i
∂f0

∂z
= χa + 2f0 + |f0|2f0. (12b)

Resulting Eqs. (12) are the equations for two nonlinear
oscillators with a linear connection between them. The system
of equations (12) obviously preserves the total power of the
wave beam

P = |a|2 + 2N |f0|2 = const. (13)

A. MCF with no central core (χ = 0)

First, we consider the simplest case. Suppose there is no
central core (χ = 0). Then, the solution of the system of
equations (12) has the form

a = 0, un = f0e
−i(2+|f0|2 )z. (14)

Unfortunately, this solution will be stable only at a low power
level. Indeed, for a field with perturbations of the form

un = [f0 + δmeiλz+i�mn]e−i(2+|f0|2 )z, |δm| � |f0|, (15)

we obtain real eigenvalues

λ2 =
(

|f0|2 − 4 sin2 �m

2

)2

− |f0|4 � 0 (16)

only at the power of the wave beam equal to

P ≡ 2N |f0|2 � Pcr1 = 4N sin2 π

2N
≈

N�1

π2

N
. (17)

Thus the injected wave beam with the power P > Pcr1 will be
unstable with respect to azimuthal perturbations. Moreover,
the critical power Pcr1 is not large and tends to zero as the
number of cores on the ring of the multicore fiber increases
(N → ∞).

The difference between the discrete and the continuous
cases is related to the fact that in a continuous medium a plane
wave is subject to filamentation instability at an arbitrarily
small amplitude. This is not difficult to see from formula (17)
for N → ∞. The appearance of a threshold for a finite N

is associated with the absence of perturbations in the system
with a wavelength greater than the size of the discrete system.

B. MCF with a central core (χ �= 0)

Let us consider the case when the central core is present
(χ �= 0) and the energy transfer between the central core and
the ring becomes possible. In Sec. III it was shown that for a
certain ratio of the initial amplitudes, Eq. (11), there will be
no beating between the central core and the ring in the linear
case (P � 1). Next, we analyze the influence of the media
nonlinearity on the evolution of the wave beam in the MCF
under consideration (see Fig. 1). We find stationary nonlinear
distributions and obtain a solution in quadratures.

The presence of the integral of problem (13) allows us to
reduce the dimension of the problem and analyze it in detail on
the phase plane. Indeed, we can seek the solution of Eqs. (12)
in the form

a =
√
PAei(φ+θ ), un =

√
P (1 − A)

2N
eiφ. (18)

Here A is the fraction of the power in the central core.
The change of wave beam parameters {A, θ, φ} along the
propagation path satisfies the following system of ordinary
differential equations:

dA

dz
= −2χ

√
2N

√
A − A2 sin θ, (19a)

dθ

dz
=

√
2Nχ

2A − 1√
A − A2

cos θ − (2N + 1)PA

2N
+ P

2N
+ 2,

(19b)

dφ

dz
= −2χ

√
2N

√
A − A2

− P2

4N
[(A − 1)2 + 2NA2] + 2(A − 1). (19c)
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FIG. 2. (a)–(d) Phase plane of Eqs. (19a) and (19b) for the case
of N = 3 and χ = 1 for different power values, P = 1 (a), 20 (b),
40 (c), and 150 (d). The thick lines show separatrices. The dot line
at A = 1/(2N + 1) denotes the homogeneous distribution for θ = 0.
(e) The equilibrium states of the system as a function of the power
P . The blue dashed line shows an unstable equilibrium state of the
saddle type. The vertical line shows the position of the bifurcation
point P∗ ≈ 6

√
3N 2. The solid black lines show azimuthally stable

solutions. The insets show examples of the transverse structure of
the solution.

Equation (19c) for evolution of the phase φ is separated from
the dynamics of other parameters (A, θ ). The two remaining
equations (19a), (19b) have the integral of motion, i.e., the
Hamiltonian

H = 2Pχ
√

2NA(1 − A) cos θ − 2PA

+ P2

4N
[(A − 1)2 + 2NA2] = const. (20)

This allows us to write their solution in quadratures.
Let us analyze possible types of solutions of Eqs. (19a)

and (19b) on the phase plane, the form of which depends
essentially on the power of the wave beam P injected into
the MCF. As follows from Eq. (19a), there are two distributed
equilibrium states of the saddle type (A = 0 and A = 1), the
positions of which do not depend on the input power. These
are degenerate one-dimensional manifolds that correspond
to the localization of the field only in the central core (for
A = 1), or only on the ring of a multicore fiber (for A = 0,
see Sec. IV A).

The phase plane in the case of a small input power P
of the injected wave beam is shown in Fig. 2(a). The thick
curves denote the separatrices. It is seen that Eqs. (19a) and
(19b) have four equilibrium states: two distributed equilibrium
states of the saddle type (A = 0 and A = 1) and two centers.
At low powers (P → 0), these centers AI, AII approach the

values

A0
I = 1

2
− 1

2
√

2Nχ2 + 1
, θ = 0, (21a)

A0
II = 1

2
+ 1

2
√

2Nχ2 + 1
, θ = π, (21b)

corresponding to the eigenvectors of the normal modes of the
linear problem, Eq. (11).

As the wave beam power increases [see Fig. 2(b)], the
positions of the centers will shift. The center at θ = 0 shifts up
and the center at θ = π shifts down. In this case, the motion
outside the equilibrium states describes the successive transfer
of energy from the central core (decrease of A) to the ring of
the multicore fiber and vice versa. Moreover, beats occur with
a significant amplitude if the initial fraction of the energy in
the central core A is not close to the stationary value AI or AII.

With an increase in the power up to the level

P∗ ≈ 6χ
√

3N2 − 6N − 2 + χ2 + 2
√

3χ

2
√

3χ
, (22)

a bifurcation occurs, and a new pair of equilibrium states
appears: the center and the saddle type [see Fig. 2(c)]. With a
further increase in power, the position of the born equilibrium
state of the center type will shift to small values [A → 0; see
Fig. 2(d)]. It can be seen from the insets in Figs. 2(c) and
2(d) that for a power of P > P∗ the fraction of beating energy
drops, and solutions with a small varying amplitude appear
(centers near the maximum and minimum amplitudes). This
solution corresponds to the capture of the field only in the
central core or only in the ring because of the discreteness of
the problem.

Figure 2(e) shows the dependence of all equilibrium states
on the power P . The insets of this figure show examples of the
transverse structure of the solutions (the blue color denotes
the field with the opposite sign). For the power P � 1, one
can find the asymptotics of the three equilibrium states of the
center type

AI ≈ 1 − 2χ2N

C2
, θ = 0, (23a)

AII ≈ 1

2N + 1
+ 4χN2 + (4 − 2χ )N

(2N + 1)C
, θ = π, (23b)

AIII ≈ 8χ2N3

C2
, θ = 0. (23c)

Note that the branch AII tends to the homogeneous intensity
distribution |a|2 = |f0|2 having A = 1/(2N + 1). Asymp-
totic (23c) is obtained for

P � P∗ > 6χN2 � 4. (24)

Such a detailed analysis of Eqs. (19a) and (19b) also makes
it possible to clarify the issue left unexplained in [19,20].
At first sight, this system has two more equilibrium states
of the center type than the number of saddle points. Such
a situation is impossible in a conservative system, since its
Poincaré index (the difference in the number of centers and
saddles) cannot exceed 1. To resolve this paradox, one should
take into account two degenerate saddle-type manifolds (the
lines at A = 0 and A = 1) leading the Poincaré index to zero.
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C. Stability analysis

Let us further analyze the stability of the solutions found
with respect to the azimuthal perturbations on the ring of a
multicore fiber. To do this, we assume that the wave field is a
superposition of the solution found at a stationary point and a
small perturbation on the ring

un = (f0 + δum)eiλz, |f0|2 = P (1 − A)

2N
, λ = dφ

dz
,

(25)

where the phase φ is determined by Eq. (19c). Substituting
the expression (25) into the system of equations (3) and
linearizing with respect to small perturbations, we obtain a
system of equations for δum in the first order of smallness

i
dδ um

dz
= λδum + (δum)n+1 + (δum)n−1

+ f 2
0 δu∗

m + 2|f0|2δum, (26a)

−i
dδ u∗

m

dz
= λδu∗

m + (δu∗
m)n+1 + (δu∗

m)n−1

+ f ∗2
0 δum + 2|f0|2δu∗

m. (26b)

We seek a solution of Eqs. (26) in the form δum, δu∗
m ∝

ehz+i�mn. As a result, we obtain an algebraic system of two
homogeneous equations

δum(ih − λ − 2 cos �m − 2|f0|2) − f 2
0 δu∗

m = 0, (27a)

f ∗2
0 δum + δu∗

m(ih + λ + 2 cos �m + 2|f0|2) = 0, (27b)

which has a nontrivial solution in the case when h and �m

satisfy the following dispersion relation:

h2 = −(λ + 2 cos �m + |f0|2)(λ + 2 cos �m + 3|f0|2).

(28)

As shown in Sec. IV B, there exist three stationary solu-
tions (23) for the isotropic distributions of the wave field,
which correspond to the stationary points of the center type.
We will analyze the stability of these solutions using the
obtained dispersion relation (28). Here, we need to use ex-
pression (19c) with the values A and θ , which characterizes
corresponding distribution (23), to determine the parameter
λ = dφ/dz.

Let us first consider branch (23a), which describes the
propagation of the wave field mainly in the central core [see
Fig. 2(e)]. In this case, the expression for the parameter λ has
the form

λ = 2(A − 1) − P
2N

[(A − 1)2 + 2NA2]

− 2χ
√

2NA(1 − A). (29)

Substituting the approximation for the stationary point,
Eq. (23a), into expressions (28) and (29) we find that branch
I, localized at the center, is always stable:

h2 ≈ −
(
P + 2 cos �m + χ2

P

)

×
(

−P + 2 cos �m + 3χ2

P

)
< 0. (30)

For branch III, localized in the ring [see Fig. 2(e)] from the
approximation (23c), we find the parameter λ � −2 − P/2N .
As a result, we get that branch III is always unstable in the
field of existence

h2 ≈
(

4 sin2 �m

2
+ 4N2χ2

P

)

×
(P

N
− 4 sin2 �m

4
− 12N2χ2

P

)
> 0. (31)

Finally, consider branch II [Eq. (23b)] for which the pa-
rameter λ is equal to

λ = 2(A − 1) − P
2N

[(A − 1)2 + 2NA2]

+2χ
√

2NA(1 − A). (32)

It is difficult to make an accurate analytical analysis of the
stability of this wave-field distribution. However, substituting
the limiting value A ≈ 1/(2N + 1), we find

λ ≈ − P
2N + 1

, |f0|2 ≈ P
2N + 1

, (33a)

h2 ≈ −4

( P
2N + 1

+ cos
πm

N

)
cos

πm

N
. (33b)

The value of h2 becomes positive when

P � (2N + 1) sin
π

2N
≈

N�1
π. (34)

This is a rough estimate. Nevertheless, it differs from the
numerically found threshold by no more than 1.5 times.

The bold black lines in Fig. 2(e) show the wave field
distributions which are stable with respect to the azimuthal
perturbations. Numerical simulation of the initial system of
equations (3) confirms the above analysis.

In conclusion, it should be noted that the found isotropic
distribution of Eq. (23) [see Fig. 2(e)] is not suitable for
transporting a wave beam with a power greater than the
critical one for the self-focusing [19,20]. Branches II and III
are destroyed at high powers due to azimuthal perturbations.
The wave field in branch I at high powers is concentrated only
in the central core; thus its power is limited to a value of the
order of the critical self-focusing power, Eq. (5).

V. MIRROR-SYMMETRIC DISTRIBUTIONS

Next, let us consider nonisotropic configurations of the
wave field distributions in the MCF in order to use a larger
number of cores for transporting higher powers. In addition
to the solution in the form of the isotropic distribution and a
central core (see Sec. IV B), Eqs. (3) have a closed solution
in the form of a superposition of all odd linear modes (with
odd numbers m = 1, 3, 5, . . .) over the ring of the multicore
fiber. It should be noted that odd modes cannot excite even
modes or a field in the central core. This allows us to use
MFCs with cores located only on the ring. Analysis of the
corresponding equations for an arbitrary number N (there
are 2N cores on the ring) is difficult. However, the case of
N = 3 can be analyzed rather easily, since in this case there
are only three odd linear modes, specifically, f1e

i nπ
3 , f5e

−i nπ
3 ,
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FIG. 3. (a),(b) Phase plane of system of equations (38) for dif-
ferent power values P = 10 (a) and 40 (b). The bold lines show the
separatrices. The dot line corresponds to the distribution of the field
with the maximal localization. (c) Equilibrium states of the system as
functions of the power P . The solid bold curves show the azimuthally
stable solutions. The insets show examples of the transverse structure
of the solution.

and fNeinπ . Since we are looking for stationary distributions,
the amplitudes of the f1 and f5 modes must coincide (|f1| =
|f5|). Then, the system of equations (3) can be described by
two complex amplitudes of the first and the third modes:

un = f1(z) cos
nπ

3
+ (−1)nfN (z). (35)

The power conservation law in this case has the form

P = 3|f1|2 + 6|fN |2 = const. (36)

The presence of conservation law (36) allows us to reduce
the dimension of the problem. So, we seek the solution of
equations (3) in the form

f1 =
√
P
3

(1 − B )eiφ, fN =
√
PB

6
ei(φ+θ ), (37)

where B is the power fraction in the (−1)n mode and θ is the
relative phase difference between the first and third modes.
Substituting the fields in the form of Eq. (37) into Eqs. (3), we
obtain the following system of ordinary differential equations
for parameters {B, θ}:

dB

dz
= −P (1 − B )

3

⎡
⎣

√
B − B2

2
sin θ − B sin 2θ

⎤
⎦, (38a)

dθ

dz
= P

6
(4B − 1)

√
1 − B

2B
cos θ + P

6
(2B − 1) cos 2θ

+ PB

4
− P

12
+ 3. (38b)

Let us analyze the phase plane of equations (38), which es-
sentially depends on the power of the wave beam P [Figs. 3(a)
and 3(b)]. As before, there are two degenerate manifolds (B =
0, B = 1) whose positions do not depend on the power of the
wave field. The case of B = 0 corresponds to an azimuthally

unstable distribution over a ring according to the law un =√
P cos nπ

3 eiφ . The case of B = 1 corresponds to the stable
field distribution un = (−1)n

√
P/2eiφ . The equilibrium states

are shown in Fig. 3(c) as a function of the power P .
Already at the power P = 0, the center-saddle-creation

bifurcation near B � 0 occurs at θ = 0 [see Fig. 3(a)]. This
corresponds to the appearance of the lower branch B0 in
Fig. 3(c). As the power of the wave beam P increases, the
position of this equilibrium state is rapidly shifted upwards
according to the law

B0 ≈ P2

648
at P � 10. (39)

In this case, the wave field dynamics is similar to the isotropic
case (Fig. 2). The value of B decreases and increases pe-
riodically (its “beating” occurs). Consequently, the coherent
wave field could not be localized in several selected cores
at low levels of the power P . The second bifurcation occurs
at the wave field power P � 27 [see Fig. 3(b)], where new
equilibrium states (center and saddle) appear at θ = π . At a
given power, the upper branch Bπ appears in Fig. 3(c).

As the wave beam power increases, the equilibrium state at
θ = 0 tends to B � 1/3 according to the law

B0 ≈ 1

3
− 8

3P + 9
. (40)

This corresponds to the fact that the field is localized mainly
in two opposite cores [see the inset in Fig. 3(c)]. The second
equilibrium state at θ = π tends to B � 2/3 with an increas-
ing power according to the law

Bπ ≈ 2

3
− 16

3P − 18
. (41)

This branch corresponds to the wave beam distributed in the
four cores of the MCF under consideration.

Thus, in the case of six core fibers (N = 3, χ = 0), there
are two branches of the solutions [see Fig. 3(c)], which consist
of the odd modes only [cos nπ

3 and (−1)n] and describe the
stationary wave field distributions on the ring of the multicore
fiber. It should be noted that the second branch Bπ has a
threshold character, since it exists only at relatively high
powers (P � 27). The wave field on the branches B0 and Bπ

at large powers is concentrated mainly in two and four cores,
respectively. Hence the Bπ branch is preferable for coherent
propagation of a high-power wave beam in a multicore fiber.

An analytic study of the stability of the solutions B0 and
Bπ is a rather complicated problem. However, in this case
it is easy to find the azimuthal stability threshold by direct
numerical simulation. As shown by numerical analysis with
initial noise level of 10−5, the B0 and Bπ modes are stable
at the powers of P � 10 and P � 40, respectively. The solid
thick lines in Fig. 3(c) show modes that are stable to azimuthal
perturbations.

VI. CROWNLIKE DISTRIBUTIONS

Let us study another possible configuration of a wave beam
in a multicore optical fiber consisting of a large number of
cores (the restriction on the number of cores is limited only
by technological and geometric possibilities) on the ring with
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allowance for the central core, with the aim of aggregating
an even larger number of cores for coherent propagation of a
high-power laser beam.

To do this, we consider the limiting case, where the distri-
bution of the wave field on the ring has a modulation through
the core:

un = f0 + (−1)nfN . (42)

This corresponds to the case of superposition of linear modes
with m = 0 and m = N . The power conservation law for such
distribution has the form

P = |a|2 + 2N (|f0|2 + |fN |2). (43)

The presence of this integral allows us once more to reduce
the dimensionality of the problem and to seek the beam
distribution in a multicore fiber in the form

a =
√
PA ei(ξ+θ ), (44a)

un =
√
P (1 − A − B )

2N
eiξ + (−1)n

√
PB

2N
ei(ξ+φ), (44b)

where A and B are the fractions of the power in the central
core and in the mode (−1)n, respectively, and φ and θ are the
relative phase differences. Substituting the fields in the form
of Eq. (44) into Eqs. (3), we obtain the following system of
ordinary differential equations for the wave field parameters:

dB

dz
= −P

N
B(1 − A − B ) sin 2φ, (45a)

dφ

dz
= 4 + P

N
(2B + A − 1) cos2 φ +

√
2Nχ2A

1 − A − B
cos θ,

(45b)

dA

dz
= −2χ

√
2NA(1 − A − B ) sin θ, (45c)

dθ

dz
= 2 + χ

√
2N cos θ

A(1 − A − B )
(B + 2A − 1)

+ P
2N

[2B cos2 φ + 1 − A(2N + 1)]. (45d)

Analysis of the resulting four-dimensional system (45) is
difficult. However, we can find the stationary points and
investigate them for stability.

The case of the stationary state B = 0 for any value of the
phase φ corresponds to the injection of a wave beam into the
central core and a uniform distribution of the wave field on
the ring of a multicore fiber. This situation was studied earlier
in Sec. IV B.

The case of the stationary state A + B = 1 corresponds
to the situation of the injection of a wave field into the
central core and the excitation of the linear mode (−1)n on
the ring of a multicore fiber. It should be noted that these
two modes do not interact. Consequently, the wave fields on
the ring and at the center are not coherent. In this regime,
a wave field of arbitrary power can propagate, since such a
configuration of the wave field is stable with respect to the
azimuthal perturbations, but the fractions of the energies in
the two subsystems could not be synchronized.

FIG. 4. (a),(b) Phase plane of Eqs. (45a) and (45b) for A = 0
and N = 3 and different powers P = 10 (a) and 30 (b). The bold
lines show the separatrices. (c) The equilibrium states of the system
as functions of the power P . Solid bold black lines show azimuthally
stable solutions. The insets show examples of the transverse structure
of the solution.

We now consider the case of the stationary state A = 0
corresponding to the absence of a central core in the MCF.
Analysis of Eqs. (45a) and (45b) shows the existence of an
equilibrium state

Bc = 1

2
− 2N

P , φ = 0, A = 0. (46)

This solution has a threshold character, i.e., it exists
for P > P∗ = 4N . Figure 4 shows the corresponding phase
plane. Only the beats between the linear modes f0, (−1)nfN

are present at low wave beam powers P < P∗. This disallows
one to concentrate the radiation in several selected cores.
The bifurcation of center-saddle creation and a change in
the stability of the manifold A = B = 0 occur at the power
P = P∗. With a further increase in the wave beam power P ,
the position of the center shifts upward to the value B = 1/2
[see Eq. (46)]. The black solid line in Fig. 4(c) shows the
dependence of the equilibrium state on the power P for N =
3. A numerical analysis of the Bc mode shows its azimuthal
stability for P � 10N > P∗ in the MCF without a central
core (χ = 0). Adding of the central core introduces a new
scattering channel, which leads to a noticeable increase in the
azimuth stability threshold of the mode P � 10(1 + χ )N .

Let us consider now a more general case, where both A and
B are not equal to zero. The stationary points are located at (1)
φ = 0, θ = 0, and (2) φ = 0, θ = π . However, a point with
θ = 0 corresponds to an unstable equilibrium state of saddle
type and is therefore not of interest to us. The asymptotic
behavior of the second state at large powers P has the form

A− ≈ 1

N + 1
+ χN (N − 2)

P (N + 1)
, (47a)

B− ≈ N

2(N + 1)
− N [(4 − χ )N + 4 − 3χ ]

2P (N + 1)
. (47b)
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FIG. 5. Dependence of the equilibrium states A and B on the
power P (43). Here, the red dot-dashed and blue dashed curves show
the dependence of the power fraction in the central core and in the
(−1)n mode, respectively. The insets show the sample wave field
distribution. A black solid curve shows the dependence (46) for the
case where there is no radiation injected into the central core.

Thus the central core can be used to transport a high-power
wave beam in a multicore fiber. Note that this solution exists
only for the powers

P > (4 − χ )N + 4 − 3χ, (48)

i.e., it has a threshold character, as in the case of the mode
described by Eq. (46). The numerically found values of the
A− and B− modes agree well with the asymptotic, Eq. (47),
in the entire power range (see Fig. 5). Here, the red dash-
dotted line shows dependence (43) of the power fraction in
the central core on the total power P , and the blue dot-dashed
line shows the dependence of the power fraction in the linear
mode (−1)n of the total power P . Numerical analysis shows
that the solution found for Eq. (47) is stable with respect to
the azimuthal perturbations only at sufficiently high powers
P > 20(N + 1) for χ = 1 and initial noise level of 10−5.

To conclude this section, Fig. 6 shows the amplitudes and
wave field distributions in a multicore optical fiber for various
powers of P and the number of cores on the ring.

VII. SUPREME MODE

Next, we analyze another configuration of the inhomoge-
neous wave field distribution in MCF in the absence of a
central core (χ = 0):

un = (−1)nfN . (49)

On the phase plane (Fig. 4), this wave field distribution
corresponds to the manifold with B = 1 and A = 0. Spatial
distribution (49) is valuable from a practical point of view,
since all available 2N MCF cores are used to transport laser
radiation.

Let us investigate the stability of wave field distribu-
tion (49) with respect to the azimuthal perturbations. To do
this, we assume that the wave field is a superposition of
solution (49) and a small perturbation having the form (recall
that �m = πm/N )

un = [(−1)nfN + δmei�mn]ei(2−|fN |2 )z, |δm| � |fN |.

FIG. 6. Wave field distribution for different powers P and the
number of the cores on a ring. The coupling coefficient is χ = 1.
The blue color denotes the field with the opposite sign. The table
shows the field intensities in each core.

Substituting this expression in the system of equations (3) and
linearizing with respect to small perturbations, we obtain a
system of equations for δm in the first order of smallness:

i
dδm

dz
= 2δm + 2δm cos �m + f 2

Nδ∗
m + |fN |2δm, (50a)

−i
dδ∗

m

dz
= 2δ∗

m + 2δ∗
m cos �m + f ∗2

N δm + |fN |2δ∗
m. (50b)

We seek a solution of Eqs. (50) in the form δm, δ∗
m ∝ eiλz. As

a result, we obtain an algebraic system of two homogeneous
equations,

δm

(
λ + 4 cos2 �m

2
+ |fN |2

)
+ f 2

Nδ∗
m = 0, (51a)

f ∗2
N δm + δ∗

m

(
−λ + 4 cos2 �m

2
+ |fN |2

)
= 0, (51b)

which has a nontrivial solution in the case when λ and �m

satisfy the following dispersion relation:

λ2 =
(

4 cos2 �m

2
+ |fN |2

)2

− |fN |4 � 0.

This means that perturbations will not increase and the non-
linear solution un = (−1)nfN is stable for any amplitudes fN .

Numerical analysis of nonlinear dynamics in a multicore
fiber of six cores (N = 3) confirms the stability of the nonlin-
ear solution found. The results of numerical simulation clearly
demonstrate that even noises with an amplitude of tens of
percents of the amplitude of the nonlinear solution fN do
not have a noticeable effect on the dynamics of the wave
field in the MCF. Only small beatings having the amplitude
of the wave field occur. Moreover, the solution found is
also stable with respect to random perturbations (up to 10%)
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of the refractive index in each of the cores. Moreover, the
threshold for the amplitude of permissible perturbations of the
MCF structure increases with the increasing amplitude of the
nonlinear solution fN .

Thus supreme nonlinear mode (49), which is stable with
respect to azimuth disturbances, is an attractive object for
coherent propagation of laser radiation in MCF, with a total
power significantly higher than that capable of being trans-
mitted in a single-core fiber.

VIII. COMPARISON WITH DIRECT SIMULATIONS

To verify the stability of the analytic solutions found above
in the frame of the single-mode approximation, we performed
numerical simulation of the wave field dynamics described
by the nonlinear unidirectional wave propagation equation
[24,25]

i
∂E
∂z

=
√

k2
0n

2
0 + �⊥ E + k0n2|E |2E + k0δnU (x, y)E, (52)

with the potential

U =
∑

n

exp

(
−

[
(x − xn)2 + (y − yn)2

r2
n

]2
)

.

Here xn, yn, rn are the position and radius of the cores, n0 is
the refractive index of the cladding, δn is the difference be-
tween the refractive indices of the cores and the medium, and

n2 is the nonlinear refractive index. The operator
√

k2
0n0 + �⊥

can be easily calculated in Fourier space and allows one
to properly describe wave fields with transverse scales of
order of the wavelength by taking into account spherical
aberrations.

The calculations were carried out with the help of the
code [26] at a wavelength 2π/k0 = 1.03 μm for a silica fiber,
similar to ones available to our group. The refractive index
of the cladding was taken to be n0 = 1.45. The difference
in the refractive indices between the cores and the cladding
was δn = 0.002. The nonlinear refractive index was n2 = 3 ×
10−16 cm2/W. The radii of the cores were equal to rn = 4 μm
and the distance between them was 15 μm. The fields in each
core were set in the form of a Gaussian function closest to
the mode field LP01 of an individual core. The simulation was
performed on a grid with the number of points 256 × 256 in
a plane perpendicular to the propagation direction with step
�x = �y = 0.4 μm. The calculation step along the fiber axis
was chosen to be �z = 5 μm. We have verified that reducing
the step by half (with a corresponding increase in the number
of points along any coordinate) does not lead to a change in
the calculation results.

The initial wave field distributions were chosen as the
limiting distributions (for P → ∞) of the found analytic
solution. This significantly simplified the form of the initial
distribution, but introduced appreciable noise up to the level of
5% of the amplitude of the exact solution. Since the presented
solutions are stable, then such simplification did not lead to
a noticeable distortion of the wave field structure, but gave
only small amplitude and phase oscillations. The amplitude of
the wave field was chosen so that the power in each core was
of 0.7 critical power of self-focusing in fused silica. Higher

powers lead to the appearance of thermal effects that can
damage the considered fiber.

Direct numerical simulation of Eq. (52) showed the good
stability of most of the found solutions: the mode B0

[Fig. 7(a)], the mode Bc [Fig. 7(c)], and the supreme mode
(−1)n [Fig. 7(d)]. Note that the total power in all the presented
calculations exceeded the critical self-focusing power in the
medium. Moreover, the calculations showed the possibility
of coherent transport of a wave beam with a power of seven
critical powers of self-focusing using the supreme mode of
10-core fiber.

The use of powers close to the critical power of self-
focusing leads to the nonlinear narrowing of the wave field
inside cores. This provides the nonlinear decrease of the
coupling coefficient χ and effective increase of the dimen-
sionless power P ∝ |A|2/χ . Therefore, the found nonlinear
solutions become only more stable if one takes into account
the narrowing. This is also demonstrated by direct numerical
simulation of Eq. (52).

The case of the mode Bπ is more complicated. The interac-
tion of cores through one (unaccounted for in our simple ana-
lytical model) becomes noticeable at small distances between
the cores [see Fig. 7(b)]. This leads to a periodic synchronous
phase oscillation of half of the cores relative to another half.
Such behavior of the phase dynamics is the consequence of
the beats of the complex amplitude of two linearly coupled
stable groups of cores.

IX. CONCLUSION

A detailed analysis of the self-action of wave beams in a
small-sized multicore fiber consisting of 2N identical cores
located along a ring at equal distances from each other and a
separated core in the center is carried out. Exact analytical so-
lutions for the wave field distributions in the nonlinear regime
are obtained. This includes both the known solution, localized
in a single core, and the solutions using all the light guides [the
(−1)n mode], half of them (crownlike distribution), or only a
small fraction of the cores (mirror-symmetric distributions).
Their stability is shown analytically and numerically, which
makes it possible to use such wave field distributions for
coherent radiation transport in several parallel optical fibers
for arbitrarily large distances. In this case, the total power can
exceed by many times the critical power of self-focusing in
the medium.

The case of isotropic wave field distributions is analyzed in
detail. A critical power is found, up to which the homogeneous
distributions are stable. Actually, this critical power gives
the upper limit, to which the most easily excited isotropic
distributions can be used to transmit the coherent signal in the
considered multicore fibers.

The stability of the most interesting nonlinear wave field
distribution (−1)nfN with respect to field perturbations and
deformation of the MCF structure is studied. Such a nonlin-
ear solution is distributed over the largest number of MCF
cores and, accordingly, has the maximum power for a given
field amplitude. It is shown that this nonlinear distribution is
asymptotically stable at a high radiation power and at even
not too small (up to 10%) perturbations of the refractive index
in various optical cores. This makes the spatial distribution
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FIG. 7. Distributions of the real part of the wave fields corresponding to (a) the B0 mode (39) with total power 1.4Pcr , (b) the Bπ mode (41)
with total power 2.8Pcr , (c) the Bc mode (46) with total power 3.5Pcr , and (d) the supreme mode (49) with total power 7Pcr . Here Pcr ≈ 5 MW
is the critical power of self-focusing in fused silica.

of supreme mode (−1)n attractive for various applications,
including the transport and self-compression of laser pulses
in the MCF.
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