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Phase sensitivity of a Mach-Zehnder interferometer with single-intensity
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Interferometry is a widely used technique for precision measurements in both classical and quantum contexts.
One way to increase the precision of phase measurements, for example, in a Mach-Zehnder interferometer (MZI),
is to use high-intensity lasers. In this paper we study the phase sensitivity of a MZI in two detection setups
(difference intensity detection and single-mode intensity detection) and for three input scenarios (coherent,
double coherent, and coherent plus squeezed vacuum). For the coherent and double coherent input, both detection
setups can reach the quantum Cramér-Rao bound, although at different values of the optimal phase shift. The
double coherent input scenario has the unique advantage of changing the optimal phase shift by varying the input
power ratio.
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I. INTRODUCTION

Precision measurements are a key element in both science
and technology. Indeed, many important discoveries have
been made due to the improvement of measurement tech-
niques. More sensitive instruments, like microscopes and
telescopes, were paramount in discovering new phenomena
and in verifying or falsifying theoretical predictions. Thus,
improving the measurement sensitivity is a crucial factor
driving the advancement of science and technology alike.

A very sensitive, hence widely used measurement tech-
nique is interferometry, with the Mach-Zehnder interferome-
ter (MZI) as a standard tool. Thus, understanding, controlling
and improving the limits of phase sensitivity of a MZI is an
active field of research, both theoretically and experimentally
[1–5].

Classically, the sensitivity �ϕ of a measurement is
bounded by the standard quantum limit (SQL), also known
as the shot-noise limit [4,6,7]. This is given by �ϕSQL ∼
1/

√〈N〉, where 〈N〉 is the average number of photons used
to probe the system.

It was soon realized that squeezed states of light [8–10]
can improve the phase sensitivity of an interferometer [11,12].
Indeed, this technique has been tested and is to be used at
the LIGO detector in the future [3,13]. In a seminal article
Caves [2] showed that squeezed light can improve the phase
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sensitivity of an interferometer below the shot-noise limit.
Experimental demonstration with a MZI [14] soon followed,
proving the usability of the concept in practical measure-
ments. Over the following decades both theoretical and ex-
perimental studies showed how to improve the sensitivity of
a MZI fed by both a coherent and a squeezed vacuum input
[15–18].

In a quantum context, however, the phase sensitivity is
bounded by the Heisenberg limit [4,11,19–21] �ϕHL∼1/〈N〉
and this limit is fundamental [22]. The so-called NOON states
[11,19,21] saturate this limit, while separable states obey the
SQL [21].

The Heisenberg limit can be achieved in a MZI by injecting
a coherent state in one port and squeezed vacuum into the
other [23], if roughly half of the input power goes into
squeezing. This result was confirmed by Lang and Caves
[24,25], who, moreover, showed the input state to be optimal
for the class of coherent plus squeezed vacuum type of states.

Other scenarios considering active SU(1,1)-type inter-
ferometers were studied in [26,27]. The authors showed
a Heisenberg sensitivity limit achievable in a MZI with
squeezed coherent light in both inputs, if the squeezing power
is roughly 1/3 of the total power.

The phase sensitivity of a MZI is not constant [4]. For a
small phase variation measurement, one can assume that the
interferometer is preconfigured at a convenient point, where
the sensitivity is maximal. In order to extend the (rather lim-
ited) range of values where each detection scheme approaches
the Cramér-Rao bound, we can use a Bayesian approach and
photon-number resolving detectors. The Cramér-Rao bound
can be reached with this technique for any value of ϕ, as
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shown by Pezzé et al. [28]. Moreover, this can be also
achieved for the coherent plus squeezed vacuum input [23].

There are several detection methods used to measure the
output of a MZI [29], however in this paper we focus only on
two. In the difference intensity detection scheme, as the name
suggests, we have two detectors (one for each output of the
MZI) and we measure the difference of the two photocurrents.
In the single-mode intensity detection scheme we measure
only one photocount of the two. For low-power setups the
difference intensity detection scheme is experimentally pre-
ferred. Here we show that for high input power, the single-
mode detection scheme is superior to the difference intensity
detection scheme.

We also consider the double coherent input case in this pa-
per. This scenario was discussed by Shin et al. [30]. Moreover,
we show that this scenario can have a practical interest under
certain circumstances.

Although Heisenberg limited metrology has been a con-
stant theoretical and experimental challenge, this favorable
scenario happens for NOON states [11], where the current
record in the number of photons remains very low [31,32]
or at extremely low laser powers coupled with the highest
squeezing factors achievable today. In this paper we are
not interested in pursuing the Heisenberg limit at all costs.
Instead we focus on scenarios where the squeezing factor is a
limited resource, but the intensity of the coherent source is not
constrained [3,33]. This setup is better suited to present-day
experiments.

The paper is structured as follows. In Sec. II we introduce
our parameter estimation method, experimental setup, field
operator transformations, and output operator calculations.
We also review the Cramér-Rao bound and the Fisher in-
formation approach. In Sec. III we consider a coherent plus
vacuum input scenario and evaluate its phase sensitivity,
comparing both output detection scenarios with the quantum
Cramér-Rao bound. In Secs. IV and V we consider a coherent
plus coherent input scenario and a coherent plus squeezed vac-
uum input scenario, respectively. We evaluate their respective
phase sensitivities, compare the output detection scenarios,
and assess them with respect to the quantum Cramér-Rao
bound. All three scenarios are thoroughly discussed and con-
clusions are drawn in Sec. VI.

II. MZI SETUP: DETECTION SENSITIVITIES

A. Parameter estimation: A short introduction

We now briefly overview the problem of parameter esti-
mation in quantum mechanics. An experimentally accessible
Hermitian operator Ô depends on the parameter ϕ, which in
our case is the phase shift in a Mach-Zehnder interferometer;
by itself ϕ may or may not be an observable. The average of
the operator is

〈Ô(ϕ)〉 = 〈ψ |Ô(ϕ)|ψ〉, (1)

where |ψ〉 is the wave function of the system. A small
variation δϕ of the parameter ϕ induces a change

〈Ô(ϕ + δϕ)〉 ≈ 〈Ô(ϕ)〉 + ∂〈Ô(ϕ)〉
∂ϕ

δϕ. (2)

FIG. 1. Physical intuition behind Eq. (3). The sensitivity �ϕ

depends on both the displacement of the average 〈Ô〉 (due to a
change of the parameter ϕ) and the standard deviation �Ô. Here
we implicitly assume �Ô(ϕ) = �Ô(ϕ + �ϕ).

The difference 〈Ô(ϕ + δϕ)〉 − 〈Ô(ϕ)〉 is experimentally de-
tectable if

〈Ô(ϕ + δϕ)〉 − 〈Ô(ϕ)〉 � �Ô(ϕ), (3)

where �Ô(ϕ) := [〈Ô2〉 − 〈Ô〉2]1/2 is the standard deviation
of Ô. One can intuitively understand this condition graphi-
cally (see Fig. 1). The value of δϕ that saturates the inequality
(3) is called sensitivity and is denoted by �ϕ,

�ϕ = �Ô∣∣ ∂
∂ϕ

〈Ô〉∣∣ . (4)

This equation will be pivotal in the following sections.

B. Transformations of the field operators

Consider a Mach-Zehnder interferometer composed of two
mirrors M1,2 and two balanced beam splitters BS1,2; the
transmission (reflection) coefficient of BS1,2 is T = 1/

√
2

(R = i/
√

2) (see Fig. 2). We denote the two input (output)
ports by 0 and 1 (4 and 5). The transformation of the field

BS1

M1

M2

BS2
4

5

D4

D5

1
2

0

3

FIG. 2. Two detection schemes for the Mach-Zehnder interfer-
ometer we analyze here. The input state |ψin〉 is unitarily transformed
to the output |ψout〉. The parameter we want to estimate via a
suitable observable is the phase difference ϕ between the two arms
of the MZI.
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operators between the input and the output of the MZI is

â
†
4 = − sin

(ϕ

2

)
â
†
0 + cos

(ϕ

2

)
â
†
1,

â
†
5 = cos

(ϕ

2

)
â
†
0 + sin

(ϕ

2

)
â
†
1,

(5)

where we ignored global phases. We assume that the output
ports 4 and 5 are connected to ideal detectors.

Usually the input state |ψin〉 is given and we calculate either
the output photocurrents or the difference between the output
photocurrents. In the following we denote by ϕ the total phase
shift inside the interferometer. The total phase has two parts:
(i) the unknown (e.g., sensor-generated) phase shift ϕs , which
is the quantity we want to measure, and (ii) the experimentally
controllable part ϕexpt,

ϕ = ϕs + ϕexpt. (6)

We assume that |ϕs | � |ϕ|, so in order to have the best
performance, the experimenter must adjust ϕexpt as close as
possible to the optimal phase shift ϕopt.

C. Output observables

Each detection scheme has an associated observable char-
acterizing the measurement setup. We will discuss two mea-
surement strategies: (i) the difference intensity detection
scheme and (ii) the single-mode intensity detection scheme.

For Mach-Zehnder interferometers, a well-known ap-
proach of calculating the phase sensitivity is Schwinger’s
scheme based on angular momentum operators [4,34]. Al-
though this method gives faster results for a difference inten-
sity detector setup, it is not well suited for the single-mode
intensity detection scheme we investigate here. Alternatively,
one can use a Wigner-function-based method [29]. In this
paper we use a brute-force calculation based on the field
operator transformations (5).

1. Difference intensity detection scheme

In the first detection strategy we calculate the difference
between the output photocurrents [i.e., detectors D4 and D5

(see Fig. 2)]. Thus, the observable conveying information
about the phase ϕ is

N̂d (ϕ) = â
†
4â4 − â

†
5â5. (7)

Using the field operator transformations (5), we have

〈N̂d〉= cos ϕ(〈â†
1â1〉− 〈â†

0â0〉) − sin ϕ(〈â0â
†
1〉+ 〈â†

0â1〉), (8)

where the expectation values are calculated with respect to the
input state |ψin〉. To estimate the phase sensitivity in Eq. (4)
we need the absolute value of the derivative∣∣∣∣∂〈N̂d〉

∂ϕ

∣∣∣∣ = |sin ϕ(〈â†
0â0〉 − 〈â†

1â1〉)

− cos ϕ(〈â0â
†
1〉 + 〈â†

0â1〉)|. (9)

In the following sections we will calculate this for various in-
put states. The standard deviation �N̂d = [〈N̂2

d 〉 − 〈N̂d〉2]1/2

follows from Eq. (8) and Appendix B.

BS1

M1
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2

0
3
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FIG. 3. In the Fisher information approach the Mach-Zehnder
interferometer is considered up to the phase-shift operation [in our

case Û (ϕ) = e−iϕâ
†
3 â3 ] and the detection scheme completely disre-

garded; we have |ψϕ〉 = Û (ϕ)ÛBS|ψin〉, where ÛBS is the unitary
corresponding to BS1.

2. Single-mode intensity detection scheme

We now consider the single-mode intensity detection
scheme, i.e., we have only one detector coupled at the output
port 4 (see Fig. 2). Thus the operator of interest is N̂4 = â

†
4â4.

From Eq. (5) we have

〈N̂4〉 = sin2
(ϕ

2

)
〈â†

0â0〉 + cos2
(ϕ

2

)
〈â†

1â1〉

− sin ϕ

2
〈â0â

†
1〉 − sin ϕ

2
〈â†

0â1〉 (10)

and the absolute value of its derivative with respect to ϕ is∣∣∣∣∂〈N̂4〉
∂ϕ

∣∣∣∣ = 1

2
|sin ϕ(〈â†

0â0〉 − 〈â†
1â1〉)

− cos ϕ(〈â0â
†
1〉 + 〈â†

0â1〉)|. (11)

As before, the standard deviation �N̂4 follows from Eq. (10)
and Appendix B.

D. Parameter estimation via Fisher information

The Fisher information is a very elegant approach of find-
ing the best-case solution of parameter estimation [35]. The
lower bound for the estimation of a parameter ϕ is given by
the Cramér-Rao bound [4,27,36]

�ϕ � 1√
F (ϕ)

, (12)

where F (ϕ) is the Fisher information. The Fisher information
F (ϕ) is maximized by the quantum Fisher information [35]
F (ϕ) � H (ϕ). This leads to the quantum Cramér-Rao bound
(QCRB)

�ϕ � 1√
H (ϕ)

. (13)

Here H (ϕ) = Tr[ρ̂ϕL̂2
ϕ] and ρ̂ϕ = |ψϕ〉〈ψϕ | is the den-

sity matrix of our system (see Fig. 3); L̂ϕ is the
symmetric logarithmic derivative defined as [4,35,36]
L̂ϕρ̂ϕ + ρ̂ϕL̂ϕ = 2∂ρ̂ϕ/∂ϕ. Moreover, if the system is in
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a pure state the quantum Fisher information is H (ϕ) =
4(〈∂ϕψϕ|∂ϕψϕ〉 − |〈∂ϕψϕ|ψϕ〉|2), where |∂ϕψϕ〉 = ∂|ψϕ〉/∂ϕ

[26,27,36].
Importantly, calculating the Fisher information for a given

scenario is not always straightforward and moreover it can
lead to different results [37]. Indeed, an external phase ref-
erence is needed with respect to what are defined as the two
phase shifts, each in one arm of the MZI. For this reason, a
two-parameter estimation problem involving a Fisher matrix
is used [24] (see Appendix A). When an external phase
reference is not available, one has to pay particular atten-
tion to what is actually measurable given the experimental
setup [38].

We stress that in the evaluation of the QCRB the detection
scheme is disregarded (see Fig. 3). The QCRB will always
be a theoretical best-case scenario, which overlooks practical
implementations of the detection stage. In the following, for
each case discussed in Secs. III–V we will compare the
practically achievable results with the QCRB from Eq. (13).

III. SINGLE COHERENT INPUT

In this section we consider the input port 1 in a coherent
state |α〉 while input port 0 is kept “dark” (i.e., in the vacuum
state). The input state is

|ψin〉 = |α100〉 = D̂1(α)|0〉, (14)

where D̂1(α) = eαâ
†
1−α∗â1 is the displacement operator

[6,7,10].

A. Difference intensity detection scheme

The observable we measure is the difference in the pho-
tocurrents at the outputs 4 and 5, namely, the average value of
N̂d [Eq. (7)]. For the input state (14) we find 〈N̂d〉 = cos ϕ|α|2
and, using Eq. (B1), the output variance is found to be
�2N̂d = |α|2. Consequently, the phase sensitivity of a Mach-
Zehnder interferometer driven by a single coherent source is

�ϕdiff = 1

|sin ϕ||α| = 1

|sin ϕ|√〈N〉 , (15)

where the average number of photons is 〈N〉 = |α|2 and this
is the well-known shot-noise limit or standard quantum limit
[4,28].

B. Single-mode intensity detection scheme

In a single-mode intensity detection setup the average of
the output observable N̂4 gives

〈N̂4〉 = cos2
(ϕ

2

)
|α|2. (16)

The variance of N̂4 follows from Eqs. (B2) and (16), giving
�2N̂4 = cos2(ϕ/2)|α|2. Thus, the phase sensitivity in the
single-mode intensity detection case is

�ϕsing = 1∣∣sin
(

ϕ

2

)∣∣|α| = 1∣∣sin
(

ϕ

2

)∣∣√〈N〉 . (17)

FIG. 4. Phase sensitivity for the single-mode (solid blue line)
and difference (dashed red line) intensity detection setups compared
to the quantum Cramér-Rao bound (thick dashed line) for a single
coherent input with |α| = 104. Both configurations reach the Cramér-
Rao bound at their respective optimal phase shifts.

C. Discussion: The quantum Cramér-Rao bound

For a single input coherent state, the QCRB in Eq. (13) is
[4,37]

�ϕQCRB � 1

|α| = 1√〈N〉 . (18)

Both detection schemes reach this limit, but at different values
of the total internal phase shift, as depicted in Fig. 4.

In the differential detection scheme, the optimal sensitivity
is reached for |sin ϕ| = 1, i.e., ϕ

opt
diff = π/2 + kπ , k ∈ Z [see

Eq. (15)]. This implies equal output power at the two outputs
(4 and 5). There is no dark port in the case of the difference
intensity detection. This can be a major drawback if one uses
a high input power in order to lower the sensitivity.

For single-mode intensity detection, the phase sensitiv-
ity (17) reaches the QCRB at ϕ

opt
sing = π + 2kπ , k ∈ Z (see

Fig. 4). This means that the output 4 is a dark port. This
is a clear advantage for high input power since we can use
extremely sensitive p-i-n photodiodes [39].

IV. DOUBLE COHERENT INPUT

An interesting situation arises if we apply a coherent source
in each input port of the interferometer

|ψin〉 = |α1β0〉 = D̂1(α)D̂0(β )|0〉, (19)

where the displacement operator at input port 0 is
D̂0(β ) = eβâ

†
0−β∗â0 . Here α = |α|eiθα , β = |β|eiθβ , and �θ =

θα − θβ is the phase difference between the two input lasers.

A. Differential detection scheme

Using the input state given in Eq. (19), the average value
of the operator N̂d is

〈N̂d〉 = cos ϕ(|α|2 − |β|2) − 2 sin ϕ|αβ| cos �θ. (20)
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After a straightforward computation, the variance is

�2N̂2
d = |α|2 + |β|2 = |α|2(1 + � 2), (21)

where � := |β|/|α|. The phase sensitivity for a double coher-
ent input is

�ϕdiff =
√

1 + � 2

|α||sin ϕ(1 − � 2) + 2 cos ϕ� cos �θ | . (22)

We will discuss this result in Sec. IV C.

B. Single-mode intensity detection scheme

In the single-mode intensity detection setup, the average of
our output observable is

〈N̂4〉= |α|2
[

sin2

(
ϕ

2

)
� 2 + cos2

(
ϕ

2

)
− sin ϕ� cos �θ

]
.

(23)

The variance �2N̂4 can be computed as before; alterna-
tively, we notice that at the output port 4 we have a co-
herent state, therefore the variance is equal to its average
value

�2N̂4 = 〈N̂4〉 (24)

Thus, the phase sensitivity of a Mach-Zehnder with two
input coherent sources and a single-mode intensity detection
scheme is

�ϕsing =
√

sin2
(

ϕ

2

)
� 2 + cos2

(
ϕ

2

) − sin ϕ� cos �θ

|α|∣∣ sin ϕ

2 (1 − � 2) + cos ϕ� cos �θ
∣∣ . (25)

C. Discussion: The quantum Cramér-Rao bound

For the double coherent input, the quantum Cramér-Rao
bound is (see Appendix A)

�ϕQCRB � 1

|α|
√

1 + � 2 − 4� 2

1+� 2 sin2 �θ

. (26)

Therefore, the best sensitivity is achieved when the
two input lasers are in phase, �θ = 0, resulting in
�ϕQCRB = 1/(|α|√1 + � 2).

In the case of differential detection, one can show that an
optimum phase shift exists,

ϕ
opt
diff = ± arctan

( |1 − � 2|
2� |cos �θ |

)
+ kπ, (27)

where k ∈ Z and ϕ
opt
diff brings the sensitivity from Eq. (22) to

the QCRB. For the single-mode intensity detection scheme, if
the two input lasers are in phase (�θ = 0), the optimum phase
shift is

ϕ
opt
sing = ±2 arctan

(
1

�

)
+ 2kπ, (28)

where k ∈ Z and substituting this value into Eq. (25) gives the
QCRB from Eq. (26).

FIG. 5. Phase sensitivity for the single-mode intensity (solid
blue line) and difference intensity (dashed red line) detection setups
versus the phase shift ϕ. Both detection schemes reach the quantum
Cramér-Rao bound (thick dashed line). We used the parameters
|α| = 104, � = 0.5, and �θ = 0.

For comparison, the sensitivity of homodyne detection
with �θ = 0 is

�ϕH � 1∣∣α sin ϕ

2 + β cos ϕ

2

∣∣ . (29)

The phase sensitivity of a MZI with a double coherent input is
shown in Fig. 5 for both single-mode and difference intensity
detection schemes. As already discussed, we can reach the
QCRB in both scenarios.

Compared to the single coherent input, the double coherent
case has an important advantage: We can tune the value of
ϕ

opt
sing at which the sensitivity reaches the QCRB. Experimen-

tally, this can be achieved by varying the power ratio of the
two input coherent sources. This avoids the use of piezoelec-
tricity or other mechanical-based methods to induce phase
shifts. As a consequence, our proposal reduces mechanical
vibrations, noise, or misalignments.

In the high-power regime this ability is practically useful
for a single-mode intensity detection scenario. Indeed, at
the optimal phase shift the output 4 is a dark port, i.e.,
〈N̂4(ϕopt

sing)〉 → 0, which is exactly the desired situation with
respect to the photodetectors in the high-power regime.

V. COHERENT PLUS SQUEEZED VACUUM INPUT

The paradigmatic input state which beats the SQL is the
coherent plus squeezed vacuum

|ψin〉 = |α1r0〉 = D1(α)S0(r )|0〉. (30)

The squeezed vacuum state is obtained by applying the
squeezing operator S0(ξ ) = e[(ξ∗ )2 â2

1−ξ 2(â†
1 )2]/2 [6,8,10] with

ξ = reiθ . For simplicity, in the following we take θ = 0,
hence ξ = r ∈ R+. This input state is of considerable prac-
tical interest as it was shown to beat the SQL [2,11,12,24,25],
a prediction amply confirmed by experiments [3,13,14,40].
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A. Difference intensity detection scheme

With the coherent plus squeezed vacuum input (30) the average of N̂d in Eq. (7) is

〈N̂d〉 = cos ϕ(|α|2 − sinh2 r ). (31)

The variance �2N̂d can be computed using Eqs. (7) and (B1), with the input state given in (30), and yields

�2N̂d = cos2 ϕ

(
sinh2 2r

2
+ |α|2

)
+ sin2 ϕ(sinh2 r + |α|2e−r ) + sin2 ϕ|α|2 sinh 2r (1 − cos 2θα ). (32)

For the difference intensity detection scheme, the best achievable phase sensitivity of a MZI with coherent plus squeezed vacuum
input is

�ϕdiff =
√(|α|2 + sinh2 2r

2

)
cot2 ϕ + sinh2 r + |α|2e−2r + |α|2 sinh 2r (1 − cos 2θα )

|sinh2 r − |α|2| . (33)

The last term in the numerator of Eq. (33) is the input noise enhancement due to the misalignment of the coherent input with
respect to the squeezed vacuum (whose phase we considered to be zero, for simplicity). The best sensitivity is achieved for
θα = 0 (hence α ∈ R),

�ϕdiff =
√(

α2 + sinh2 2r
2

)
cot2 ϕ + sinh2 r + α2e−2r

|α2 − sinh2 r| , (34)

an expression that can be found in the literature [4,23].

B. Single-mode intensity detection scheme

For the input state (30) we have

〈N̂4〉 = sin2
(ϕ

2

)
sinh2 r + cos2

(ϕ

2

)
|α|2 (35)

and the variance is

�2N̂4 = sin4
(ϕ

2

) sinh2 2r

2
+ sin2

(ϕ

2

)
cos2

(ϕ

2

)
sinh2 r + cos4

(ϕ

2

)
|α|2

+ sin2
(ϕ

2

)
cos2

(ϕ

2

)
|α|2e−2r + sin2 ϕ

4
sinh 2r|α|2(1 − cos 2θα ). (36)

In the single-mode intensity detection setup, the best achievable sensitivity of a MZI fed by coherent plus squeezed vacuum
input is

�ϕsing =

√
tan2

(
ϕ

2

)
sinh2 2r

2 + sinh2 r + |α|2
tan2

(
ϕ

2

) + |α|2e−2r + sinh 2r|α|2(1 − cos 2θα )

||α|2 − sinh2 r| . (37)

The last term of the square root is again the contribution of
the misalignment of the coherent input from port 1 with the
squeezed vacuum from port 0. The best sensitivity is obtained
for cos 2θα = 1, thus θα = 0 and hence α ∈ R. Therefore, we
have now the best achievable sensitivity for the squeezed plus
coherent input and a single-mode intensity detection scheme
[33]

�ϕsing =

√
tan2

(
ϕ

2

)
sinh2 2r

2 + sinh2 r + α2

tan2
(

ϕ

2

) + α2e−2r

|α2 − sinh2 r| .

(38)

C. Discussion: The quantum Cramér-Rao bound

The quantum Cramér-Rao bound for the coherent plus
squeezed vacuum input is [23–25,37]

�ϕQCRB � 1√
|α|2e2r + sinh2 r

(39)

and is independent of the phase shift ϕ of the MZI, similar to
the coherent input case. For comparison, we briefly mention
the sensitivity of the homodyne detection scheme [29,41]

�ϕH � e−r

|α| , (40)
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FIG. 6. Phase sensitivity for the single-mode (solid blue line) and
difference (dashed red line) intensity detection setups compared to
the quantum Cramér-Rao bound (thick dashed line) versus the phase
shift ϕ. Here |α| = 10 and r = 2.3.

a result we will use later. For the differential detection scheme,
the optimal sensitivity in Eq. (34) is reached for cos ϕ = 0,
i.e., ϕ

opt
diff = π/2 + kπ , k ∈ Z, and we find the best achievable

sensitivity

�ϕdiff =
√

sinh2 r + α2e−2r

|α2 − sinh2 r| , (41)

a result also found in the literature [4,23,29]. For single-mode
intensity detection, the optimal sensitivity from Eq. (38) is
reached when

ϕ
opt
sing = ±2 arctan

⎛
⎝

√ √
2|α|

sinh 2r

⎞
⎠ + 2kπ (42)

with k ∈ Z; substituting this value in equation (38) gives
the best achievable sensitivity in the case of a single-mode
intensity scheme, namely,

�ϕsing =
√

sinh2 r + √
2α sinh 2r + α2e−2r

|α2 − sinh2 r| . (43)

This result is identical to the one reported in Ref. [29],
Eq. (10).

In Figs. 6 and 7 we plot the best achievable phase sen-
sitivity in the single-mode and difference intensity detection
schemes together with the Cramér-Rao bound from Eq. (39)
for coherent plus squeezed vacuum input versus the phase
shift of the MZI. One notes that both detection schemes have
an optimum, however neither reaches the QCRB. (Although
in Fig. 7 it seems that the red curve corresponding to the
difference intensity detection scenario reaches the QCRB, it
actually stays above it.) While the optimum working point
for the difference intensity detection scheme is constant, in
the transition from the low- (Fig. 6) to the high-power regime
(Fig. 7) the optimum working point ϕopt shifts [see Eq. (43)].

In Fig. 8 we show both �ϕdiff and �ϕsing in the low-
|α| regime. For |α|2 ≈ sinh2 r both detection schemes give

FIG. 7. Phase sensitivity for the single-mode (solid blue line) and
difference (dashed red line) intensity detection setups compared to
the quantum Cramér-Rao bound (thick dashed line) versus the phase
shift ϕ. We use |α| = 104 and r = 2.3.

poor results while the QCRB reaches the Heisenberg limit
�ϕQCRB ∼ 1/〈N〉, where 〈N〉 = |α|2 + sinh2 r . This behav-
ior has been explained by Pezzé and Smerzi [23] and was
attributed to the limited information gained by these phase
estimation techniques, notably due to the ignorance of the
fluctuation in the number of particles.

Ideally one would like to enhance the squeezing factor r as
much as possible. However, this is experimentally challenging
[16,17,40]. The maximum reported squeezing was 15 dB,
corresponding to r ≈ 2.3 [17]. Therefore, in order to remain

FIG. 8. Phase sensitivity for the single-mode (solid blue line)
and difference (dashed red line) intensity detection schemes and the
quantum Cramér-Rao bound (thick dashed line) versus the coherent
input amplitude |α|, in the low-intensity regime. We take the squeez-
ing factor r = 2.3 and consider the optimal phases ϕopt for each
detection scenario. Both detection techniques are suboptimal with
respect to the QCRB, yielding poor performance especially when
|α|2 ≈ sinh2 r .
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FIG. 9. Phase sensitivity for the single-mode (solid blue line)
and difference (dashed red line) intensity detection schemes and the
quantum Cramér-Rao bound (thick dashed line) versus the coherent
input amplitude |α|, in the high-intensity regime. We consider a
squeezing factor r = 2.3 and we plot the optimal phases for each
detection scenario. As |α| grows, both detection schemes approach
the Cramér-Rao bound.

realistic in the high-intensity regime, we keep r constant
and small compared to the amplitude of the coherent state,
implying |α|2 � |α| � sinh2 r . Indeed, for |α| � sinh r both
detection schemes equal the sensitivity of the homodyne
detection in Eq. (40). The QCRB in Eq. (39) can be approx-
imated by �ϕ ≈ e−r/|α|. Thus, using squeezing in port 0
brings a factor of e−r over the SQL, therefore the coherent
plus squeezed vacuum technique remains interesting even for
large |α|.

In Fig. 9 we plot both �ϕdiff and �ϕsing in the high-|α|
regime. We conclude that if |α|2 � |α| � sinh r , both detec-
tion schemes have a similar sensitivity, close to the QCRB.
This agrees with the results of Ref. [29].

As already mentioned, the optimum phase shift inside
the Mach-Zehnder interferometer for a difference intensity
detection scheme is constant, ϕ

opt
diff = π/2 + kπ . In this case

each output port receives roughly half of the (large) input
power; this regime is clearly not desirable for the detectors.

For a single-mode intensity detection scheme, ϕopt
sing is given

by Eq. (42). Moreover, in this scenario port 4 is almost
dark and consequently we can use extremely sensitive p-i-n
photodiodes. Almost all power exits through the output 5 and
can be discarded or used for a feedback loop to stabilize the
input laser. This is the crucial difference between the two
schemes in the high-intensity regime, similarly to the single
and double coherent input cases (see Secs. III and IV).

In this paper we did not consider losses or decoherence.
The impact of losses on various scenarios has been discussed
extensively in the literature [29,42–44]. In the following we
briefly discuss their effect in the high-intensity regime. Fol-
lowing [43], in the case of a coherent input we can replace
α → α

√
1 − σ , resulting in a quantum Cramér-Rao bound

�ϕQCRB = 1/|α|√1 − σ . The effect of small losses (σ � 1)
is marginal for a coherent source. In the case of coherent plus
squeezed vacuum input we have [43] the Cramér-Rao bound

�ϕloss
QCRB ≈

√
σ + (1 − σ )e−2r√

(1 − σ )|α|2 + σ (1 − σ ) sinh2 r
. (44)

The effect of losses is obvious for high squeezing factors, the
numerator of Eq. (44) being reduced to

√
σ , thus losing the

exponential factor from the squeezing of the input vacuum.
Nonetheless, for the high-intensity regime discussed in this
paper we have |α|/ sinh r � 1 and the effect of small losses
is rather limited because σ � (1 − σ )e−2r . For simplicity, we
did not consider the 1/

√
m scaling for all phase sensitivities

throughout this paper, where m is the number of repeated
experiments. We summarized our results in Table I.

VI. CONCLUSIONS

The sensitivity of a Mach-Zehnder interferometer depends
on both the input state and the detection setup. To achieve the
best sensitivity we need to find the optimum working point(s)
of the interferometer.

For single coherent and double coherent input, both detec-
tion setups achieve the QCRB, although at different values
of ϕ. The double coherent input allows us to experimentally
tune the point of maximum sensitivity by adjusting the relative
intensity of the two coherent states. This is an advantage over
other methods involving mechanically adjusted setups.

In the high-intensity regime all three input states (coher-
ent, double coherent, and coherent plus squeezed vacuum)

TABLE I. Phase sensitivity of a MZI for the input states discussed in the paper. The optimum phase shift has a period of π for the difference
intensity detection and 2π for the single-mode intensity detection.

Input Quantum Difference intensity detection Single-mode intensity detection

state Cramér-Rao Optimum Best achievable Optimum Best achievable
bound phase shift phase sensitivity phase shift phase sensitivity

|ψin〉 �ϕQCRB ϕ
opt
diff �ϕdiff (ϕopt

diff ) ϕ
opt
sing �ϕsing(ϕopt

sing)

|α1〉 1
|α|

π

2
1

|α| π 1
|α|

|α1β0〉
√

1+� 2

|α|
√

(1+� 2 )2−2� sin2 �θ
± arctan

(
1−� 2

2�

)
�ϕQCRB ±2 arctan

(
1
�

)
�ϕQCRB

|α1ξ0〉 1√
|α|2e2r+sinh2 r

π

2

√
sinh2 r+α2e−2r

|α2−sinh2 r| ±2 arctan
(√√

2|α|
sinh r

) √
sinh2 r+√

2α sinh 2r+α2e−2r

|α2−sinh2 r|
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give similar phase sensitivity, at or close to the QCRB. The
optimum working point for the single-mode intensity detec-
tion has an almost dark output port. This ensures that one can
use highly efficient p-i-n photodiodes and thus avoid potential
problems of overheating or blinding the photodetectors. We
expect that our results will lead to more sensitive detection
systems for interferometry in the high-power regime.
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APPENDIX A: QUANTUM CRAMÉR-RAO BOUND
FOR A DOUBLE COHERENT INPUT

Following Ref. [24], we consider the general case where
each arm of the MZI contains a phase shift (ϕ1 and ϕ2). The

estimation is treated as a general two-parameter problem. We
define the 2×2 Fisher information matrix

F =
[
F++ F+−
F−+ F−−

]
, (A1)

where

Fij = 4 Re(〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉), (A2)

with i, j = ± and ϕ± = ϕ1 ± ϕ2. From this matrix we can
easily compute the QCRB

〈�ϕi�ϕj 〉 � (F−1)ij . (A3)

The state |ψ〉 in Eq. (A2) is

|ψ〉 = e−i(ϕ+/2)(a†
2a2+a

†
3a3 )e−i(ϕ−/2)(a†

2a2−a
†
3a3 )|ψ23〉, (A4)

where |ψ23〉 = UBS|α1β0〉 is the state after the first beam
splitter and UBS = e−iπ/4(â†

0 â0+â
†
1 â1 ) is the unitary transfor-

mation of BS1. The elements of F are F++ = |α|2 + |β|2,
F+− = F−+ = −2|αβ| sin �θ , and F−− = |α|2 + |β|2. We
are interested in the phase difference between the two arms,
i.e., 〈(�ϕ−)2〉 � (F−1)−−, for which we obtain the QCRB

�ϕQCRB � 1√
|α|2 + |β|2 − 4|αβ|2 sin2 �θ

|α|2+|β|2
, (A5)

which is equivalent to Eq. (26) with � = |β|/|α|.

APPENDIX B: CALCULATION OF THE OUTPUT VARIANCE

Here we compute the averages 〈N̂2〉 needed in the paper. For a difference intensity detection scheme, from Eqs. (7) and (5)
we obtain the expression of N̂2

d as a function of input operators a
†
0 and a

†
1. After a long but straightforward calculation we obtain

the final, normally ordered expression〈
N̂2

d

〉 = cos2 ϕ〈â†
0â

†
0â0â0〉 − 2 cos(2ϕ)〈â†

0â0â
†
1â1〉 + cos2 ϕ〈â†

1â
†
1â1â1〉 + 〈â†

0â0〉 + 〈â†
1â1〉 + sin2 ϕ

〈
â2

0 (â†
1)2

〉
+ sin2 ϕ

〈
(â†

0)2â2
1

〉 + sin 2ϕ
〈
â
†
0â

2
0 â

†
1

〉 + sin 2ϕ〈(â†
0)2â0â1〉 − sin 2ϕ〈â0(â†

1)2â1〉 − sin 2ϕ
〈
â
†
0â

†
1â

2
1

〉
. (B1)

For the single-mode intensity detection setup, the calculation of 〈N̂2
4 〉 is similar and we obtain〈

N̂2
4

〉 = sin4
(ϕ

2

)
〈â†

0â
†
0â0â0〉 + cos4

(ϕ

2

)
〈â†

1â
†
1â1â1〉 + sin2 ϕ〈â†

0â0â
†
1â1〉 + sin2

(ϕ

2

)
〈â†

0â0〉 + cos2
(ϕ

2

)
〈â†

1â1〉

+ sin2 ϕ

4

〈
â2

0 (â†
1)2

〉 + sin2 ϕ

4

〈
(â†

0)2â2
1

〉 − sin2
(ϕ

2

)
sin ϕ〈â†

0â
2
0 â

†
1〉 − sin2

(ϕ

2

)
sin ϕ〈(â†

0)2â0â1〉

− cos2
(ϕ

2

)
sin ϕ〈â0(â†

1)2â1〉 − cos2
(ϕ

2

)
sin ϕ

〈
â
†
0â

†
1â

2
1

〉 − sin ϕ

2
〈â0â

†
1〉 − sin ϕ

2
〈â†

0â1〉. (B2)
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