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We analytically and numerically investigate the propagation of ultrashort tightly focused laser pulses in
vacuum, with particular emphasis on Hermite-Gaussian and Laguerre-Gaussian modes. We revisit the Lax series
approach for forward-propagating linearly polarized laser pulses, to obtain Maxwell-consistent and symmetry-
preserving analytical solutions for the propagation of all field components beyond the paraxial approximation in
four-dimensional geometry (space and time). We demonstrate that our solution conserves the energy, which is set
by the paraxial-level term of the series. The full solution of the wave equation towards which our series converges
is calculated in the Fourier space. Three-dimensional numerical simulations of ultrashort tightly focused pulses
validate our analytical development.
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I. INTRODUCTION

Spatial and temporal pulse shaping makes the laser a
highly versatile tool for a large number of applications such
as micromachining and material processing [1–3], Terahertz
generation [4,5], or biological imaging and noninvasive surg-
eries [6,7]. Paraxial approximation, which assumes that the
light angular spectrum is sufficiently narrow, is widely used
to study the propagation of laser beams in weak focusing con-
ditions. However, the applications mentioned above usually
require tightly focused ultrashort laser pulses. Modeling the
propagation of such laser pulses is a complex problem because
the deviation from the principal propagation direction is large
and the paraxial approximation is no longer valid.

Electromagnetic codes, such as particle-in-cell codes [8,9]
or codes based on the unidirectional pulse propagation equa-
tion [10,11], are powerful tools for understanding experiments
on laser-matter interaction, where laser field components are
commonly known in the far field. In these simulations external
electromagnetic waves that enter the computational domain
are usually prescribed as paraxial modes on the boundaries,
which is not adequate for strongly focused ultrashort laser
pulses because the initial distortion may be increased in the
course of propagation [12], leading eventually to nonphysical
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fields in the simulation box. Therefore, there is a need to de-
termine analytical solutions of Maxwell equations for tightly
focused laser pulses.

Different analytical models, restricted to specific beam
shapes or spatial symmetry conditions, have been developed
to describe nonparaxial laser beam propagation in several
physical contexts, such as perturbative expansions of the
wave equation [13,14], the angular spectrum method [15],
transformation optics [16], or analytical solutions based on
the Helmholtz equation for laser-driven electron acceleration
[17,18]. Lax et al. [19] proposed a simple method which
paved the way to introduce the nonparaxial corrections to
a given paraxial solution in more general situations. They
demonstrated that the paraxial solution is actually the zeroth-
order consistent solution to the Maxwell equations, obtained
by expanding the wave equation (in their case, for a Gaussian
linearly polarized vector potential) using a power series in the
beam divergence angle.

The nonparaxial perturbative equations proposed by Lax
et al. were subsequently analyzed in more detail, always
on the basis of the wave equation applied to the vec-
tor potential, by several authors for either Gaussian beams
[20–24] or Hermite-Gaussian and Laguerre-Gaussian beams
[25–28]. Later, Porras et al. [29,30] proposed a similar time-
domain perturbative approach, based on a different expansion
parameter, to study the propagation of vectorial few-cycle
light pulses. More recently, Favier et al. took into account
spatiotemporal couplings in the wave equation to extend
Lax perturbative equations to few-cycle pulses [31]. In the
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transverse-spatial and temporal Fourier domain, they linked
the Lax series with a Taylor expansion of the exact solution of
the wave equation, but their proposed high-order corrections
hinged on an arbitrary number of integration constants, which
were chosen to match some known nonparaxial solutions.

This paper aims at addressing two problems which remain
open despite the advances made in the previous works. The
first problem is that all the previous approaches solely dealt
with the wave equation (in the cited papers, applied to the vec-
tor potential) split into a Lax series, and not with the full set of
Maxwell equations when calculating high-order corrections.
Since each component of the electric, magnetic, and vector
potential fields verifies the scalar wave equation, we expect to
obtain a unique solution to the Maxwell equations whatever
the component chosen to calculate high-order corrections. The
second problem is that, when calculating high-order terms of
the Lax series from the solutions at lower orders, spurious
homogeneous solutions that are not compatible with Maxwell
equations may be added through integration constants. We
demonstrate in this paper that removing those spurious ho-
mogeneous solutions, as well as not breaking the existing
symmetry between the electric and magnetic fields, makes
preserving the laser energy through transverse planes possible.
Conservation of energy is a fundamental physical principle
that, to the best of our knowledge, had never been considered
before in the context of nonparaxial corrections. Indeed, in
previous works these integration constants were determined
by making ad hoc assumptions, not sufficiently supported by
the Maxwell equations, on how the nonparaxial corrections
should be at the focal point [21,27] or on the beam axis [23].

In Sec. II, our Lax-series-based analytical solution for
all electromagnetic field components is presented. Since
Maxwell equations are satisfied, each electromagnetic field
component verifies the scalar wave equation. By preserving
the existing symmetry between the electric and magnetic
fields, recursive relations to obtain the terms of our series
are given in the Fourier space and the resulting solution
is successfully compared with a numerically exact Maxwell
solver [32]. Provided that there are no evanescent modes
in the paraxial-level term, our solution is convergent. This
solution as presented in Sec. II G represents an accurate
way of injecting ultrashort laser pulses of arbitrary shape in
space and time in codes based on the unidirectional pulse
propagation equation and, under the cost of computing inverse
Fourier transforms, also in finite-difference time-domain elec-
tromagnetic codes. In Sec. III we calculate the leading term
of the asymptotic limit of our Lax-series-based analytical
solution far from the focal plane, for both monochromatic
beams and ultrashort laser pulses, which results in paraxial-
like expressions. These analytical expressions are a baseline
for further developments aiming at obtaining an easy and
low-computational-cost means of computing the near fields
related to those assumed-known paraxial far fields, avoiding
the computation of any Fourier transform. Thanks to three-
dimensional Maxwell-consistent numerical simulations car-
ried out with the code ARCTIC, based on the Yee scheme [33],
we discuss the adequacy of prescribing ultrashort laser pulses
by the leading term of the asymptotic limit at a finite distance
from the focal plane. Conclusions and outlooks are drawn
in Sec. IV.

II. ANALYTICAL SOLUTIONS
OF MAXWELL EQUATIONS

A. Maxwell equations and their properties

Maxwell equations in vacuum read as follows:

∇∇∇ · EEE = 0, (1)

∇∇∇ · BBB = 0, (2)

∂tBBB + ∇∇∇ × EEE = 0, (3)

∂tEEE − c2∇∇∇ × BBB = 0, (4)

where EEE and BBB are the electric and magnetic fields, respec-
tively, and c is the speed of light in vacuum. Maxwell’s equa-
tions are highly symmetrical and they place the electric and
magnetic fields on equal footing [34]. Indeed, both electric
and magnetic fields verify the wave equation:

(
c−2∂2

t − ∇∇∇2)EEE = 000, (5)(
c−2∂2

t − ∇∇∇2)BBB = 000. (6)

Note that in this paper, we formally present our results
in vacuum. For monochromatic or narrow-bandwidth pulses,
by replacing c by c/n0, where n0 is a constant refractive
index, our results generalize to homogeneous dielectric media.
Because our solutions are derived in the Fourier space, it
would be straightforward to extend it to shorter pulses with
linear dispersion.

B. The wave equation

Throughout this paper, we shall work in Cartesian coordi-
nates (x, y, z), where x is the optical propagation axis (also
referred to as longitudinal axis) and y and z are the transverse
coordinates. The beam focus position is placed at x = 0.

We seek solutions of Maxwell equations that are waves
propagating along longitudinal axis according to the following
Ansatz:

EEE(x, y, z, t ) = E0

⎛
⎜⎝

ψEx
(x, y, z, t )

ψEy
(x, y, z, t )

ψEz
(x, y, z, t )

⎞
⎟⎠ ei(k0x−ω0t ), (7)

BBB(x, y, z, t ) = E0

c

⎛
⎜⎝

ψBx
(x, y, z, t )

ψBy
(x, y, z, t )

ψBz
(x, y, z, t )

⎞
⎟⎠ ei(k0x−ω0t ), (8)

where ω0 = 2πc/λ0 is the angular frequency of the laser field,
λ0 is the wavelength, k0 = ω0/c is the wave number, ψEx

,
ψEy

, ψEz
, ψBx

, ψBy
, and ψBz

are the spatiotemporal envelopes
of Ex , Ey , Ez, Bx , By , and Bz, respectively, and E0 represents
the electric field amplitude. Note that in this paper we only
seek forward-propagating solutions propagating along x axis,
as stated by Ansätze Eqs. (7) and (8), although Eqs. (5) and (6)
admit, in general, bidirectional solutions. Implicitly, we re-
quire that EEE and BBB have no evanescent components. More-
over, because they are complex fields, the negative frequency
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components are required to be the complex conjugates of their
respective positive frequency components [35].

By substituting Eq. (7) into Eq. (5) and Eq. (8) into Eq. (6),
each of the six spatial envelopes, generically denoted as ψ ,
verifies the so-called wave equation:

∇∇∇2
⊥ψ + 2ik0

[
∂x + ∂t

c

]
ψ = −∂2

xψ + ∂2
t ψ

c2
, (9)

where ∇∇∇2
⊥ = ∂2

y + ∂2
z . It is useful to express Eq. (9) in the laser

comoving reference system x ′ = x and t ′ = t − x/c:

∇∇∇2
⊥ψ + 2ik0

(
1 + i∂t ′

ω0

)
∂x ′ψ = −∂2

x ′ψ. (10)

The paraxial approximation neglects the term on the right-
hand side of Eq. (10) by claiming that the field variation
along x axis is small compared to the wavelength λ0 (i.e.,
the wavefront is considered to be almost perpendicular to x

axis) and to the transverse variation along y and z axes (i.e.,
the transverse profile is supposed to remain almost unchanged
over a distance of the order of λ0). Considering D0 the 1/e

diameter of the Gaussian solution in the beam focal plane
(we assume that the diameter is the same along y and z

axis) and xR = πD2
0/(4λ0) the associated Rayleigh length,

we reformulate Eq. (10) in the dimensionless coordinates
ξ = x ′/xR , τ = ω0t

′, υ = 2y/D0, and ζ = 2z/D0 as follows:

∂2
⊥ψ + 4i T ∂ξψ = −ε2∂2

ξ ψ, (11)

where ∂2
⊥ = ∂2

υ + ∂2
ζ and the operator T = 1 + i ∂τ introduces

the space-time focusing [35,36]. Equation (11) reveals that
the term on the right-hand side is actually a small correction
of order of ε2, where ε = D0/(2xR ) is the tangent of the
beam divergence angle and is assumed to be small in the
paraxial limit. For arbitrary spatial beam shapes, for which
the Gaussian 1/e beam diameter D0 does not apply, one can
define ε as the angular spectral width divided by k0. Note that
monochromatic solutions are given by Eq. (11) in the limit
T → 1, which means that the time variation of the envelopes
is negligible.

Equation (11) in the transverse-spatial and temporal
Fourier domain (see Appendix A) reads:

(
iκ2

⊥
4 T̂

+ ∂ξ − iε2

4 T̂
∂2
ξ

)
ψ̂ = 0, (12)

where κ2
⊥ = κ2

y + κ2
z , κy = D0ky/2, κz = D0kz/2, T̂ =

1 + �, and � = ω/ω0. Restricting the temporal bandwidth of
the complex fields EEE and BBB to the positive frequency range
implies that � � 1. The exact forward-propagating solution
of Eq. (12), with the boundary condition placed at ξ = 0,
reads:

ψ̂ (ξ, κy, κz,�)= ψ̂ (0, κy, κz,�) e
− 2i T̂

ε2

(
1−

√
1− ε2κ2⊥

4 T̂ 2

)
ξ

, (13)

which, by abuse of language, will be called general solution
of the wave equation all through this paper in spite of its lack
of bidirectionality.

Equation (13) discloses that the exact forward-propagating
solution preserves its complex module in all transverse planes:

|ψ̂ (ξ, κy, κz,�)| = |ψ̂ (0, κy, κz,�)|, (14)

whenever εκ⊥/(2T̂ ) � 1 (i.e., propagating modes).

C. The Lax series approach

A Taylor expansion of Eq. (13) in powers of κ⊥ (around
κ⊥ = 0) and ξ (around ξ = 0), reveals that the general so-
lution of the wave equation depends on powers of ε [31].
Motivated by this fact, to solve Eq. (12) one can express ψ̂

in a series using ε as expansion parameter [19]. Because this
perturbative approach is a rearrangement of a Taylor expan-
sion, its convergence is thus guaranteed by Taylor’s theorem
for any ε if high-order terms are calculated as explained
below (i.e., satisfying Maxwell consistency, preserving the
symmetry between electric and magnetic fields, and absence
of evanescent modes). For linearly polarized laser pulses,
the transverse components (i.e., ψ̂Ey

, ψ̂Ez
, ψ̂By

, and ψ̂Bz
,

generically denoted as ψ̂⊥) expand in even powers of ε [20]:

ψ̂⊥(ξ, κy, κz,�) =
∞∑

j=0

ε2j ψ̂
(2j )
⊥ (ξ, κy, κz,�), (15)

whereas the longitudinal components (i.e., ψ̂Ex
and ψ̂Bx

,
generically denoted as ψ̂‖) expand in odd powers of ε:

ψ̂‖(ξ, κy, κz,�) =
∞∑

j=0

ε2j+1ψ̂
(2j+1)
‖ (ξ, κy, κz,�), (16)

where the functions ψ̂
(2j )
⊥ and ψ̂

(2j+1)
‖ have to be determined.

D. Lax series: Splitting the wave equation

If we substitute Eqs. (15) and (16) into Eq. (12), the wave
equation is split into recursive equations. By doing so, the
series Eqs. (15) and (16) satisfying the split Eqs. (17)–(20),
respectively, will verify the wave Eq. (12) and hence will be
completely equivalent to Eq. (13).

The lowest order (j = 0) corresponds to the paraxial
equation: (

iκ2
⊥

4 T̂
+ ∂ξ

)
ψ̂

(0)
⊥ = 0, (17)

(
iκ2

⊥
4 T̂

+ ∂ξ

)
ψ̂

(1)
‖ = 0, (18)

where ψ̂
(0)
⊥ = C

(0)
0, ⊥e−i

κ2⊥
4 T̂

ξ and ψ̂
(1)
‖ = C

(1)
0, ‖e

−i
κ2⊥
4 T̂

ξ are,

respectively, their solutions. The coefficients C
(0)
0, ⊥ =

C
(0)
0, ⊥(κy, κz,�) and C

(1)
0, ‖ = C

(1)
0, ‖(κy, κz,�) do not depend

on ξ (see their expressions for Hermite-Gaussian and
Laguerre-Gaussian beams in Appendix B).

High-order corrections (j > 0) verify(
iκ2

⊥
4 T̂

+ ∂ξ

)
ψ̂

(2j )
⊥ = i

4 T̂
∂2
ξ ψ̂

(2j−2)
⊥ , (19)

(
iκ2

⊥
4 T̂

+ ∂ξ

)
ψ̂

(2j+1)
‖ = i

4 T̂
∂2
ξ ψ̂

(2j−1)
‖ , (20)
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with the paraxial differential operator in the left-hand side. We
choose to express the solution to Eqs. (19) and (20) as the sum
of a homogeneous solution Ĥ and a particular solution P̂ :

ψ̂
(2j )
⊥ = Ĥ

(2j )
⊥ + P̂

(2j )
⊥ , (21)

ψ̂
(2j+1)
‖ = Ĥ

(2j+1)
‖ + P̂

(2j+1)
‖ , (22)

where the homogeneous solutions are, respectively,

Ĥ
(2j )
⊥ = C

(2j )
0, ⊥e−i

κ2⊥
4 T̂

ξ , (23)

Ĥ
(2j+1)
‖ = C

(2j+1)
0, ‖ e−i

κ2⊥
4 T̂

ξ , (24)

where the coefficients C
(2j )
0,⊥ = C

(2j )
0, ⊥ (κy, κz,�) and C

(2j+1)
0, ‖ =

C
(2j+1)
0, ‖ (κy, κz,�) do not depend on ξ . It is important to

note that even though Ĥ
(2j )
⊥ and Ĥ

(2j+1)
‖ formally obey the

paraxial equation, they are part of the nonparaxial high-order
corrections.

The particular solutions can be written as

P̂
(2j )
⊥ = P (2j )

⊥ (ξ )e−i
κ2⊥
4 T̂

ξ , (25)

P̂
(2j+1)
‖ = P (2j+1)

‖ (ξ )e−i
κ2⊥
4 T̂

ξ , (26)

where the coefficients P (2j )
⊥ (ξ ) and P (2j+1)

‖ (ξ ) do depend on
ξ . Since in the neighborhood of the focal plane the form

ψ̂ ∼ e−i
κ2⊥
4 T̂

ξ dominates, the particular solutions must vanish in
that plane, i.e., P (2j )

⊥ (0) = P (2j+1)
‖ (0) = 0. To evaluate them

through a recursive procedure as shown below, they can be
constructed as j -order polynomials in ξ :

P (2j )
⊥ (ξ ) =

j∑
k=1

C
(2j )
k,⊥ ξk, (27)

P (2j+1)
‖ (ξ ) =

j∑
k=1

C
(2j+1)
k, ‖ ξk, (28)

where the coefficients C
(2j )
k,⊥ and C

(2j+1)
k, ‖ have to be deter-

mined.
From the point of view of Lax recursive equations,

homogeneous solutions Ĥ are simply arbitrary integration
constants and hence Eqs. (19) and (20) do not suffice to
determine them. These homogeneous solutions must be de-
termined from the Maxwell equations by respecting the ex-
isting symmetry between the electric and magnetic fields
(see Sec. II E). We demonstrate in this paper that such
Maxwell-consistent and symmetry-preserving calculation of
the high-order corrections ensures that the overall laser en-
ergy through transverse planes is not increased by the Lax
series terms of order j > 0 and remains positive. There-
fore, it can be easily rescaled to the paraxial-order energy
(see Sec. II H). This is a fundamental difference with re-
spect to previous works, where, for example, to determine
the high-order corrections, some authors had considered
ad hoc assumptions such that they are zero at the beam
focal point [21,27], they follow the structure of a spherical
wave emanating from the beam focal point [23] or they must

match some known nonparaxial solutions [31]. Indeed, in the
particular solutions proposed by most of these works deal-
ing with Hermite-Gaussian and Laguerre-Gaussian paraxial
families, spurious homogeneous solutions are found when
a Gram-Schmidt orthogonalization process is applied in the
focal plane [37,38]. These spurious modes make the total
power through transverse planes increase with ε [23], which
is not physical.

When substituting Eq. (21) into Eq. (19), and Eq. (22) into
Eq. (20), the following recursion relations are obtained for the
coefficients of the particular solutions for all 1 � k � j and
j > 0:

C
(2j )
k,⊥ = − iκ4

⊥
64 T̂ 3

C
(2j−2)
k−1, ⊥
k

+ κ2
⊥

8 T̂ 2
C

(2j−2)
k,⊥

+ i

4 T̂
(k + 1)C (2j−2)

k+1, ⊥ , (29)

C
(2j+1)
k, ‖ = − iκ4

⊥
64 T̂ 3

C
(2j−1)
k−1, ‖
k

+ κ2
⊥

8 T̂ 2
C

(2j−1)
k, ‖

+ i

4 T̂
(k + 1)C (2j−1)

k+1, ‖ , (30)

where, by notation convention, C
(2j−2)
k,⊥ = C

(2j−1)
k, ‖ = 0 if

k = j and C
(2j−2)
k+1, ⊥ = C

(2j−1)
k+1, ‖ = 0 if k � j − 1.

It is important to note that the above recursive relations
involve the coefficients C

(2j−2)
0,⊥ and C

(2j−1)
0, ‖ of the homoge-

neous solution, which will be determined from the Maxwell
equations in the following Sec. II E.

E. Lax series: Splitting Maxwell equations

We split Maxwell equations by substituting the Lax
expansion Eqs. (15) and (16), together with the Ansätze
Eqs. (7) and (8), into Eqs. (1)–(4).

The envelopes of all the electromagnetic components at
paraxial order (j = 0) must verify simultaneously the follow-
ing overdetermined system of equations:

T̂ ψ̂
(1)
Ex

+ κy

2
ψ̂

(0)
Ey

+ κz

2
ψ̂

(0)
Ez

= 0, (31)

T̂ ψ̂
(1)
Bx

+ κy

2
ψ̂

(0)
By

+ κz

2
ψ̂

(0)
Bz

= 0, (32)

T̂ ψ̂
(1)
Bx

− κy

2
ψ̂

(0)
Ez

+ κz

2
ψ̂

(0)
Ey

= 0, (33)

ψ̂
(0)
By

+ ψ̂
(0)
Ez

= 0, (34)

ψ̂
(0)
Bz

− ψ̂
(0)
Ey

= 0, (35)

T̂ ψ̂
(1)
Ex

+ κy

2
ψ̂

(0)
Bz

− κz

2
ψ̂

(0)
By

= 0, (36)

which has a unique solution whatever two components are
prescribed [32]. In this paper, without loss of generality, we
choose the paraxial-order electric field polarized along y axis
(note that the solution for any other polarization angle can be
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obtained by applying a rotation transformation):

ψ̂
(0)
Ey

= C e−i
κ2⊥
4 T̂

ξ , (37)

ψ̂
(0)
Ez

= 0, (38)

where C(κy, κz,�) is a coefficient not depending on ξ . The
rest of the components are then calculated from the sys-
tem Eqs. (31)–(36):

ψ̂
(1)
Ex

= − κy

2 T̂
C e−i

κ2⊥
4 T̂

ξ , (39)

ψ̂
(1)
Bx

= − κz

2 T̂
C e−i

κ2⊥
4 T̂

ξ , (40)

ψ̂
(0)
By

= 0, (41)

ψ̂
(0)
Bz

= C e−i
κ2⊥
4 T̂

ξ . (42)

Similarly, the envelopes at high orders (j > 0) must verify
simultaneously the following overdetermined system of recur-
sive equations:

2i T̂ ψ̂
(2j+1)
Ex

+ iκyψ̂
(2j )
Ey

+ iκzψ̂
(2j )
Ez

= −∂ξ ψ̂
(2j−1)
Ex

, (43)

2i T̂ ψ̂
(2j+1)
Bx

+ iκyψ̂
(2j )
By

+ iκzψ̂
(2j )
Bz

= −∂ξ ψ̂
(2j−1)
Bx

, (44)

T̂ ψ̂
(2j+1)
Bx

− κy

2
ψ̂

(2j )
Ez

+ κz

2
ψ̂

(2j )
Ey

= 0, (45)

ψ̂
(2j )
By

+ ψ̂
(2j )
Ez

= κz

2 T̂
ψ̂

(2j−1)
Ex

+ i

2 T̂
∂ξ ψ̂

(2j−2)
Ez

, (46)

ψ̂
(2j )
Bz

− ψ̂
(2j )
Ey

= − κy

2 T̂
ψ̂

(2j−1)
Ex

− i

2 T̂
∂ξ ψ̂

(2j−2)
Ey

, (47)

T̂ ψ̂
(2j+1)
Ex

+ κy

2
ψ̂

(2j )
Bz

− κz

2
ψ̂

(2j )
By

= 0, (48)

ψ̂
(2j )
Bz

− ψ̂
(2j )
Ey

= κz

2 T̂
ψ̂

(2j−1)
Bx

+ i

2 T̂
∂ξ ψ̂

(2j−2)
Bz

, (49)

ψ̂
(2j )
By

+ ψ̂
(2j )
Ez

= κy

2 T̂
ψ̂

(2j−1)
Bx

+ i

2 T̂
∂ξ ψ̂

(2j−2)
By

, (50)

which allows us to calculate the homogeneous parts in
Eqs. (21) and (22). Note that the particular solutions cal-
culated in Sec. II D satisfy Eqs. (43)–(50). To determine a
unique homogeneous solution, we have to account for the
symmetry existing between the electric and magnetic fields.
For forward-propagating linearly polarized pulses, by observ-
ing Eqs. (46) and (50) and Eqs. (47) and (49), we require that

Ĥ
(2j )
By

− Ĥ
(2j )
Ez

= 0, (51)

Ĥ
(2j )
Bz

+ Ĥ
(2j )
Ey

= 0, (52)

which indeed is the opposite situation to the paraxial or-
der [compare to Eqs. (34) and (35)]. A posteriori, we will
demonstrate in Sec. II H that this symmetry condition prevents
high-order corrections from increasing the total laser energy.

After some manipulations, taking into account that we have
prescribed the transverse electric field as in Eqs. (37) and (38),

we get the following homogeneous solution for orders j > 0:

C
(2j+1)
0, Ex

= κ2
⊥

16 T̂ 2
C

(2j−1)
0, Ex

+ i

4 T̂
C

(2j−1)
1, Ex

, (53)

C
(2j )
0, Ey

= κ2
z

8 T̂ 2
C

(2j−2)
0, Ey

− κ2
⊥

16 T̂ 2
C

(2j−2)
0, Bz

− κyκz

8 T̂ 2
C

(2j−2)
0, Ez

− i

4 T̂
C

(2j−2)
1, Bz

,

(54)

C
(2j )
0, Ez

= κ2
y

8 T̂ 2
C

(2j−2)
0, Ez

+ κ2
⊥

16 T̂ 2
C

(2j−2)
0, By

− κyκz

8 T̂ 2
C

(2j−2)
0, Ey

+ i

4 T̂
C

(2j−2)
1, By

, (55)

C
(2j+1)
0, Bx

= κ2
⊥

16 T̂ 2
C

(2j−1)
0, Bx

+ i

4 T̂
C

(2j−1)
1, Bx

, (56)

C
(2j )
0, By

= C
(2j )
0, Ez

, (57)

C
(2j )
0, Bz

= −C
(2j )
0, Ey

, (58)

where C
(1)
1, Ex

= C
(1)
1, Bx

= C
(0)
1, By

= C
(0)
1, Bz

= 0 by notation con-
vention.

In conclusion, by setting C in Eqs. (37) and (38) the
nonparaxial solution can be calculated in the whole space
thanks to the recursive formulas Eqs. (29) and (30) and
Eqs. (53)–(58). By way of example, the correction at order
j = 1 reads:

ψ̂
(3)
Ex

=
[

κ2
⊥

16 T̂ 2
− iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(1)
Ex

, (59)

ψ̂
(2)
Ey

=
[

κ2
z − κ2

y

16 T̂ 2
− iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(0)
Ey

− κyκz

8 T̂ 2
ψ̂

(0)
Ez

, (60)

ψ̂
(2)
Ez

=
[

κ2
y − κ2

z

16 T̂ 2
− iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(0)
Ez

− κyκz

8 T̂ 2
ψ̂

(0)
Ey

, (61)

ψ̂
(3)
Bx

=
[

κ2
⊥

16 T̂ 2
− iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(1)
Bx

, (62)

ψ̂
(2)
By

=
[

κ2
y − κ2

z

16 T̂ 2
+ iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(0)
Ez

− κyκz

8 T̂ 2
ψ̂

(0)
Ey

, (63)

ψ̂
(2)
Bz

=
[
−κ2

z − κ2
y

16 T̂ 2
− iκ4

⊥
64 T̂ 3

ξ

]
ψ̂

(0)
Ey

+ κyκz

8 T̂ 2
ψ̂

(0)
Ez

. (64)

F. Example: Monochromatic Hermite-Gaussian
and Laguerre-Gaussian beams

We confront our Lax-series-based analytical solution to a
numerical algorithm computing Maxwell-consistent solutions
[32] (see Appendix D). To do so, monochromatic beams are
considered (i.e., T̂ → 1) and the coefficient C(κy, κz,�) in
Eqs. (37)–(42) shall refer here to either a Hermite-Gaussian
beam [see Eq. (B8)] or a Laguerre-Gaussian beam [see
Eq. (B16)]. Since the Lax series originates from a Taylor
expansion around the beam focus, the best way to proceed
is to prescribe our analytical solution in the focal plane,
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FIG. 1. Lax-series-based analytical solution ψ̂ constructed from the (1,1)-order Hermite-Gaussian mode, truncated at order j = 5. We
consider λ0 = 800 nm and ε = 0.25. The results are plotted in the transverse plane placed at ξ = 1. We show the spatial envelopes for (a) Ex ,
(b) Ey , and (c) Ez. The corresponding local relative errors, given by Eq. (65), are shown in (d), (e), and (f), respectively.

truncated at different orders j , and subsequently measure, for
all electromagnetic components, the error between the solu-
tion of the exact solver (ψ̂ solver) and our analytical solution
(ψ̂) in different transverse planes. We compute errors using
the standard Frobenius norm. The local relative error in a
transverse plane is quantified as

e = e(ξ, κy, κz) = k0 |ψ̂ solver − ψ̂ |√∫∫
k2
⊥�k2

0
|ψ̂ solver|2 dky dkz

, (65)

and the global relative error in the same plane is

E = E (ξ ) =
√√√√∫∫

k2
⊥�k2

0
|ψ̂ solver − ψ̂ |2 dky dkz∫∫

k2
⊥�k2

0
|ψ̂ solver|2 dky dkz

. (66)

Figures 1 and 2 show the analytical solution built from
a (1,1)-order Hermite-Gaussian and (1,1)-order Laguerre-
Gaussian modes, respectively, in the transverse plane placed
at ξ = 1. We take λ0 = 800 nm and a moderate ε = 0.25
(for which the evanescent power is negligible). The highest
local relative error [see Eq. (65)] appear in a ring (i.e., high
values of transverse wave numbers). When increasing the
truncation order of the Lax series, this ring becomes narrower
and the errors reduce in absolute value (not shown). This con-
firms numerically the convergence in the propagating region
k⊥ � k0 of our Lax-series-based solution seen as a Taylor
expansion in κy and κz. Figure 3 shows that the global relative
error diminishes too in all transverse planes when increasing
the truncation order. This also confirms numerically the con-

vergence in the propagating region of our Lax-series-based
solution seen as a Taylor expansion in ξ . In the following
Sec. II G we shall demonstrate that our solution converges by
giving the limit of the series for the six electromagnetic field
components.

G. Convergence of the solution

The Ansätze Eqs. (7) and (8) are substituted into the
Maxwell Eqs. (1)–(4). In the transverse-spatial and temporal
Fourier space, the resulting equations read

i T̂ ψ̂Ex
+ i ε κy

2
ψ̂Ey

+ i ε κz

2
ψ̂Ez

= −ε2

2
∂ξ ψ̂Ex

, (67)

i T̂ ψ̂Bx
+ i ε κy

2
ψ̂By

+ i ε κz

2
ψ̂Bz

= −ε2

2
∂ξ ψ̂Bx

, (68)

i T̂ ψ̂Bx
− i ε κy

2
ψ̂Ez

+ i ε κz

2
ψ̂Ey

= 0, (69)

i T̂ ψ̂Ex
+ i ε κy

2
ψ̂Bz

− i ε κz

2
ψ̂By

= 0, (70)

i T̂
(
ψ̂By

+ ψ̂Ez

) = i ε κz

2
ψ̂Ex

− ε2

2
∂ξ ψ̂Ez

, (71)

i T̂
(
ψ̂By

+ ψ̂Ez

) = i ε κy

2
ψ̂Bx

− ε2

2
∂ξ ψ̂By

, (72)

i T̂
(
ψ̂Bz

− ψ̂Ey

) = − i ε κy

2
ψ̂Ex

+ ε2

2
∂ξ ψ̂Ey

, (73)

i T̂
(
ψ̂Bz

− ψ̂Ey

) = i ε κz

2
ψ̂Bx

− ε2

2
∂ξ ψ̂Bz

, (74)
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FIG. 2. Lax-series-based analytical solution ψ̂ constructed from the (1,1)-order Laguerre-Gaussian mode, truncated at order j = 5. We
consider λ0 = 800 nm and ε = 0.25. The results are plotted in the transverse plane placed at ξ = 1. We show the spatial envelopes for (a) Ex ,
(b) Ey , and (c) Ez. The corresponding local relative errors, given by Eq. (65), are shown in (d), (e), and (f), respectively.

which, when they are split through Lax series Eqs. (15) and
(16), encompass Eqs. (31)–(36) and Eqs. (43)–(50).

As explained in Sec. II D, each envelope in Eqs. (67)–(74)
is assumed to be a forward-propagating solution of the wave
Eq. (12), which is given by Eq. (13). After some manipula-
tions, the substitution of Eq. (13), whose boundary condition

FIG. 3. Global relative error [Eq. (66)] between our analytical
solution and the exact solution for Ey as a function of the longitudinal
coordinate at different truncation orders. The Lax series is built from
the (1,1)-order Hermite-Gaussian mode, taking λ0 = 800 nm and
ε = 0.25.

is placed at ξ = 0, into Eqs. (67)–(74) yields

2

ε
T̂ P ψ̂Ex

(0) + κy ψ̂Ey
(0) + κz ψ̂Ez

(0) = 0, (75)

2

ε
T̂ P ψ̂Bx

(0) + κy ψ̂By
(0) + κz ψ̂Bz

(0) = 0, (76)

2

ε
T̂ ψ̂Bx

(0) − κy ψ̂Ez
(0) + κz ψ̂Ey

(0) = 0, (77)

2

ε
T̂ ψ̂Ex

(0) + κy ψ̂Bz
(0) − κz ψ̂By

(0) = 0, (78)

2

ε
T̂ (1 + P)

[
ψ̂By

(0) + ψ̂Ez
(0)

]
= κy ψ̂Bx

(0) + κz ψ̂Ex
(0), (79)

2

ε
T̂ (1 + P)

[
ψ̂Bz

(0) − ψ̂Ey
(0)

]
= κz ψ̂Bx

(0) − κy ψ̂Ex
(0), (80)

where ψ̂ (0) refers to the value of the corresponding envelope
in the focal plane and the operator P is given by

P =
√

1 − ε2 κ2
⊥

4 T̂ 2
, (81)

where the argument of the square root must be nonnegative
for forward-propagating waves (i.e., εκ⊥/(2T̂ ) � 1). There-
fore, 0 � P � 1, where the upper limit P → 1 represents the
paraxial limit (ε → 0).

Following Sec. II E, one needs to impose the symmetry
condition Eqs. (51) and (52) to have a unique solution of
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Eqs. (75)–(80). The values of the envelopes of the transverse
field components in the focal plane are thus

ψ̂Ey
(0) = C

(0)
0,Ey

+ Hy, (82)

ψ̂Bz
(0) = C

(0)
0,Ey

− Hy, (83)

ψ̂Ez
(0) = C

(0)
0,Ez

+ Hz, (84)

ψ̂By
(0) = −C

(0)
0,Ez

+ Hz, (85)

where the sum of the homogeneous parts of the high-order
terms of the Lax series are

Hy =
∞∑

j=1

ε2j C
(2j )
0,Ey

, (86)

Hz =
∞∑

j=1

ε2j C
(2j )
0,Ez

. (87)

When inserting Eqs. (82)–(85) into Eqs. (75)–(80), a
unique solution is obtained in terms of C

(0)
0,Ey

and C
(0)
0,Ez

:

Hy = − ε2
(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

C
(0)
0,Ey

− ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ez

, (88)

Hz = ε2
(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

C
(0)
0,Ez

− ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ey

, (89)

which yields

ψ̂Ey
(0) =

[
1 − ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
C

(0)
0,Ey

− ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ez

, (90)

ψ̂Bz
(0) =

[
1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
C

(0)
0,Ey

+ ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ez

, (91)

ψ̂Ez
(0) =

[
1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
C

(0)
0,Ez

− ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ey

, (92)

ψ̂By
(0) =

[
−1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
C

(0)
0,Ez

− ε2 κyκz

2 T̂ 2(1 + P)2
C

(0)
0,Ey

, (93)

ψ̂Ex
(0) = − ε

T̂ (1 + P)

[
κy C

(0)
0,Ey

+ κzC
(0)
0,Ez

]
, (94)

ψ̂Bx
(0) = − ε

T̂ (1 + P)

[
κz C

(0)
0,Ey

− κyC
(0)
0,Ez

]
. (95)

The existence of the solutions Eqs. (90)–(95), which result
in finite values for 0 � P � 1 (forward-propagating modes),

implies that the Lax series obtained following our procedure
is convergent, since these values actually represent the limit
towards which our analytical solution converges in the focal
plane.

Taking into account that paraxial-order terms follow
Eq. (B2) and solutions of the wave equation are governed by
Eq. (13), from Eqs. (90)–(95) one can express our solution as
a function of the prescribed paraxial modes ψ̂

(0)
Ey

and ψ̂
(0)
Ez

:

ψ̂Ey
=

[
1 − ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ey

− ε2 κyκz

2 T̂ 2(1 + P)2
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ez

, (96)

ψ̂Bz
=

[
1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ey

+ ε2 κyκz

2 T̂ 2(1 + P)2
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ez

, (97)

ψ̂Ez
=

[
1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ez

− ε2 κyκz

2 T̂ 2(1 + P)2
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ey

, (98)

ψ̂By
=

[
−1 + ε2

(
κ2

y − κ2
z

)
4 T̂ 2(1 + P)2

]
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ez

− ε2 κyκz

2 T̂ 2(1 + P)2
e
− i T̂ (1−P)2

ε2 ξ
ψ̂

(0)
Ey

, (99)

ψ̂Ex
= −ε e

− i T̂ (1−P)2

ε2 ξ

T̂ (1 + P)

[
κy ψ̂

(0)
Ey

+ κzψ̂
(0)
Ez

]
, (100)

ψ̂Bx
= −ε e

− i T̂ (1−P)2

ε2 ξ

T̂ (1 + P)

[
κz ψ̂

(0)
Ey

− κyψ̂
(0)
Ez

]
. (101)

One can verify that a Taylor expansion in ε of
Eqs. (96)–(101) yields the terms of our series presented in
Secs. II D and II E.

Inversely, assuming known a full forward-propagating so-
lution of Maxwell equations, the underlying paraxial level
from which that solution is constructed through the Lax series
can be easily determined from Eqs. (96) and (98):

ψ̂
(0)
Ey

=
[

1 + P

2
+ ε2 κ2

y

8 T̂ 2P

]
e

i T̂ (1−P)2

ε2 ξ
ψ̂Ey

+ ε2 κyκz

8 T̂ 2P
e

i T̂ (1−P)2

ε2 ξ
ψ̂Ez

, (102)

ψ̂
(0)
Ez

=
[

1 + P

2
+ ε2 κ2

z

8 T̂ 2P

]
e

i T̂ (1−P)2

ε2 ξ
ψ̂Ez

+ ε2 κyκz

8 T̂ 2P
e

i T̂ (1−P)2

ε2 ξ
ψ̂Ey

, (103)
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which needs the boundary condition ψ̂ → 0 and ψ̂
(0)
⊥ → 0

at κ⊥/T̂ = 2/ε (i.e., the separation between propagating and
evanescent modes, given by P → 0).

Equations (96)–(101) can be directly exploited to ac-
curately inject tightly focused ultrashort laser pulses of
arbitrary shape in space and time in Maxwell codes based
on the unidirectional pulse propagation equation [10,11]. Un-
der the cost of computing an inverse Fourier transform in
the transverse space and time [32], these equations can also
be used to prescribe the laser field under highly nonparaxial
conditions on the boundaries of finite-difference time-domain
(FDTD) codes such as particle-in-cell (PIC) ones [8,9]. Since
the spectrum is analytically known everywhere, the most
efficient fashion of Fourier-backtransforming Eqs. (96)–(101)
is through inverse discrete Fourier transforms (IDFT) based
on quadrature formulas (see Sec. III).

H. Energy conservation

The overall laser energy is calculated by integrating the
longitudinal component of the Poynting vector (�x) over
transverse coordinates and time (see Appendix C):

U = D2
0

4 ω0

∫∫∫ +∞

−∞
�x dυ dζ dτ, (104)

where �x = c2ε0(EyB̄z − EzB̄y ). Taking into account the
Ansätze Eqs. (7) and (8), the normalized total energy ex-
presses in terms of the inner product between envelopes
defined by Eq. (C5) as follows:

4 ω0

cε0E
2
0D

2
0

U = 〈
ψEy

, ψBz

〉 − 〈
ψEz

, ψBy

〉
. (105)

When substituting the Lax series Eq. (15) into Eq. (105),
the overall energy expands in powers of ε as follows:

〈
ψEy

, ψBz

〉 − 〈
ψEz

, ψBy

〉 =
∞∑

j=0

ε2j

j∑
α=0

〈
ψ

(2α)
Ey

, ψ
(2j−2α)
Bz

〉

−
∞∑

j=0

ε2j

j∑
α=0

〈
ψ

(2α)
Ez

, ψ
(2j−2α)
By

〉
.

(106)

To demonstrate the energy conservation, we shall search
for the least upper and lower bounds of the total energy. From
Eq. (106) one easily deduces that the total energy is bounded
from below by zero:〈

ψEy
, ψBz

〉 − 〈
ψEz

, ψBy

〉
� 0, (107)

since, for forward-propagating waves, the total energy cannot
be negative.

We shall seek the least upper bound for the total en-
ergy in the transverse-spatial and temporal Fourier space.
Thanks to the Plancherel’s theorem, the normalized overall
energy Eq. (105) can be calculated in the Fourier space as
follows:

4 ω0

cε0E
2
0D

2
0

U

= 8π3
∫∫∫

εκ⊥
2T̂

�1

(
ψ̂Ey

¯̂ψBz
− ψ̂Ez

¯̂ψBy

)
dκy dκz d�. (108)

From the solutions Eqs. (96)–(99) the integrand in
Eq. (108) can be calculated in any transverse plane after some
manipulations:

ψ̂Ey

¯̂ψBz
− ψ̂Ez

¯̂ψBy

=
[

1 −
(

1 − P

1 + P

)2
](

ψ̂
(0)
Ey

¯̂ψ (0)
Bz

− ψ̂
(0)
Ez

¯̂ψ (0)
By

)
. (109)

Since 0 � P � 1 for forward-propagating waves, then 0 �
(1 − P)/(1 + P) � 1 and thus the coefficient in Eq. (109)
verifies

0 � 1 −
(

1 − P

1 + P

)2

� 1. (110)

When substituting Eqs. (109) and (110) into Eq. (108), one
easily deduces that the total energy is bounded from above by
the paraxial-order energy:

〈
ψEy

, ψBz

〉−〈
ψEz

, ψBy

〉
�

〈
ψ

(0)
Ey

, ψ
(0)
Bz

〉−〈
ψ

(0)
Ez

, ψ
(0)
By

〉
, (111)

because ψ̂
(0)
Ey

¯̂ψ (0)
Bz

−ψ̂
(0)
Ez

¯̂ψ (0)
By

=|C (0)
0,Ey

|2+|C (0)
0,Ez

|2�0 every-
where.

Finally, from the bounds Eqs. (107) and (111) we conclude
that our solution has a positive total energy, which is bounded
from above for any ε. Hence, the solution can always be
rescaled to the paraxial-order energy.

In conclusion, we have demonstrated that, when the terms
in the Lax series are computed in the way presented in
this paper, the paraxial level bounds from above the total
energy and high-order corrections do not increase it. This is
in complete agreement with the nature of the wave equation.
By observing its solution Eq. (13), the energy is set when
prescribing whatever two laser field components in a chosen
transverse plane, e.g., in virtue of Eqs. (96) and (98) and
Eqs. (102) and (103). Provided that 0 � P � 1 the propa-
gation phase exp[−2i T̂ (1 − P)ξ/ε2] in Eq. (13), whose ε-
dependent part is introduced in the Lax series by all the
high-order corrections, models the transport of this amount
of energy, which remains unchanged through any transverse
plane. This is the reason why the ε-increasing-dependence of
the total energy that comes out in previous works [23] is not
physical: it reflects the presence of spurious modes that are
adding energy artificially.

We note the analogy to perturbative expansions of the
wave function in quantum mechanics [39,40]. The quantum
wave function (here analogous to the total energy) is always
normalized to unity, same as the lowest-order of its expansion,
i.e., the unperturbed wave function (here analogous to the
paraxial-level energy).

Since computing inverse Fourier transforms far from focal
plane may be computationally expensive due to the large
transverse-spatial windows involved, in the following Sec. III,
we shall calculate the leading term of the asymptotic limit
of our Lax-series-based analytical solution far from the focal
plane and discuss the adequacy of using that limit as bound-
ary condition for FDTD Maxwell solvers instead of the full
solutions presented in Sec. II G.
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III. ASYMPTOTIC BEHAVIOR FAR FROM FOCAL PLANE

Let us assume that, following Eqs. (37)–(42), the transverse
field components at the paraxial order in the position space are

ψ
(0)
Ey

= ψ (0), (112)

ψ
(0)
Ez

= 0. (113)

The paraxial mode ψ (0), assumed to be forward-
propagating and hence to have no evanescent components,
expands in the limit ξ → ±∞ as

ψ (0) = 1

ξN

[
a0 + a1

ξ
+ a2

ξ 2
+ · · ·

]
, (114)

where N > 0 is the leading exponent of the asymptotic limit
(in general, N is not necessarily an integer), which implies
that a0 
= 0, and all coefficients aj = aj (υ, ζ, τ ) do not de-
pend on ξ . Equation (114) verifies the paraxial Eq. (B1):

∂2
⊥a0

ξN
+ ∂2

⊥a1 − 4i T Na0

ξN+1
+ ∂2

⊥a2 − 4i T (N + 1)a1

ξN+2
+ · · ·

= 0, (115)

from where we deduce that

∂
2(j+1)
⊥ aj = 0, (116)

for all j � 0.
In the scope of this paper, we aim at calculating the

asymptotic limit where ξ → ±∞ of our solution, generi-
cally denoted as ψ∞, only at the leading term O(ξ−N ). The
particular solutions of high-order corrections for Ey and Ez

components, given by Eq. (29), vanish by virtue of Eq. (116)
at the leading order O(ξ−N ). Hence, only the homogeneous
solutions of high-order corrections may contribute to the
limit ξ → ±∞, given by Eqs. (54) and (55), at such leading
order O(ξ−N ). After some manipulations, the limits for the
transverse components are, respectively,

ψ∞
Ey

ψ (0)
∼ 1 + 1

a0

∞∑
j=1

ε2jA
(2j )
Ey

, (117)

ψ∞
Ez

ψ (0)
∼ 1

a0

∞∑
j=1

ε2jA
(2j )
Ez

, (118)

where, from Eqs. (60) and (61) we obtain for j = 1:

A
(2)
Ey

=
(
∂2
υ − ∂2

ζ

)
16 T 2

a0, (119)

A
(2)
Ez

= ∂2
υζ

8 T 2
a0, (120)

and, from Eqs. (54), (55), and (116) we obtain the following
recursive formulas for j > 1:

A
(2j )
Ey

= − 1

8 T 2

[
∂2
ζ A

(2j−2)
Ey

− ∂2
υζA

(2j−2)
Ez

]
, (121)

A
(2j )
Ez

= − 1

8 T 2

[
∂2
υA

(2j−2)
Ez

− ∂2
υζA

(2j−2)
Ey

]
. (122)

From Eqs. (117)–(122) we see that the leading terms of the
limits of Ey and Ez where ξ → ±∞ hinge upon the dominant

FIG. 4. Numerical box in ARCTIC (cut at z = 0). The PML region
is colored in cyan. The parameters of the laser beam are defined at
x = 0, namely, the 1/e diameter D and the numerical aperture. The
injection plane for the total-field/scattered-field technique is placed
right after the PML (vertical black dashed line). The beam focal plane
(vertical blue dashed line) is at x = xf . Solid blue lines illustrate the
1/e beam diameter of the corresponding Gaussian pulse.

coefficient a0 in Eq. (114). The series in Eqs. (117) and (118)
must be truncated at order ∼O(ξ−N ). These limits are
first specified below for monochromatic (i.e., T → 1)
Hermite-Gaussian (Appendix E 1) and Laguerre-Gaussian
(Appendix E 2) families. Then, these limits are calculated with
a time envelope coupled to Hermite-Gaussian (Appendix E 3)
and Laguerre-Gaussian beams (Appendix E 4).

As explained in Sec. II G, to carry out accurate simulations
under highly nonparaxial conditions using FDTD Maxwell
codes, computing inverse Fourier transforms of Eqs. (96)–
(101) on boundaries is necessary [32]. Nevertheless, if the
boundaries where fields need to be prescribed are very distant
from the focal plane (several Rayleigh lengths), calculating
inverse Fourier transforms would demand considerable com-
putational resources because the transverse-spatial window is
very large. Alternatively, since our analytical method is capa-
ble to link the nonparaxial near fields to the far fields through
Eqs. (96)–(101), prescribing directly the leading term of the
asymptotic limit far enough from the focal plane appears to be
a reasonable simplification that helps us to save a big amount
of computational resources in these kind of simulations up
to a certain value of ε. Indeed, these leading terms in many
cases are simply the paraxial-level term of the Lax series, as
shown in Appendices E 1–E 4, and usually mimic quite well
experimental conditions, e.g., a broad beam on a focusing
mirror.

We verify our analytical results with three-dimensional
(3D) Maxwell-consistent numerical simulations performed
using the code ARCTIC [41]. Maxwell equations are discretized
by means of Yee scheme [33]. The simulation domain is
delimited by Bérenger’s perfectly matched layer (PML) ab-
sorbing boundary condition [42,43]. The laser is injected via
Ey , Ez, By , and Bz components in the transverse plane placed
right after the PML according to the total-field/scattered-field
technique [44], as shown in Fig. 4. This boundary is placed
several Rayleigh lengths from the beam focus x = xf .
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The origin of the optical axis (x = 0) is set at the position
of the left boundary. The input paraxial-order Gaussian pulse
at x = 0 is characterized by its 1/e beam diameter D and nu-
merical aperture (NA). The numerical aperture (0 � NA � 1)
of a Gaussian beam is defined as the sine of its divergence
angle. Our Lax series expansion parameter ε = (D0/2)/xR ,
that is, the ratio of the 1/e beam radius at focus D0/2 and
the Rayleigh length xR , represents the tangent of the beam
divergence angle. Thus, expressed in terms of ε, the numerical
aperture reads

NA = ε√
1 + ε2

. (123)

The beam focal plane is situated at x = xf :

xf = λ0

πε2

√(
πεD

2λ0

)2

− 1. (124)

If injecting the leading term of the asymptotic expansion
of our solution at x = 0 (i.e., a simple Gaussian beam)
instead of directly injecting the Fourier-back-transformed
full solution Eqs. (96)–(101), then the position of the focal
plane obtained with the full Maxwell solver may differ from
xf due to simplifying high-order terms where ξ → ±∞ in
Eqs. (117)–(118).

We simulate a y-polarized Gaussian laser beam at the
wavelength λ0 = 0.8 μm coupled, according to Eq. (E22),
with the Gaussian time envelope:

Cτ (�) = τp

2
√

π
e− τ2

p�2

4 = Fτ

[
e
− τ2

τ2
p

]
, (125)

where τp = 16.99 fs is the 1/e duration and thus the full-
width-at-half-maximum (FWHM) duration of the pulse (en-
velope of intensity) is 20 fs (i.e., 7.49 optical cycles). The
1/e beam diameter at x = 0 is D = 7.31 μm. We take a
numerical aperture of NA = 0.57 in the vacuum, which gives
ε = 0.7 corresponding to strong focusing conditions where
the nonparaxial regime is completely established [23]. The
beam focal plane should be situated at xf = 5.20 μm ac-
cording to Eq. (124). Since xR = 0.52 μm, the prescription
plane is xf /xR = 10 Rayleigh lengths far from the beam focal
plane. An overall input energy of 36 nJ is considered (which
corresponds to E0 = 55.36 GV/m). The resolution chosen in
ARCTIC is �x = 31.8 nm (25 points per wavelength), �y =
�z = 63.7 nm (13 points per wavelength), and �t = 84.9 as
(31 points per period). The PML layer is ten cells wide in each
direction.

Figure 5 shows the maximum value of |Ey | over time in the
XY plane (i.e., z = 0). The laser pulse is prescribed according
to Eq. (E22). The temporal inverse Fourier transformed is
computed from Eq. (A6) using the 64-point Gauss-Legendre
quadrature formula in the frequency interval −10/τp � � �
10/τp. The error of 22% between the position of the beam
focal plane given by ARCTIC (x = 4.06 μm) and the theory
(xf = 5.20 μm) is due to the fact that only the leading term
of the asymptotic solution is taken into consideration. The
previous evaluations have been performed within conditions
of very tightly focused pulses (ε = 0.7). By decreasing ε to
0.5, the error drops to roughly 10% (not shown), which is

FIG. 5. Maximum value that |Ey | reaches on the XY plane, for a
y-polarized 0.8-μm-wavelength 20-fs-FWHM 36-nJ Gaussian laser
beam prescribed at x = 0 with NA = 0.57 and D = 7.31 μm. The
horizontal white dotted line represents the optical axis. The length
of the PML layer is 0.32 μm along x axis and hence the laser
pulse is injected at x = 0.32 μm using the paraxial-order term. The
vertical white dashed line indicates the beam focal plane position
(xf = 5.20 μm) and the white solid lines depict the profile of the
Gaussian pulse (paraxial-order term of the Lax series). The leading
term of the asymptotic expansion, given by Eq. (E22), is employed
to prescribe the laser pulse.

acceptable. Therefore, it turns out that prescribing the laser
fields at a finite distance implies a contribution of next-to-
leading orders of the asymptotic expansion: the smaller ε, the
smaller the next-to-leading order contribution.

The maximum values in the focal plane over time of
the module of the electric field components are comparable
with the module of the corresponding spatial envelopes with
T → 1. These latter values, |E0ψ |, computed by Fourier-
back-transforming Eqs. (96)–(101) with T̂ = 1, are depicted
in Figs. 6(d)–6(f). A 64×64-point Gauss-Legendre quadrature
formula in the transverse-wave-vector region κ⊥ � 2/ε (i.e.,
the evanescent modes are filtered out) is used to compute
the inverse discrete Fourier transforms via Eq. (A4). The
peak of Ey predicted by our Lax-series-based solution is
48.26 GV/m, which is lower than the peak of the paraxial-
order term of the series (E0 = 55.36 GV/m), as illustrated
in Fig. 7, due to the strong focusing conditions. The cuts
in the focal plane of the simulation corresponding to Fig. 5
are shown in Figs. 6(a)–6(c). One observes that the results
of ARCTIC and our analytical solution qualitatively agree
but the amplitudes are ∼20% smaller (the peak of Ey is
37.80 GV/m).
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FIG. 6. Comparison of ARCTIC’s results (maximum values that the module of the electric field components attain in the focal plane) with
our analytical solution. Results corresponding to Fig. 5 in the beam focal plane at x = 4.06 μm: Maximum values of (a) |Ex |, (b) |Ey |, and
(c) |Ez|. Analytical solution in the focal plane at xf = 5.20 μm, calculated from Fourier-back-transformed Eqs. (96)–(101), with T = 1 and
by filtering the evanescent modes: (d) |E0 ψEx

|, (e) |E0 ψEy
|, and (f) |E0 ψEz

|.

IV. CONCLUSION AND OUTLOOKS

Both the wave equation and the paraxial equation pos-
sess an infinite number of solutions. In this paper, we have
demonstrated that from any paraxial solution we can build,
in a self-consistent fashion, an exact solution of the wave
equation for the six electromagnetic field components, as-
suming forward-propagating linearly-polarized laser pulses,
which is consistent with Maxwell equations, conserves the
energy transported through transverse planes, and preserves

FIG. 7. Cut along y axis of |E0 ψEy
| corresponding to Fig. 6(e)

(blue solid line). The (upper) red dashed line accounts for the
paraxial-order term of the series.

the symmetry between the electric and magnetic fields. To do
so, we have split, following the procedure by Lax et al. [19]
and in the transverse-spatial and temporal Fourier space, both
the scalar wave equations applied to each electromagnetic
field component and to the Maxwell equations. High-order
corrections have been separated in a homogeneous solution
and a particular solution. The particular solution is integrated
directly from the wave equation. The homogeneous solution,
instead, must be calculated so that the whole set of Maxwell
equations is satisfied and the existing symmetry between the
electric and magnetic fields is preserved. Only then the total
laser energy through transverse planes is bounded for any ε.
The fact that high-order corrections reduce the energy and
make rescaling necessary implies that tight focusing leads
necessarily to mode mixing with an ε-dependence of the
number of active modes. We give simple recursive relations
to obtain these Maxwell-consistent high-order corrections,
which are polynomials on the longitudinal coordinate whose
coefficients are paraxial modes related to transverse-spatial
and temporal derivatives of the paraxial-order term of the Lax
series. The convergence of our solution is demonstrated by
giving the limits of the series in the transverse-spatial and
temporal Fourier space. These limits are of direct application
to accurately prescribe tightly-focused ultrashort laser pulses
in Maxwell codes.

Since in experiments fields are usually known far from
the focal plane, we have derived the leading term if the
asymptotic expansion of the full analytical solution of the
Maxwell equations. In the case of a strongly focused 20-fs-
FWHM Gaussian laser pulse, numerical simulations confirm
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the reliability of this asymptotic expression up to an accuracy
of 10%. Further developments for next-to-leading orders are
expected to decrease this error.
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APPENDIX A: DEFINITION OF THE
TRANSVERSE-SPATIAL AND TEMPORAL

FOURIER TRANSFORM

Using the dimensionless coordinates ξ = x ′/xR , υ =
2y/D0, ζ = 2z/D0, κy = D0ky/2, κz = D0kz/2, τ = ω0t

′,
and � = ω/ω0 we define the transverse-spatial and temporal
Fourier transform of ψ , denoted as ψ̂ , as the combination of
the transverse-spatial Fourier transform (F⊥) and the temporal
Fourier transform (Fτ ):

ψ̂ (ξ, κy, κz,�) = Fτ [F⊥[ψ (ξ, υ, ζ, τ )]], (A1)

ψ (ξ, υ, ζ, τ ) = F−1
τ [F−1

⊥ [ψ̂ (ξ, κy, κz,�)]], (A2)

where the transverse-spatial Fourier transform is

F⊥[ψ] = 1

4π2

∫∫
ψ e−i(κyυ+κzζ ) dυ dζ, (A3)

ψ =
∫∫

F⊥[ψ] ei(κyυ+κzζ ) dκy dκz, (A4)

and the temporal Fourier transform is

Fτ [ψ] = 1

2π

∫
ψ ei�τ dτ, (A5)

ψ =
∫

Fτ [ψ] e−i�τ d�. (A6)

For monochromatic pulses, the temporal Fourier transform
defined in Eq. (A5) reduces to a multiplication by a Dirac δ

function δ(�) in the temporal Fourier space.

APPENDIX B: SOLUTIONS OF
THE PARAXIAL EQUATIONS

The paraxial equation is(
∂2
υ +∂2

ζ +4i T ∂ξ

)
ψ =(

∂2
υ +∂2

ζ +4F 2 T ∂F

)
ψ = 0, (B1)

where the complex longitudinal variable F = i/(i − ξ ) has
already been introduced by Salamin [23]. By rewriting

Eq. (B1) in the transverse-spatial and temporal Fourier space,
we can see that the paraxial solution is of the form

ψ̂ = C(κy, κz,�) e−i
κ2⊥
4 T̂

ξ , (B2)

where κ2
⊥ = κ2

y + κ2
z and C(κy, κz,�) is a coefficient inde-

pendent of ξ .
Three families of exact solutions for Eq. (B1) are known

when T → 1 (i.e., monochromatic pulses): Hermite-Gaussian
modes (often called the free-space eigenmodes), Laguerre-
Gaussian modes, and Ince-Gaussian modes [45]. Each of
these families constitute a countably infinite set of orthogonal
paraxial solutions, and they are complete [26].

1. Hermite-Gaussian modes

The Hermite-Gaussian modes are a well-known complete
family of orthogonal paraxial solutions:

ψ (HG)
n,m (F, υ, ζ )

=
√

(2F−1)m+n

n! m! 2n+m
Hn

( √
2 Fυ√
2F−1

)
Hm

( √
2Fζ√

2F−1

)
Fe−Fρ2

,

(B3)

where n is the order of the Hermite polynomial Hn along
y axis, m is the order along z axis, ρ2 = υ2 + ζ 2. Hermite
polynomials verify

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x), (B4)

H ′′
n (x) − 2xH ′

n(x) + 2nHn(x) = 0, (B5)

where ′ accounts for the derivative with respect to the vari-
able x and the first two polynomials are H0(x) = 1 and
H1(x) = 2x.

Hermite-Gaussian propagation modes are orthogonal be-
tween one another, with the inner product defined by Eq. (C7):〈

ψ (HG)
n,m , ψ (HG)

p,q

〉
=

∫∫ +∞

−∞
ψ (HG)

n,m ψ̄ (HG)
p,q dυ dζ

= 〈
ψ (HG)

p,q , ψ (HG)
n,m

〉 =
∫∫ +∞

−∞
ψ (HG)

p,q ψ̄ (HG)
n,m dυ dζ

= π

2
δp
n δq

m, (B6)

where δ
p
n refers to Kronecker δ function and the symbol ¯

denotes the complex conjugate.
In the transverse-spatial Fourier space,the (n,m)-order

Hermite-Gaussian mode reads

ψ̂ (HG)
n,m = C (HG)

n,m e−i
κ2⊥
4 ξ , (B7)

where

C (HG)
n,m = (−i)n+m

4π
√

n! m! 2n+m
Hn

(
κy√

2

)
Hm

(
κz√

2

)
e− κ2⊥

4 . (B8)
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Transverse derivatives of Hermite-Gaussian modes can
be expressed as a linear combination of Hermite-Gaussian
modes:

iκyψ̂
(HG)
n,m = −√

n + 1 ψ̂
(HG)
n+1,m + √

n ψ̂
(HG)
n−1,m, (B9)

iκzψ̂
(HG)
n,m = −√

m + 1 ψ̂
(HG)
n,m+1 + √

m ψ̂
(HG)
n,m−1, (B10)

where, by notation convention,
√

n Hn−1(x) = 0 if n = 0.

2. Laguerre-Gaussian modes

The Laguerre-Gaussian modes are a well-known complete
family of orthogonal paraxial solutions:

ψ
(LG)
p,l (F, υ, ζ ) = (2F − 1)p(

√
2 F )|l|√

(p+|l|)!
p!

(υ + sgn(l) iζ )|l|L|l|
p

×
(

2ρ2F 2

2F − 1

)
Fe−Fρ2

, (B11)

where p � 0 is the radial index and l is the azimuthal index (it
can be negative, zero, or positive integer) of the generalized
Laguerre polynomial L

|l|
p , and sgn(l) is the sign of l, i.e.,

sgn(l) = 1 if l � 0 and sgn(l) = −1 if l < 0. Generalized
Laguerre polynomials verify

L|l|
p (x)

= (2p + |l| − 1 − x)L|l|
p−1(x) − (p + |l| − 1)L|l|

p−2(x)

p
,

(B12)

where the first two polynomials are L
|l|
0 (x) = 1 and L

|l|
1 (x) =

1 + |l| − x.
Laguerre-Gaussian propagation modes constitute an or-

thogonal set:

〈
ψ

(LG)
p,l , ψ (LG)

q,r

〉 = 〈
ψ (LG)

q,r , ψ
(LG)
p,l

〉 = π

2
δq
pδr

l . (B13)

The Gaussian beam belongs to both Hermite-Gaussian and
Laguerre-Gaussian families:

φ
(HG)
0,0 = φ

(LG)
0,0 . (B14)

In the transverse-spatial Fourier space, the (p, l)-order
Laguerre-Gaussian mode reads

ψ̂
(LG)
p,l = C

(LG)
l,p e−i

κ2⊥
4 ξ , (B15)

where

C
(LG)
p,l

= (−i)2p+|l| √p!

4π
√

2|l| (p + |l|)! (κy+sgn(l) iκz)|l|L|l|
p

(
κ2

⊥
2

)
e− κ2⊥

4 .

(B16)

Transverse derivatives of Laguerre-Gaussian modes can
be expressed as a linear combination of Laguerre-Gaussian

modes:

−κ2
⊥ψ̂

(LG)
p,l = −2(2p + |l| + 1) ψ̂

(LG)
p,l

− 2
√

(p + 1)(p + 1 + |l|) ψ̂
(LG)
p+1,l

− 2
√

p(p + |l|) ψ̂
(LG)
p−1,l , (B17)

where, by notation convention,
√

p L
|l|
p−1(x) = 0 if p = 0.

APPENDIX C: LASER POWER AND ENERGY
TRANSPORTED THROUGH A TRANSVERSE PLANE

AND DEFINITION OF THE INNER PRODUCT
BETWEEN SPATIAL ENVELOPES

The Poynting vector is defined as

��� = c2ε0(EEE × B̄BB ), (C1)

where the symbol ¯ denotes the complex conjugate. Its lon-
gitudinal component is

�x = c2ε0(EyB̄z − EzB̄y ), (C2)

whose integral over the transverse coordinates, calculated by
employing Ansätze Eqs. (7) and (8), gives the power flux
through the transverse planes:

P = cε0E
2
0D

2
0

4

∫∫ +∞

−∞

(
ψEy

ψ̄Bz
− ψEz

ψ̄By

)
dυ dζ. (C3)

Integration of Eq. (C3) over time, assuming that there is a
time-dependent envelope, gives the total laser energy, which
should be the same through any transverse plane:

U = 1

ω0

∫ +∞

−∞
P dτ. (C4)

The form of the integral in Eq. (C4) suggests us to define
the following inner product of spatial envelopes:

〈a, b〉 :=
∫∫∫ +∞

−∞
ab̄ dυ dζ dτ, (C5)

which gives us the total energy of the laser pulse:

4ω0U

cε0E
2
0D

2
0

= 〈
ψEy

, ψBz

〉 − 〈
ψEz

, ψBy

〉
. (C6)

Note that for monochromatic beams (i.e., the envelopes do
not depend on time) the inner product is defined as

〈a, b〉 :=
∫∫ +∞

−∞
ab̄ dυ dζ, (C7)

and, in this case, 〈ψEy
, ψBz

〉 − 〈ψEz
, ψBy

〉 represents the total
power flux through transverse planes:

4P

cε0E
2
0D

2
0

= 〈
ψEy

, ψBz

〉 − 〈
ψEz

, ψBy

〉
. (C8)

Following the definition of the inner product, if x is a scalar
(i.e., it does not depend on υ and ζ ), we have that

〈xa, b〉 = x〈a, b〉, (C9)

〈a, xb〉 = x̄〈a, b〉. (C10)
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Moreover, it follows from the theory of distributions that
odd transverse-coordinate and time derivatives are anticom-
mutative and even transverse-coordinate and time derivatives
are commutative. For instance,

〈∂υa, a〉 = −〈a, ∂υa〉, (C11)〈
∂2
υa, a

〉 = 〈
a, ∂2

υa
〉
, (C12)

provided that a(υ → ±∞) = 0 and ∂υa(υ → ±∞) = 0.

APPENDIX D: THE EXACT MAXWELL SOLVER
IN THE TRANSVERSE-SPATIAL FOURIER SPACE

We shall adapt the exact Maxwell solver in transverse-
spatial Fourier domain of Ref. [32] to the spatial envelopes
given in Ansätze Eqs. (7) and (8). Only the solver for
monochromatic laser beams is presented here. To do so, those
Ansätze are substituted into the Maxwell equations, and we
obtain the following overdetermined system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kx ky kz 0 0 0
0 0 0 kx ky kz

0 −kz ky −k0 0 0
kz 0 −kx 0 −k0 0
ky −kx 0 0 0 k0

k0 0 0 0 −kz ky

0 −k0 0 −kz 0 kx

0 0 k0 −ky kx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̂Ex

ψ̂Ey

ψ̂Ez

ψ̂Bx

ψ̂By

ψ̂Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 000, (D1)

where kx =
√

k2
0 − k2

y − k2
z is the longitudinal component

of the wave vector. We only consider forward-propagating
modes (i.e., kx � 0), and hence we require ψ̂ (x, ky, kz) = 0
if k2

y + k2
z > k2

0 .
The system Eq. (D1) has a unique solution if we assume

that the two transverse components of the electric field, Ey

and Ez, are known:

ψ̂Ex
= −ky

kx

ψ̂Ey
− kz

kx

ψ̂Ez
, (D2)

ψ̂Bx
= −kz

k0
ψ̂Ey

+ ky

k0
ψ̂Ez

, (D3)

ψ̂By
= −kykz

k0kx

ψ̂Ey
− k2

0 − k2
y

k0kx

ψ̂Ez
, (D4)

ψ̂Bz
= k2

0 − k2
z

k0kx

ψ̂Ey
+ kykz

k0kx

ψ̂Ez
. (D5)

The transverse components of the electric field are pre-
scribed in the transverse plane at x = x0 and propagated
according the following expression:

ψ̂Ey
(x, ky, kz) = ψ̂Ey

(x0, ky, kz)e−i(k0−kx )(x−x0 ), (D6)

ψ̂Ez
(x, ky, kz) = ψ̂Ez

(x0, ky, kz)e−i(k0−kx )(x−x0 ), (D7)

which is the exact forward-propagating solution of Eq. (12).

APPENDIX E: EXAMPLES OF ASYMPTOTIC
EXPANSIONS (LEADING TERM)

1. Monochromatic Hermite-Gaussian beams

If n and m are both even integers, the (n,m)-order
Hermite-Gaussian mode [see Eq. (B3)] behaves asymptoti-
cally where ξ → ±∞, like

ψ (HG)
n,m ∼ 1

ξ
[a0 + O(ξ−1)], (E1)

a0 = − i π
√

n! m!

2
n+m

2
(

n
2

)
!
(

m
2

)
!
. (E2)

If n is even and m is odd, then

ψ (HG)
n,m ∼ 1

ξ 2
[a0 + O(ξ−1)], (E3)

a0 = − 2
√

2
√

n! m!

2
n+m

2
(

n
2

)
!
(

m−1
2

)
!
ζ. (E4)

If n is odd and m is even, then

ψ (HG)
n,m ∼ 1

ξ 2
[a0 + O(ξ−1)], (E5)

a0 = − 2
√

2
√

n! m!

2
n+m

2
(

n−1
2

)
!
(

m
2

)
!
υ. (E6)

If both n and m are odd integers, then the asymptotic
expansion is

ψ (HG)
n,m ∼ 1

ξ 3
[a0 + O(ξ−1)], (E7)

a0 = 8 i
√

n! m!

2
n+m

2
(

n−1
2

)
!
(

m−1
2

)
!
υζ. (E8)

Whenever n and m are not simultaneously odd in-
tegers, by substituting Eqs. (E2), (E4), and (E6) into
Eqs. (119) and (120) one deduces that the paraxial-order term
dominates far from the focal plane:

ψ∞
Ey

∼ ψ (HG)
n,m , (E9)

ψ∞
Ez

∼ 0. (E10)

When both n and m are odd integers, the substitution
of Eq. (E8) into Eqs. (119) and (120) yields an extra term
∼O(ξ−3) in the asymptotic limit of Ez:

ψ∞
Ey

∼ ψ (HG)
n,m , (E11)

ψ∞
Ez

∼ ε2

8υζ
ψ (HG)

n,m . (E12)

Following Eq. (112), it is straightforward to verify that
these asymptotic limits contain all the power through the
transverse plane of the solution.
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2. Monochromatic Laguerre-Gaussian beams

Laguerre-Gaussian modes [see Eq. (B11)] behave asymp-
totically where ξ → ±∞, like

ψ
(LG)
p,l ∼ F |l|+1[a0 + O(ξ−1)], (E13)

a0 = α0 ρ|l|eilφ, (E14)

α0 = (−1)p

√
2|l|p!

(p + |l|)!L
|l|
p (0), (E15)

where F = i/(i − ξ ), ρe±iφ = υ ± iζ , and, in the cylindri-
cal coordinate system, ρ =

√
υ2 + ζ 2 represents the radial

distance and φ is the azimuth (such that υ = ρ cos φ and
ζ = ρ sin φ). Note that L

|l|
p (0) 
= 0 for all p � 0 and l. Af-

ter some manipulations, when substituting Eq. (E14) into
Eqs. (119)–(122), we have

A
(2)
Ey

= |l|(|l| − 1)

8
α0 (υ + isgn(l)ζ )|l|−2, (E16)

A
(2)
Ez

= sgn(l)i A
(2)
Ey

, (E17)

which are zero if |l| � 1, and for j > 1,

A
(2j )
Ey

= A
(2j )
Ez

= 0. (E18)

Therefore, the limits for Ey and Ez are, respectively,

ψ∞
Ey

∼
[

1 + ε2|l|(|l| − 1)

8(υ + isgn(l)ζ )2

]
ψ

(LG)
p,l , (E19)

ψ∞
Ez

∼ iε2l(|l| − 1)

8(υ + isgn(l)ζ )2
ψ

(LG)
p,l . (E20)

3. Hermite-Gaussian laser pulses

In the transverse-spatial and temporal Fourier space, we
multiply the (n,m)-order Hermite-Gaussian mode in the focal
plane (ξ = 0) by a temporal envelope Cτ (�), to prescribe the
transverse fields according to Eqs. (112) and (113) with the
following paraxial mode:

ψ̂ (0) = Cτ (�) C (HG)
n,m (κy, κz) e

−i
κ2⊥
4T̂

ξ
, (E21)

which satisfies Eq. (B2) and where C (HG)
n,m is given by Eq. (B8).

Since by this choice the temporal and transverse-spatial en-
velopes are separated in the focal plane, the inverse transverse-

spatial Fourier transform of Eq. (E21) is straightforward and
thus the paraxial mode in position space reads

ψ (0) = F−1
τ

[
Cτ (�) ψ (HG)

n,m (F̃ , υ, ζ )
]
, (E22)

where ψ (HG)
n,m is given by Eq. (B3) and

F̃ = i

i − ξ/T̂
. (E23)

Following Sec. E 1, whenever n and m are not simultane-
ously odd integers the asymptotic limits far from the focal
plane are

ψ∞
Ey

∼ F−1
τ

[
Cτ (�) ψ (HG)

n,m (F̃ , υ, ζ )
]
, (E24)

ψ∞
Ez

∼ 0. (E25)

When both n and m are odd integers,

ψ∞
Ey

∼ F−1
τ

[
Cτ (�) ψ (HG)

n,m (F̃ , υ, ζ )
]
, (E26)

ψ∞
Ez

∼ ε2

8T 2υζ ,

F−1
τ

[
Cτ (�) ψ (HG)

n,m (F̃ , υ, ζ )
]
. (E27)

4. Laguerre-Gaussian laser pulses

Analogously to Sec. E 3, we prescribe laser field compo-
nents based on the following paraxial mode that comes from
multiplying a time envelope by a Laguerre-Gaussian mode in
the focal plane:

ψ (0) = F−1
τ

[
Cτ (�) ψ

(LG)
p,l (F̃ , υ, ζ )

]
, (E28)

where C
(LG)
p,l is given by Eq. (B16) and F̃ is given by

Eq. (E23).
Following Sec. E 2, the asymptotic limits for each trans-

verse laser components are, respectively,

ψ∞
Ey

∼ F−1
τ

[
Cτ (�) ψ

(LG)
p,l (F̃ , υ, ζ )

]
×

[
1 + ε2|l|(|l| − 1)

8T 2(υ + isgn(l)ζ )2

]
, (E29)

ψ∞
Ez

∼ F−1
τ

[
Cτ (�) ψ

(LG)
p,l (F̃ , υ, ζ )

]
× iε2l(|l| − 1)

8T 2(υ + isgn(l)ζ )2
. (E30)
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