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The 100-year-long problem concerning the correct form of the electromagnetic energy-momentum tensor
in continuous media (usually called the Abraham-Minkowski problem) continues to attract interest. Here we
provide a critical analysis of interpretations presented in the literature on this topic recently, in two cases—one
real experiment on radiation pressure A. Kundu et al., Sci. Rep. 7, 42538 (2017), and one computer experiment
M. Partanen et al., Phys. Rev. A 95, 063850 (2017).
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I. INTRODUCTION

The longstanding discussion about what is the correct form
of the electromagnetic energy-momentum tensor in a medium
has recently become accentuated again. This problem, usually
called the Abraham-Minkowski problem [1,2], is to determine
the correct expression for the electromagnetic momentum in
the medium, or equivalently, whether there exists a special
term called the “Abraham term” fA [see Eq. (2) below] in the
electromagnetic force density f . We have recently considered
the Abraham-Minkowski problem both classically and quan-
tum mechanically, from various points of view, though with a
particular emphasis on radiation pressure phenomena [3–5].
There also exists, quite naturally, a large number of other
papers in this area; some of them are listed in Refs. [6–27].

The chief purpose of this article is to give an analysis of
two statements put forward in the recent literature, both of
them of significance in the Abraham-Minkowski context:

(1) The radiation pressure experiment of Kundu et al. [28]
gave a clear demonstration of how a weak cw laser beam
falling from above on a graphene oxide film deflects the
film in the downward direction, typically by an amount of
about 80 nm, when the laser power was about P = 1.4 mW.
The authors interpreted the experiment so as to favor the
Abraham expression for the photon momentum in matter. Is
this interpretation right?

(2) Consider another situation: When an optical pulse
propagates in an (infinite) isotropic medium, the Abraham
term fA exerts a longitudinal force on the matter, in particular
at the leading and trailing edges of the pulse. In the paper of
Partanen et al. [11] it was argued that this means transfer of
quite a large mechanical energy from the pulse to the medium,
of the same order of magnitude as the field energy itself.
Again, is this interpretation right?

It is now necessary to write down some central formulas.
For an isotropic nonmagnetic medium with permittivity ε =
n2 the Abraham force density can be expressed as

f = ρE + μ0J × H − 1

2
ε0E

2∇n2 + n2 − 1

c2

∂

∂t
(E × H),

(1)

cf., for instance, Refs. [29] or [30]; we here write the con-
stitutive relations as D = ε0εE, B = μ0H and omit the elec-
trostriction term.

In Eq. (1), ρ and J are the macroscopic charge and current
densities. When the medium is at rest as assumed here, J is
a pure conduction current. Ohm’s law is J = σE, with σ the
electrical conductivity. When dealing with problems in optics,
σ and J are often left out. The third term in Eq. (1), pro-
portional to the gradient of the permittivity, is of importance
at dielectric boundaries. It is common for the Abraham and
Minkowski theories and may thus be called the Abraham-
Minkowski term. Its significance has been demonstrated in
several optical experiments. (One may say that the devel-
opment in this direction started with the classic experiment
of Ashkin and Dziedzic in 1973 [6]: A narrow light beam
impinging vertically from above on a free water surface acted
upon the surface by an outward pull. Using pulsed radiation
of peak power P = 3 kW, each pulse of duration 60 ns, they
observed an elevation of the surface of about 0.9 μm. This
experiment was analyzed also in Ref. [29]. Later experiments
have shown surface defections of considerably higher magni-
tude, cf., for instance, the case where two immiscible fluids
are situated above each other when the temperature is near to
the critical point [31,32].)

The fourth term in Eq. (1) is the mentioned Abraham term,

fA = n2 − 1

c2

∂

∂t
(E × H) = n2 − 1

c2

∂S
∂t

, (2)

with S the Poynting vector. Under stationary conditions in
optics this term does not contribute at all; it fluctuates out.

In the next three sections we will consider the mentioned
items (1) and (2) separately, and discuss some considerations
about the dynamics of a laser-illuminated vibrating graphene
sheet.

II. RADIATION PRESSURE ON A GRAPHENE
OXIDE PLATE

We consider the same basic setup as in the experiment [28],
namely, a horizontal graphene oxide plate illuminated by a
weak cw laser beam from above, in the vertical z direction.
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We take the wave to be polarized in the x direction so that
Ex = E0e

i(k0z−ωt ) is the only nonvanishing component (k0 =
ω/c). The Poynting vector of the incident wave is thus

SI = 1
2ε0cE

2
0 . (3)

We let the z axis point downwards and let the upper surface of
the plate lie at z = 0; the lower surface lies at z = d, where d

is the thickness.
The mechanical force on the plate is composed by two

different contributions:
(i) There are vertical forces acting at the boundaries z = 0

and z = d due to the gradient term [the third term in Eq. (1)].
At z = 0 the force acts upwards; at z = d it acts downwards
(n > 1 assumed). A specific calculation, not shown here,
assuming (unrealistically) the refractive index to be real, leads
to a total gradient force pointing downwards.

(ii) There are vertical Lorentz forces acting in the interior
of the plate because of the conductivity σ of the graphene
oxide. The refractive index of this material is complex; calling
it ñ, we have the following as the mean value at wavelength
532 nm [33]:

ñ = 2.4 + 1.0 i (4)

(the plus sign occurs due to our convention e−iωt ). This means
that σ is quite large. While electrodynamic theory in metals is
complicated [34], we will henceforth as a first approximation
ignore the surface forces considered above and focus on the
Lorentz force only.

For large σ the theory of metals can be simplified sig-
nificantly. Formally, this corresponds to the limit k0/α � 1,
where k0 is the incident wave number as before, and α is
defined as

α =
√

μ0ωσ/2. (5)

As mentioned, we assume that the wave falls normally
upon the plate at the surface z = 0, the plate now, for conve-
nience, taken to be infinitely thick. The approximate expres-
sions for the fields in the two regions are

Ex = E0[ei(k0z−ωt ) −
√

R e−iδe−i(k0z+ωt )], (z < 0), (6)

Hy = k0E0

μ0ω
[ei(k0z−ωt ) +

√
R e−iδe−i(k0z+ωt )], (z < 0), (7)

Ex = k0E0

α
(1 − i)e−αzei(αz−ωt ), (z > 0), (8)

Hy = k0E0

μ0ω

[
2 − (i − 1)

k0

α

]
e−αxei(αz−ωt ), (z > 0), (9)

with

R = 1 − 2k0/α, tan δ = −k0/α. (10)

These expressions satisfy the boundary conditions at z = 0 to
the first order in k0/α.

We can now calculate the force on unit area of the plate
by integrating the Lorentz force over the appropriate volume
limited by z = 0 and z = d,

σz = 1

2
μ0σ�

∫ d

0
ExH

∗
y dz. (11)

Insertion of the above expressions gives

σz = ε0E
2
0 (1 − e−2αd )

(
1 − k0

α

)
. (12)

With λ0 = 532 nm, and ω = 3.54 × 1015 rad/s, we get
α = 4.72 × 104 × √

σ , or k0/α = 250/
√

σ . As an example,
we may choose

σ = 1.0 × 106 S/m, (13)

which is about the same conductivity as for manganese steel.
Then, k0/α = 0.25, and the above condition is roughly sat-
isfied. With d = 300 nm, the term e−2αd � 1, and we obtain

σz = ε0E
2
0 × 0.75. (14)

One may ask if our choice (13) for the conductivity is
reasonable. It corresponds to a two-dimensional sheet con-
ductivity equal to σ 2D = 3 Sm, when d = 300 nm. This is
a quantity that is in principle accessible experimentally. To
get some more insight at this point, let us go back to Eq. (4)
for the complex refractive index and calculate the complex
permittivity,

ε = ñ2 = (2.4 + 1.0 i)2 = 4.76 + 4.8 i. (15)

In conventional notation ε = ε′ + iε′′; thus ε′ = 4.76, ε′′ =
4.8. Now comparing with the formula

ε = ε′ + iσ

ε0ω
, (16)

we obtain the value σ = 1.5 × 105 S/m. Although there are
considerable uncertainties when associating two-dimensional
sheets with three-dimensional quantities, this indicates that
our calculation has overestimated σ a bit. We might have used
a lower value of σ (giving a weaker surface force), but at the
expense of violating the condition k0/α � 1.

We will not enter into further detail here but conclude that
the expression (14) should give a reasonable value for the
Lorentz force on the plate. When augmented by the surface
force at the boundaries (not shown, as mentioned) we actually
get a value for σz that becomes roughly the same as for total
reflection,

σz = ε0E
2
0 . (17)

We will for definiteness use this expression as the driving
force in the following. It is in agreement with the assumption
made in Ref. [28].

III. STATICS AND DYNAMICS OF THE CIRCULAR PLATE

We will apply elasticity theory to estimate the influence
from the force (17) on the graphene oxide plate. Now, a
practical complication in the experiment [28] was that the
plate was residing on a Si substrate. It is natural to assume
that there was not a direct mechanical contact between plate
and substrate; otherwise there would be no deflection at all.
Moreover, if transmission properties in the plate were allowed
for, it would be necessary to include the optical properties of
the substrate also. We will henceforth avoid these possible
complications by assuming that the plate is surrounded by
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air (n = 1) both on the upper and the lower side. Such a
simplified model is yet able to demonstrate the essence of the
effect.

Thus take the plate of thickness d to be circular, of radius a,
and assume for simplicity that the pressure σz is constant over
the initially flat cross section πa2. The total radiation force is
thus

Fz = 2P

c
, (18)

where the incident power is

P = SIπa2 = 1
2ε0cE

2
0 × πa2. (19)

A. Statics

We will first evaluate the form of the plate in its equilibrium
state when acted upon by the cw laser beam. Adopt cylin-
drical coordinates with the origin lying at the center of the
undisturbed sheet and let, as mentioned, the z axis be pointing
downwards. The stationary deflection ζ depends on the radius,
ζ = ζ (r ). The governing equation for large deflections is in
general quite complicated, of the fourth order in ζ [35].

We will model the graphene sheet as an elastic plate subject
to the conditions that both the elevation and the slope of the
plate are zero at r = a (i.e., a clamped edge situation). The
governing equation is

D∇4ζ = σz + ρgd, (20)

where

D = Ed3

12(1 − ν2)
(21)

is the flexural rigidity. Here E is Young’s modulus, and ν is
Poisson’s ratio. For graphene, ν ≈ 0.16 [36]. Equation (20)
is quite general, holding even if the deflection ζ is large
compared with d. With a = 0.9 μm and P = 1.4 mW, we find
σz = 3.67 Pa, while the gravitational pressure is much less,
ρgd = 6.65 mPa, when ρ = 2.26 g/cm3. Thus the term ρgd

can be omitted, and the equation reduces to

1

r

d

dr

{
r

d

dr

[
1

r

d

dr

(
r
dζ

dr

)]}
= σz

D
, (22)

which by integration yields

ζ = σza
4

64D

(
1 − r2

a2

)2

. (23)

The slope at r = a is thus zero. Using the maximum deflection
from the experiment, ζmax = σza

4/(64D) = 80 nm, we can
estimate the effective value of the flexural rigidity. We find
D = 4.7 × 10−19 Nm, corresponding to a very low value,

E = 200 Pa. (24)

B. Dynamics

The dynamic aspects of the problem are also of interest,
although this is a topic not directly connected with the exper-
iment [28]. We will confine us to the case of free vibrations,
i.e., put σz = 0.

Assume still that the graphene oxide sheet is modeled as a
circular plate of thickness d clamped along its periphery r =
a. The governing equation is

D∇4ζ + ρdζ̈ = 0. (25)

With the basic ansatz ζ (r, t ) = W (r ) cos ωt we get

∇4W = λ4W, (26)

with

λ4 = ρdω2

D
. (27)

The general solution for radially symmetric deflections can be
expressed in terms of ordinary and modified Bessel functions,

ζ r, t ) =
∞∑

n=1

Cn

[
J0(λnr ) − J0(λna)

I0(λna)
I0(λnr )

]
cos ωnt. (28)

The boundary conditions for a clamped plate are therewith
satisfied: W (r ) = 0 and dW/dr = 0 at r = a.

As for the eigenfrequencies, it is convenient to make use of
the approximative formula given by Timoshenko [37],

ω = α

a2

√
D

ρd
, (29)

where α is a constant characteristic for the mode. We will
consider only the lowest mode, for which α = 10.21. Then
ω follows from Eq. (29), whereas λ is conveniently found as
λ = √

α/a.
Inserting α = 10.21, a = 0.9 μm, D = 4.7 × 10−19 Nm,

ρ = 2.26 g/cm3, and d = 300 nm, we obtain

ω = 3.3 × 105 rad/s. (30)

This mechanical frequency is quite high.
It is possible to estimate also in a simple way the damping

due to air resistance. This factor can actually be important in
practice, although it is small in the present case due essentially
to the low density of air. Let us consider the lowest mode again
and evaluate the correction ω → ω1 because of the air drag.
The relevant formula was worked out by Lamb [38] and is
given also in Ref. [37]:

ω1 = ω√
1 + β

, (31)

where

β = 0.6689
ρair

ρ

a

d
. (32)

With ρair = 1.20 kg/m3 and the same parameters as above
we obtain β = 1.06 × 10−3, so that the correction is too small
to be observable. Also, in this time-dependent situation we
wonder if the rapidly fluctuating Abraham term fA plays any
role.

IV. ACTION OF THE ABRAHAM TERM
IN AN OPTICAL PULSE

We will now give a brief analysis of how the Abraham
force acts on an isotropic medium when an optical pulse
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propagates through it in the x direction. In this case fA is
longitudinal,

f A
x = n2 − 1

c2

∂

∂t
(E × H)x. (33)

We focus on the following three aspects:
(1) The pulse imparts a mechanical momentum to the

medium; per unit volume it is

gmech
x = n2 − 1

c2
(E × H)x. (34)

This momentum is due to the forward impulse (kick) given
to the particles at the leading edge of the pulse, and a
corresponding backward impulse at the trailing edge. In the
intermediate region where the pulse can be regarded as a
plane wave, the Abraham force fluctuates out. It was just this
accompanying mechanical momentum that was measured in
the classic experiments of Jones et al. [39,40].

(2) There is a corresponding small displacement of the par-
ticles. For simplicity we assume that the undisturbed particles
were at rest. With N denoting the number density of particles,
the mechanical momentum received per particle is

�p = n2 − 1

Nc2
(E × H)x. (35)

The distance l moved by a particle when acted upon by a pulse
of duration τ is thus l = (�p/m)τ , where m is the particle
mass. Observe that l is of first order in the small quantity �p.

(3) Then comes the central point: Is there a mechanical
kinetic energy transformed to the medium? In our opinion the
answer is no. The reason is very simple: The kinetic energy
per particle is (�p)2/(2m), thus of second order in �p, and
hence negligible.

The conclusion above seems to come at variance with the
statement made by Partanen et al. [11]. These authors pre-
sented an impressive numerical calculation of the propagation
of an optical pulse in an isotropic medium. Their theoretical
analysis contained, however, an extra term δmc2 in the energy
expression in the laboratory frame, apparently motivated by
relativity, implying that the total energy EMP of the travel-
ing pulse was written in the form EMP = h̄ω + δmc2. This
energy, together with the total propagating photon momen-
tum pMP , was taken to transform relativistically through the
Lorentz transformation as if (EPM, pMP ) were the compo-
nents of a four-vector. This calculation led to δmc2 = (n2 −
1)h̄ω, pMP = nh̄ω/c (Eqs. (2)–(5) in Ref. [11]), implying in
turn that EMP = n2h̄ω. However, these values of EMP and
pMP do not allow one to use the Lorentz transformation,
as they are not the energy and momentum components of
an energy-momentum tensor whose four-divergence is zero.

They are not the components of a four-vector. This is in con-
trast to the properties of the Minkowski tensor; its vanishing
four-divergence implies that the energy and momentum pho-
ton components constitute a four-vector. It is thus necessary
to adopt the photon energy in the Minkowski form h̄ω (not
n2h̄ω), together with the momentum nh̄ω/c, in the rest frame
in order to use the Lorentz transformation relating energy
and momentum in different frames. (More discussions on this
definite restriction on the four-velocity property for the energy
and momentum components can be found, for instance, in
Refs. [29] or [41].)

The correct general-relativistic description of light was
pioneered by Gordon [42] and has been further developed
more recently in the research area of transformation optics
(see, for instance, Refs. [43,44]).

The following remark ought to be added. We neglected
above the coupling between forces exerted by electromagnetic
momentum and elastic waves. One might think that such a
coupling is too small to be measurable, but the recent work
of Požar et al. [45] has actually demonstrated experimentally
the existence of elastic waves, driven essentially by the mo-
mentum of the incident wave. When a laser beam from above
impinges upon a horizontal dielectric mirror, the radiation
pressure launches elastic waves which spread away from
from the source in the lateral direction and carry energy and
momentum transferred from the laser pulse. This can in turn
give rise to minute displacements of the entrance surface of
the dielectric mirror. The detectable amplitudes of the surface
were found to be of order 100 fm.

V. CONCLUSION

The electrodynamics of media is a complicated topic. Our
purpose with this note has been to point out that care should
be taken when interpreting recent experiments and computer
experiments. Thus the downward bending of a graphene
oxide sheet, clearly demonstrated experimentally by Kundu
et al. [28], has after all little to do with the Abraham field
momentum. And when analyzing the propagation of an optical
pulse; cf. Partanen et al. [11], one should observe that there
is practically no transfer of a mechanical kinetic energy to the
medium. The mechanical energy transferred is of second order
in the small momentum �p given to the particles and is thus
negligible.
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