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Evolution of orbital angular momentum in three-dimensional structured light
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Light beams with an azimuthal phase dependency of ei�φ have helical phase fronts and thus carry orbital
angular momentum (OAM), a strictly conserved quantity with propagation. Here we engineer quasi-three-
dimensional (3D) structured light fields and demonstrate unusual scenarios in which OAM can vary locally in
both sign and magnitude along the beam’s axis, in a controlled manner, under free-space propagation. To reveal
the underlying mechanisms of this phenomenon, we perform full modal decomposition and reconstruction of
the generated beams to describe the evolution of their intrinsic OAM and topological charge with propagation.
We show that topological transition and the associated variation in local OAM rely on the creation, movement,
and annihilation of local vortex charges without disturbing the global net charge of the beam, thus conserving
the global OAM while varying it locally. Our results may be perceived as an experimental demonstration of the
Hilbert Hotel paradox, while advancing our understanding of topological deformations in general.
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I. INTRODUCTION

Vortex beams refer to a class of structured light beams [1]
characterized by azimuthal phase dependency ∼ ei�φ , where
� is known as the topological charge of the beam [2–4]. Such
beams possess � intertwined helical phase fronts with an on-
axis phase singularity and carry an orbital angular momentum
(OAM) value of �h̄ per photon. The handedness and order
of the helical phase twist are determined by the sign and
magnitude of �, respectively. Light’s OAM has been utilized
in many applications including optical trapping, materials
processing, and imaging, and has been extensively reviewed
to date [5–8]. In particular, the unbounded and orthogonal
OAM states of light have been extensively deployed in data
communications as a means of encoding information; both
classically and in the quantum regime [9–13].

In principle, when optical vortices propagate in a homoge-
neous isotropic transparent medium, both their spin and or-
bital angular momenta are conserved [14–17]. In other words,
light’s OAM is manifested as a strictly conserved quantity,
signified by a quantized topological charge �, and does not
change in general under free unperturbed propagation. In
very special cases, however, nontrivial topological deforma-
tions have been deliberately realized; originally by interfering
vortex modes with Gaussian beams [18], then by realizing
charge flipping induced in a nonlinear medium [19,20], and in
noncanoncial vortices generated by an astigmatic optical setup
[21,22]. More recently, nondiffracting optical vortices with
longitudinally varying topological charge have been observed
in air [23–26], thus opening new opportunities in venues
like optical trapping [27–29], dense data communications
[30], and remote sensing [31]. In all these developments, a
fundamental question on how OAM conservation is seemingly
broken, without violating any laws of physics, naturally arises.
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However, a satisfactory answer that resolves such paradoxical
behavior, observed in recently developed classes of structured
light, has not been provided yet. In addition, the physical
dynamics associated with the boundaries at which the light
beam undergoes its topological transition has scantly been
investigated.

In this work we examine the evolution of OAM in longitu-
dinally (3D) structured vortex beams—where the topological
charge exhibits unusual, yet controlled, nontrivial transitions
with propagation. We start by establishing a general frame-
work for designing and generating such beams, and we con-
sider two case studies in which the sign and magnitude of �

are changed with propagation. We then perform full modal
decomposition and reconstruction of those beams using the
Bessel bases. This approach allows us to: (a) gain insights
into the interplay between the intermodal phases within the
beam and its evolution, hence, understanding the underlying
mechanism of its topological deformation, and (b) it allows
us to quantitatively measure the OAM density in addition to
the local and global values of OAM (and topological charge)
of the reconstructed beam as it propagates. As such, we reveal
the general mechanism that governs the topological transitions
along the beam’s axis. We discuss how this mechanism man-
ifests as a practical realization of transfinite mathematics, ex-
hibiting a striking analogy with what is known as the Hilbert’s
hotel paradox [32–35]. We then demonstrate how the OAM,
despite its local variation, is always conserved globally—
thus providing a quantitative interpretation addressing the
OAM conservation paradox in 3D structured light, which has
hitherto been unresolved.

II. CONCEPT

Quasi-three-dimensional structured light, in which the
OAM can be longitudinally controlled, is realized here by
superimposing multiple vortex modes ψ� of topological
charge �. Furthermore, each vortex mode itself consists of a
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superposition of multiple copropagating beams carrying the
same charge � but with different spatial frequencies. Without
loss of generality, we adopted Bessel vortex beams due to
their interesting nondiffracting and self-healing characteristics
[36]. The 3D structured waveform is expressed as a superpo-
sition of 2N + 1 Bessel beams such that

U (ρ, φ, z, t ) =
∞∑

�=−∞
ψ�

= e−iωt

∞∑
�=−∞

N∑
m=−N

A�,mJ�

(
k�,m
ρ ρ

)
ei�φeik�,m

z z. (1)

Equation (1) is an exact solution to the paraxial wave
equation in which k�,m

ρ and k�,m
z denote the transverse and

longitudinal wave numbers, respectively. The wave numbers
k�,m
z are equally spaced in the k space, in a comblike setting,

with a separation of 2π/L; where L is the desired longitudinal
extent of the beam. Additionally, the coefficients A�,m repre-
sent complex weighting factors for each Bessel beam in the
superposition and are calculated by solving [24]

A�,m = 1

L

∫ L

0
F�(z)e−(i 2π

L
m)zdz. (2)

In the above, the morphological function F�(z) defines the
desired longitudinal intensity profile of each vortex mode ψ�

in the superposition of Eq. (1), over the finite longitudinal
extent L. This is realized by the complex coefficients A�,m

which represent the projection of F�(z) onto the Bessel basis.
In essence, the phases and amplitudes of A�,m are engineered
to shape the longitudinal intensity profile of each mode ψ� as
it propagates, via controlled interference.

This method is analogous to Fourier series in which arbi-
trary periodic waveforms are constructed from a discrete su-
perposition of multiple frequency harmonics weighted by suit-
able Fourier coefficients. Similarly, here, the discrete super-
position of suitably weighted spatial harmonics J�(k�,m

ρ ρ)ei�φ

in Eq. (1) enables us to spatially modulate the envelope of the
ensemble via controlled beating among its spatial frequencies.
As such, the intensity profile of any desired vortex mode ψ�

can be designed to switch on or off along the beam’s axis of
propagation by virtue of F�(z), and the contributions of ψ�

become spatially variant along the beam’s axis. Accordingly,
the effective charge � and intrinsic OAM [37] undergo pre-
determined (and nontrivial) transitions with propagation—a
curious behavior that seemingly breaks OAM conservation in
many observation planes. The experimental generation of this
class of beam is outlined next.

III. METHODS

A. Beam generation

The longitudinally (3D) structured beams were generated
using digital holograms realized via programmable spatial
lights modulators (SLMs). Figure 1 illustrates the experi-
mental setup used for beam generation and detection. First,
a linearly polarized He-Ne (λ = 632.8 nm) Gaussian mode
was expanded, collimated, and imaged onto SLM-1 (LCOS
reflective phase SLM with 1920 × 1080 resolution and 8 μm
pixel pitch). Next, following the modulation scheme described

FIG. 1. A holographic setup to create, digitally propagate, and
then detect 3D structured light. Here BE refers to the beam expander,
Pol is the polarizer, and BS is the beam splitter.

in Refs. [38,39], the desired pattern given by Eq. (1) was
encoded into a 2D hologram that was displayed on SLM-
1. In addition, a 2D grating function was encoded on the
hologram to spatially separate the generated signal in the k

space from the on-axis carrier. As such, the reflected beam
from SLM-1 was imaged and spatially filtered using a 4f

system incorporating an iris to remove unwanted diffraction
orders. A CCD camera (CCD-1) was then used to monitor the
transverse intensity profile of the resulting beam with propa-
gation. Finally the detection module, comprised of SLM-2 and
a 2f system, was used to decompose the propagating beam as
discussed next.

B. Modal decomposition and reconstruction

To examine the physical dynamics associated with the
spatial evolution of OAM, we performed full modal de-
composition of U (ρ, φ, z, t ) along its propagation direction.
Recall that any optical field can be expressed as a coherent
superposition of linearly independent basis functions Vj such
that

Ũ (ρ, φ) =
P∑

j=1

cjVj (ρ, φ), (3)

where cj = |cj |e�θj , whereas �θj is the intermodal phase
between Vj and a reference mode V0 such that �θj = θj − θ0.
Furthermore, here the field is decomposed at a fixed z plane
(i.e., zk) such that U (ρ, φ, z = zk, t ) = Ũ (ρ, φ)e−iωt . The
modal power coefficients |cj |2 are mathematically obtained
by evaluating the inner product between Ũ and each basis Vj ,
i.e., |cj |2 = |〈Ũ |Vj 〉|2, given by

|cj |2 =
∣∣∣∣
∫ ∫

R2
V ∗

j (ρ, φ)Ũ (ρ, φ)ρdρdφ

∣∣∣∣
2

, (4)

and normalized such that
∑

j |cj |2 = 1. Importantly, the inner
product given by Eq. (4) can be performed all-optically by
projecting Ũ (ρ, φ) onto correlation filters digitally encoded
on a programmable SLM—a technique that is also compatible
with our setup [39–44]. In this case, SLM-2 acts as a digital
filter that performs an inner product between Ũ (ρ, φ) and the
basis function Vj . This requires the complex conjugate of Vj

to be encoded on the display of SLM-2, as follows:

Hj (ρ, φ) = V ∗
j (ρ, φ). (5)

In practice, the outcome of this inner product is obtained by
performing an on-axis intensity measurement in the far field
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of the reflected beam—realized here by placing Lens-5 in a
2f configuration thus transforming the plane of SLM-2 into
the far field (k space) to be detected by CCD-2. As such,
the modal power coefficients |cj |2 can be obtained. Note
that the absolute weights |cj |, solely, are not sufficient to
fully reconstruct the pattern Ũ (ρ, φ). In fact, the intermodal
phases �θj are also needed, and are readily obtained from two
interferometric measurements that are feasibly enabled using
SLM-2 as well [39–44]. This requires two additional corre-
lation functions to be encoded on SLM-2; namely, H cos

j =
[V ∗

j + V ∗
0 ]/

√
2 and H sin

j = [V ∗
j + iV ∗

0 ]/
√

2. Accordingly, the
intermodal phases �θj are evaluated from

�θj = −arctan

[
2I sin

j − |cj |2 − |c0|2
2I cos

j − |cj |2 − |c0|2
]
. (6)

Here I sin
j and I cos

j depict the measured on-axis intensity sig-
nals resulting from the inner products with H sin

j and H cos
j ,

respectively [39–44].
A key benefit in using SLMs as digital filters is the ability

to combine multiple correlation filters, encoded with different
grating periods, and to multiplex them into a single holo-
gram. This allows us to spatially separate the respective inner
products, in the Fourier plane, thus reducing the total number
of required measurements. By adding all the elements of
the bases functions Vj weighted by their respective complex
coefficients |cj |e�θj , as per Eq. (3), the transverse pattern at
z = zk [i.e., Ũ (ρ, φ)], can be reconstructed. This process is
then repeated at different z planes to fully reconstruct the 3D
structured field U (ρ, φ, z, t ).

We note that precise alignment between SLM-1 and SLM-
2 is particularly critical when performing the optical corre-
lations (inner products). For this purpose, both SLMs were
mounted on 3D translational stages with micron-scale resolu-
tion and were fixed throughout the measurements. As such,
beam propagation has been realized digitally by updating the
distance z, in the propagation term of Eq. (1), with increments
of 1 cm. This approach provides an accurate realization of
beam propagation within the interval z � L, under the parax-
ial regime. It also ensures consistency in the alignment when
recording the successive planes, as opposed to mechanically
displacing the detection system.

C. Choice of Bessel functions

In principle, one may represent the optical field
U (ρ, φ, z, t ) in terms of a given set of basis functions. In
our case, at first glance, the Bessel functions may seem a
natural choice for basis functions, given that U (ρ, φ, z, t )
itself is constructed from a discrete superposition of Bessel
modes. However, this choice is accompanied with an inher-
ent challenge: a necessary condition for the all-optical inner
product discussed previously is to adopt orthonormal basis
functions [44]—a requirement that is not generally satisfied
for Bessel functions with different spatial frequencies kρ . Or-
thogonality implies minimal overlap between the modes such
that ∫ ∫

R2
V ∗

j Vj ′ρdρdφ = δj,j ′ , (7)

whereas normalization ensures that the total energy of the
input field is conserved when transformed from one function
space to another. In this case

∑ |cj |2 = 1. Violating the
orthonormality condition can lead to inaccurate reconstruction
of the field and may violate the conservation of energy in
some cases [44]. To satisfy the orthogonality requirement
we first studied the overlap between the Bessel functions
with different values of kρ . In this regard, we performed
multiple cross-talk measurements among the Bessel modes
at different separations between their wave numbers (kρ)
[45]. More details on the cross-talk analysis can be found in
Appendix A. Based on this analysis, we were able to set a
limit on the minimum separation between the values of kρ

so that the generated beam U (ρ, φ, z, t ) contains a discrete
set of pseudo-orthogonal Bessel functions—which will then
be encoded in the correlation filters at the detection stage.
In essence, prior knowledge of U (ρ, φ, z, t ) allows us to
narrow down the number of digital filters encoded on SLM-2,
thus making the modal decomposition process more efficient.
Additionally, the Bessel bases are normalized with respect to
their total energies (which are mode dependent) to satisfy the
normality condition.

A powerful advantage in modal decomposition is that it
provides full access to key physical quantities of the recon-
structed beam, such as its Poynting vector, OAM density,
and effective charge �. Furthermore, the intermodal phases
provide detailed insights into the mechanisms governing the
3D structured beam evolution and topological deformation.
In the following section we showcase two scenarios in which
the sign and magnitude of � vary with propagation. We then
describe the evolution of the aforementioned physical quanti-
ties with propagation and show how the OAM conservation is
always satisfied.

IV. RESULTS

We have experimentally generated two different light pat-
terns constructed from a superposition of the vortex modes ψ�.
Each mode ψ� is composed of five Bessel beams (N = 2).
The longitudinal wave numbers k�,m

z were centered around
0.999995k0 (k0 = 2π/λ0), and were equally spaced with sep-
arations of 4π in the k space. This choice of k�,m

z yield Bessel
beams whose transverse wave numbers k�,m

ρ are sufficiently
separated to ensure low cross-talk among the Bessel modes
(< −10 dB). This becomes particularly useful for fulfilling
the orthogonality requirement in the process of modal de-
composition and reconstruction as discussed in the previous
section (additional details can be found in Appendix A). To
this end, we generated and fully reconstructed two structured
beams in which the sign and magnitude of the topological
charge were made to vary with propagation. We start by
discussing the first pattern as described below.

A. Pattern 1: Reversing the sign of the topological charge

In the first experimental scenario, the propagating field
U (ρ, φ, z, t ) flips its topological charge from � = 2 to � =
−2 as it propagates. In this case, U (ρ, φ, z, t ) = ψ2 + ψ−2.
The morphological function F�(z) associated with each vortex
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FIG. 2. Measured and simulated intensity of the beam reversing
its charge. (a) Measured longitudinal intensity profile (the inset
depicts the simulated intensity profile). (b) Measured and simulated
transverse intensity profiles obtained at propagation distances: z = 0
cm, z = 7 cm, z = 14 cm, z = 21 cm, and z = 28 cm.

mode ψ� was defined as

F�(z)

⎧⎪⎨
⎪⎩

F2 = 1 0 � z � 14 cm,

F−2 = 1 14 � z � 28 cm,

F2 = F−2 = 0 elsewhere.

(8)

According to Eq. (8), the beam is designed to possess a
topological charge � = 2 over the region (0 � z � 14 cm),
and then undergoes topological inversion at z = 14 cm, at
which the charge is reversed to become � = −2 for the re-
maining distance (14 � z � 28 cm). The complex amplitude
hologram for this beam has been computed based on Eq. (1)
and the procedure described in Ref. [38], then displayed on
SLM-1. The corresponding intensity profiles, measured by
CCD-1, are depicted in Fig. 2. The longitudinal intensity
profile in Fig. 2(a) has been rendered by aggregating 1D slices
obtained from the transverse CCD images taken over 30 cm
(with 1 cm steps) in the z direction. The rendered profile is in
good agreement with the simulated results shown in the inset.
The transverse profiles are displayed in Fig. 2(b) at various
propagation distances along the z direction. Note that there
exist a region in space, at z = 14 cm, where the vortex mode
collapses from a closed ring into a petal-like structure. This
breakdown is a signature of topological inversion as will be
shown later.

The intensity measurements alone, however, are not suf-
ficient to examine key properties of the generated beam such
as its OAM and topological charge. To access these quantities,
we performed full modal decomposition and reconstruction of
U (ρ, φ, z, t ) into its Bessel basis. The measured amplitudes
of the Bessel beams correspond to the absolute values |A�,m|,

FIG. 3. Spectral decomposition of the generated 3D structured
light into Bessel basis. (a) Amplitudes of A2,m, and A−2,m. (b)
Intermodal phases among the Bessel modes within ψ2 and ψ−2.
The coefficients are displayed at z = 0 cm, z = 7 cm, z = 14 cm,
z = 21 cm, and z = 28 cm.

whereas the measured intermodal phases accounts for both
the phases associated with A�,m in addition to the phases
accumulated with propagation. More specifically, the inter-
modal phases describe the differences among the phases of
A�,meik�,m

z z. Note that phase accumulation is dependent on the
spatial frequency of each Bessel beam in the superposition.

The measured amplitudes and intermodal phases among
the Bessel beams are shown in Fig. 3 in comparison with
the theoretical predictions. Here we show the coefficients at
five distances: z = 0 cm, z = 7 cm, z = 14 cm, z = 21 cm,
and z = 28 cm, chosen as representative samples for the
beam evolution. In principle, the amplitudes of A�,m remain
constant throughout the beam’s propagation (as long as it is
not perturbed), as seen from Fig. 3(a). On the other hand, the
intermodal phases vary with propagation and play a critical
role in shaping the longitudinal beam profile. For instance,
at z = 0 cm, the Bessel beams within ψ−2 are out-of-phase
and, hence, destructively interfere and do not contribute to
the beam’s intensity at the center. As the beam propagates,
the intermodal phases evolve such that, at z = 7 cm, the
Bessel beams within ψ2 become in-phase and, hence, interfere
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FIG. 4. Theoretical and experimental evolution of the Poynting vector, phase, and OAM density of our 3D structured light reversing its
charge. All plots reveal the transverse plane at various propagation distances z. (a) Transverse components of the Poynting vector. The white
arrows trace the direction of energy flow and the “+” and “−” signs denote the polarity of the local vortices. The boxed regions represent
enlarged sections of the image. (b) Reconstructed and simulated phase profile. The arrows depict the sense of helicity in the phase and
their number denote the topological charge. (c) OAM density profiles reconstructed at different propagation distances. The insets depict the
simulated profiles. The OAM density evolves from positive to negative distribution as the beam propagates.

constructively in the beam’s center while, at the same z

position, the Bessel beams within ψ−2 are still out-of-phase
and destructively interfere.

Destructive interference in the vortex mode ψ−2 implies
that its energy is dispersed in the outer rings of the beam.
In this case, the topological charge in the beam’s center is
predominately � = 2 as a result of the contributions of ψ2,
as will be verified shortly. This state of intermodal phases
is reversed later on. For example, at z = 21 cm, the Bessel

beams associated with ψ−2 become in-phase, whereas those
associated with ψ2 become out-of-phase. Hence, the beam’s
topology is reversed. Evidently there exist a transitional region
midway along the beam’s axis (at z = 14 cm) where neither
contributions of ψ2 nor ψ−2 vanish. At this position, there is
an overlap between ψ2 and ψ−2 contributions and topological
inversion takes place. Finally, at z = 28 cm, the Bessel beams
within ψ2 and ψ−2 become out-of-phase and the 3D structured
beam gradually switches off.
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B. Mechanism of topological charge inversion

To investigate the topological inversion more closely we
compare the measured Poynting vector (inferred from modal
reconstruction) to the theoretically predicted one. Recall that
the Poynting vector points in the direction perpendicular to
the wavefront [4] and is given by the following expression for
scalar beams [46]:

S = ε0ω

4
[i(U∇U ∗ − U ∗∇U ) + 2k0|U |2ẑ]. (9)

Here ε0 is the free space permittivity and ω is the angular
frequency. In vortex modes, the Poynting vector typically
follows a spiraling path with propagation (perpendicular to
the rotating helical wavefront) and, hence, it has nonzero
transverse components. Figure 4(a) shows the transverse com-
ponents of the Poynting vector of the reconstructed beam at
various planes along its propagation direction, and compared
it with the simulated results. At z = 7 cm it is observed
that the energy of the vortex beam predominately flows in
the clockwise direction. This behavior is then disrupted at
z = 14 cm, after which the energy reverses its flow to the
counterclockwise direction (as seen at z = 21 cm). Topolog-
ical inversion is confirmed by looking at the reconstructed
phase profiles depicted in Fig. 4(b), from which it is evident
that the phase inverts its helicity from � = 2 to � = −2 as the
beam propagates.

Reversal of the topological charge hinges on several in-
triguing dynamics. First, the vortex beam collapses from
a closed ring (with charge � = 2) to a petal-like structure.
This transformation is a consequence of overlapping vortex
modes with opposite helicities (ψ2 and ψ−2) over the same
space region. Second, the phase front gradually loses its
helicity until it becomes unfolded (flat) at z = 14 cm. This
unwrapping of the phase front is associated with the formation
of chains of smaller vortices with alternating signs located
along the binary phase dislocations, as marked by + and −
signs. Note that chains of vortices with alternating signs are
typically a signature of fractional (noninteger) vortex beams
[47–49], and are experienced here during the topological
inversion. Third, the vortices with a minus sign approach the
beam center, guided along the path of phase dislocation, and
coalesce into one large vortex that replaces the � = 2 vortex,
thus reversing its topology. Simultaneously, the � = 2 vortex
is divided into smaller vortices that exit from the beam center
towards its outer ring. Next, the phase front gradually acquires
a helical nature but in the opposite sense (� = −2). Finally,
after all the charges have been judiciously transported to and
from the beam’s center (guided on the path of phase disloca-
tions), the plus charges annihilate and the petal-like structure
closes again into a ring, this time with charge � = −2.

The orbital angular momentum density in the z direction
for this beam is obtained from [46]

jz =
(

ρρ̂ × S
c2

)
z

. (10)

Figure 4(c) illustrates the distribution of OAM density in
the beam center as the beam propagates. The OAM density
evolves from positive values at z = 7 cm (associated with
� = 2), to acquire negative values with same magnitude and
opposite sign at z = 21 cm—as expected from a vortex beam
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FIG. 5. Movement of charges in the vicinity of the beam’s cen-
ter. The solid lines depict the experimentally reconstructed paths,
whereas the markers represent the theoretical paths.

with � = −2. Interestingly, there exist an overlap region
midway, at z = 14 cm, where the OAM density is dispersed
over concentric rings with alternating signs in agreement with
Poynting vector and phase pictures discussed above.

C. Conservation of OAM and charge

Thus far we have described the mechanism governing
the topological inversion from � = 2 to � = −2 in our 3D
structured beam. The transition occurs as a result of judicious
creation, movement, and annihilation of phase singularities as
the beam propagates. The evolution of the topological charge
is further illustrated in Fig. 5 which depicts the 3D path
traversed by the charges in the vicinity of the beam’s center
as it undergoes the topological transition. The reconstructed
paths have been obtained by tracking the location of phase
singularities near the beam’s center.

The plot emphasizes the role of the outer rings, acting as a
reservoir that injects new charges into the beam’s center, when
needed, to satisfy the desired OAM profile dictated by Eq. (8).
Notice how the negative charges (in turquoise markers) are
injected into the beam’s center while the positive charges exit
from the center into the outer rings of the beam to realize the
topological inversion at z = 14 cm.

A fundamental question on how the OAM and charge
are conserved, in such a case, naturally arises. To provide
a quantitative answer, we computed the OAM and effective
charge under two aperture sizes. The total orbital angular
momentum Jz per unit length is evaluated by integrating the
OAM density over the transverse plane of the beam according
to

Jz =
∫ ∫

R
jzdAz. (11)

In addition, the effective topological charge of the beam is
inferred from the ratio between its OAM (Jz) and energy per
unit length (W ) such that [50]

Jz

W
=

∫ ∫
R[ρρ̂ × 〈E × B〉]zdAz

c
∫ ∫

R〈E × B〉zdAz

= �eff

ω
. (12)

The OAM per unit length (Jz) and effective topological
charge are depicted in Figs. 6(a) and 6(b), respectively. The
experimental results are compared with the simulations and
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FIG. 6. Evolution of the OAM and topological charge consid-
ering two aperture diameters D = 300 μm, and D = 5 mm. (a)
Local and global OAM of the beam obtained along its direction
of propagation. (b) Local and global effective topological charge
evaluated along the beam’s axis.

are in very good agreement. We note that these quantities
have been obtained over two different aperture diameters: (a)
D = 300 μm and (b) D = 5 mm. When computed over the
smaller aperture, the OAM exhibits a transition from positive
to negative quantities along the propagation direction, and
it reaches an inflection point characterized by zero OAM
in between. Evidently the OAM conservation is seemingly
broken over this finite section of the beam. We refer to this
quantity as the local OAM of the beam. Interestingly, when
the OAM is evaluated across the entire cross section of the
beam (D = 5 mm) it maintains the same value regardless of
the propagation distance z. The global OAM is always zero
in this case. These observations quantitatively establish that
while the OAM may vary locally, the global OAM is always
conserved.

A similar picture can be seen when evaluating the effective
topological charge �eff under two aperture sizes, as shown
in Fig. 6(b). It is noticed that the local charge evolves from
�eff = 2 to �eff = −2 when observed over the smaller aperture
while the global �eff remains zero at all planes along the
z direction. Therefore, topological inversion occurs without
violating either the OAM or the charge conservation. While
the number of charges confined in a subvolume of the beam

FIG. 7. Measured and simulated intensity of the beam varying its
topological charge. (a) Measured longitudinal intensity profile (the
inset depicts the simulated intensity profile). (b) Measured and simu-
lated transverse intensity profiles obtained at propagation distances:
z = 3 cm, z = 6 cm, z = 11 cm, z = 16 cm, and z = 19 cm.

can vary, the net charge throughout the entire volume remains
in balance. In essence, charges are created in pairs across the
beam and topological inversion leverages on the deliberate
movement of some of those charges towards the beam’s center
leaving the opposite charges in the outer rings of the beam.

To compliment these findings, in the next section, we
present another scenario in which the magnitude of the topo-
logical charge can be made to vary with propagation.

D. Pattern 2: Changing the magnitude of the topological charge

In the second case study, the propagating field U (ρ, φ, z, t )
was designed to change the magnitude of its topological
charge from � = 1 to � = 3 as it propagates. For this scenario,
the propagating waveform is expressed as U (ρ, φ, z, t ) =
ψ1 + ψ3. The morphological function F�(z) associated with
each vortex mode ψ� is chosen as

F�(z)

⎧⎪⎨
⎪⎩

F1 = 1 0 � z � 11 cm,

F3 = 1.15 11 � z � 23 cm,

F1 = F3 = 0 elsewhere.

(13)

Note that we assigned a slightly larger value for F3 over
the interval (11 � z � 23 cm) to ensure that ψ1 and ψ3 are
generated at equal intensity levels, i.e., to compensate for the
energy mismatch between their Bessel modes.

Based on Eq. (13), the beam is designed to have a topo-
logical charge � = 1 over the interval (0 � z � 11 cm), and
then experiences a transition in its topological charge at
z = 11 cm, from � = 1 to � = 3. The beam then maintains this
charge (� = 3) for the remaining distance (11 � z � 23 cm)
before it switches off. Figure 7 shows the intensity profiles
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FIG. 8. Theoretical and experimental evolution of the Poynting vector, phase, and OAM density of our 3D structured light varying its
charge. All plots reveal the transverse plane at various propagation distances z. (a) Transverse components of the Poynting vector. The white
arrows trace the direction of energy flow and the “+” and “−” signs denote the polarity of the local vortices. The boxed areas represent enlarged
sections of the image. (b) Reconstructed and simulated phase profile. The arrows depict the sense of helicity in the phase and their number
denote the topological charge. (c) OAM density profiles reconstructed at different propagation distances. The insets depict the simulated
profiles. The OAM density triples its magnitude as the beam propagates.

of the generated beam. The longitudinal intensity profile has
been rendered by aggregating 1D slices obtained from the
transverse CCD images taken over 30 cm (with 1 cm steps) in
the z direction, and is in good agreement with the simulated
results shown in the inset. The transverse profiles are shown
in Fig. 7(b) at different planes along the direction of prop-
agation. Note how the vortex beam diameter is increased at

z = 19 cm—a signature of increasing the topological charge.
In addition, similar to the case of topological inversion, here
there exist a region in space (at z = 11 cm) where the closed
ring of the vortex undergoes shape deformation. This defor-
mation is a characteristic of topological transition. It can be
attributed to the spatial redistribution incurred to the phase
singularities, associated with varying the topological charge.
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In essence, the intensity profile is deformed judiciously to
allow a certain number of charges to enter to (or exit from)
the beam’s center to satisfy Eq. (13), as will be shown.

E. Mechanism of topological charge transition

To investigate the mechanism by which the vortex beam
undergoes topological charge transition, we obtained the
Poynting vector of the reconstructed field. More details on
the modal decomposition and reconstruction of this beam at
various planes along the propagation direction z can be found
in Appendix B. Figure 8(a) shows the transverse components
of the Poynting vector of the reconstructed beam at multiple
planes along the beam’s axis. At the plane z = 5 cm, the
energy circulates in the clockwise direction, over a small ring,
where the charge is supposedly � = 1. Eventually, at z =
17 cm, the charge has evolved from � = 1 to � = 3, signified
by the energy circulation over a larger ring. Such topological
transition is also confirmed by looking at the reconstructed
phase profiles depicted in Fig. 8(b); from which it is clear
that the number of helical phase fronts is increased from 1 to
3, while maintaining the same sense of helicity, as the beam
propagates.

Evolution of the topological charge from � = 1 to � = 3
relies on several interesting dynamics that are reminiscent of
those associated with topological inversion. First, the closed
ring forming the vortex beam (with � = 1) gradually splits
into two sections. This deformation is accompanied by the
formation of two smaller vortices around the beam’s center,
signified by the + sign in Fig. 8(a). It is also associated with
the creation of two new singularities in the phase front, which
gradually acquire an azimuthal phase gradient as the beam
propagates. Second, the newly formed vortices (charges) ap-
proach the beam’s center and come into the vicinity of the
original vortex. Third, as the three vortices (charges) come
closer, the divided ring gradually merges again, but this time
into a larger diameter, consistent with increasing its charge.
Simultaneously, the phase front evolves into three intertwined
helices—a signature of acquiring a charge � = 3. Interest-
ingly, the intertwined helices possess three distinguished sin-
gularities connected via branch cuts as opposed to sharing one
singularity.

Shape deformation observed here is a generic behavior and
can be regarded as a signature of topological transition. In
any structured (nontrivial) transition from �1 to �2, the beam
undergoes shape deformation, thus creating |�2 − �1| channels
of zero intensity allowing us to transport charges to (from)
the beam’s center. This observation holds true in the case
of topological inversion as well. These results advance prior
work on single component beams vortex dynamics by Gouy
phase [51], confirming the prediction by the authors of the
anticipated rich dynamics of superposition fields.

The OAM density of the reconstructed beam has been
obtained via Eq. (10), and is depicted in Fig. 8(c) at three
planes along the z direction. Note how the OAM density
acquires larger values, three times its initial value, and gets
redistributed over larger diameter as the charge evolves from
� = 1 to � = 3. A discussion on OAM and charge conserva-
tion is presented next.
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FIG. 9. Movement of charges in the vicinity of the beam’s cen-
ter. The solid lines depict the experimentally reconstructed paths,
whereas the markers represent the theoretical paths.

F. Conservation of OAM and charge

The transition from � = 1 to � = 3 in our 3D structured
beam occurs as a result of controlled creation and movement
of two phase singularities in the vicinity of the beam’s center
as it propagates.

Figure 9 illustrates the 3D path traversed by the charges
near the beam’s center as it undergoes the topological transi-
tion. The charges created in the outer rings of the beam are
transported into the beam’s center at the prescribed distance
z = 11 cm, to satisfy the desired OAM profile dictated by
Eq. (13).

To examine OAM conservation, we evaluated the OAM of
the beam, given by Eq. (11) over two aperture diameters: (a)
D = 400 μm and (b) D = 5 mm. Additionally, we computed
the effective topological charge �eff from Eq. (12) considering
the same two aperture sizes.

The OAM per unit length (Jz) and �eff are depicted in
Figs. 10(a) and 10(b), respectively. The experimental results
are compared with the simulations and are in very good agree-
ment. In the limit of small aperture size (excluding the outer
rings of the beam), the OAM exhibits a transition into larger
values as it propagates. Therefore, the OAM conservation is
seemingly broken locally, i.e., over this finite section of the
beam. However, when the OAM is evaluated across the entire
cross section of the beam (D = 5 mm), it maintains a fixed
value regardless of the propagation distance z. The global
OAM maintains a value that lies in between the minimum and
maximum local OAM values, and is always conserved in this
case. Similar to the case of topological inversion, here, while
the OAM varies locally, the global OAM is always conserved.
A similar picture is also observed in the effective topological
charge �eff, as shown in Fig. 10(b). While the local charge
evolves from �eff = 1 to approach �eff = 3, the global �eff
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FIG. 10. (a) Evolution of the OAM and topological charge con-
sidering two aperture diameters D = 400 μm and D = 5 mm. (a)
Local and global OAM of the beam obtained along its direction
of propagation. (b) Local and global effective topological charge
evaluated along the beam’s axis.

remains fixed at �eff = 2.15 at all planes along the z direction.
Note that �eff is slightly larger than 2 (the average of � = 1
and � = 3) due to the asymmetric weightings assigned to ψ1

and ψ3 in Eq. (13).
These interpretations are general and prove that while the

total number of charges entering and exiting an open surface
within the beam can vary, the total number of charges carried
by the entire system is always in equilibrium, provided that it
is a closed system. In this case, local topological transitions
can occur as a result of spatial redistribution of the charges
and the local OAM densities without altering the respective
global quantities. In fact, while the OAM density (jz) and the
total OAM per unit length (Jz) can vary along the beam’s axis
when observed over a finite open aperture, it is worth noting
that jz together with its associated flux will always satisfy
the continuity equation when observed over a closed surface
(enclosing a volume).

V. DISCUSSION

Conservation of OAM and charge manifests in a manner
that can be regarded as a practical realization of the Hilbert’s

Hotel paradox [33–35]. The paradox, attributed to David
Hilbert in 1924, postulates a hotel with an infinitely countable
number of occupied rooms with no vacancies. Nevertheless,
such a hotel can still accommodate an infinite number of new
guests at any given time by merely shifting each guest to its
neighbor higher-numbered room, thus creating a seemingly
infinite number of vacancies. Similarly, here the accommo-
dation of new positive charges (new guests) in the beam’s
center is associated with the formation of negative charges
(vacancies) in the outer rings of the beam (and vice versa).
In this case, the outer rings act as a reservoir that dynami-
cally compensates for the controlled imbalance in both the
charges and OAM within the beam’s center. The underlying
mechanism of charge conservation thus exhibits a fascinating
analogy with the seemingly abstract concept of Hilbert’s
hotel.

Furthermore, this work presents a systematic approach—
expressed in closed-form analytic expressions—to design,
create, and characterize the 3D structured beams using a sim-
ple all-optical holographic setup. This significantly expands
some earlier efforts that relied on complicated setups incor-
porating nonlinear media to achieve nontrivial topological
inversion. Moreover, we have employed modal decomposition
in pseudo-orthonormal function space to realize a holistic
quantitative diagnostic tool for our structured light, determin-
ing the intensity, phase, wavefront, Poynting vector, and OAM
density. As such we are able to offer a complete interpretation
of the OAM dynamics in such 3D structured light beams. In
particular, we established that at any structured transition from
�1 to �2, the beam undergoes deliberate shape deformation to
create exactly |�2 − �1| channels of zero intensity allowing us
to judiciously transport charges to (from) the beam’s center.
This is a generic signature that we emphasize here and is a
step towards establishing other governing laws in advanced
singular optics.

Additionally, we point out that while here we have demon-
strated cases where either the sign or the magnitude of �

is changed with propagation, simultaneous control of both
is readily achievable as well. Furthermore, in this work we
focused on the orbital component of the angular momentum
by considering linearly polarized light. Indeed, the photon’s
spin, associated with circular polarization, also contributes to
the total angular momentum [16]. Extensive research efforts
have been dedicated to the spin-orbit coupling and its role in
creating vortex modes [15]; it will be interesting to investigate
the dynamics associated with spin-orbit coupling using the 3D
structured light beams demonstrated herein.

VI. CONCLUSION

We have created and studied three-dimensional structured
light that undergoes arbitrary (but controllable) transitions in
their topological charges and OAM along their axis of propa-
gation. This class of beams has been realized via z-dependent
interference of multiple Bessel modes, demonstrating coun-
terintuitive cases of OAM evolution in free space. Using all-
optical modal decomposition, we reconstructed the structured
beam and obtained its Poynting vector, phase, and OAM
density, thus revealing the underlying physical mechanisms
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governing the beam’s evolution. In particular, we were able to
monitor the movement, creation, and annihilation of optical
vortices, which account for the local variation of the OAM
density within regions of our 3D field. Our results show that
while OAM is conserved globally, it may be arbitrarily tai-
lored locally, even violating OAM conservation within a finite
section of the beam. This study provides insights into OAM
in structured light fields that may be useful in understanding
topological deformations, possibly opening possibilities in
dense data communications, micromanipulation, and remote
sensing.
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Appendixes A and B contain additional data that are useful
for the proper implementation of modal decomposition and
reconstruction of optical fields using the Bessel modes. Ap-
pendix A presents cross-talk analysis to assess the orthog-
onality and overlap between the Bessel functions, whereas
Appendix B includes the results of modal decomposition for
the second 3D structured beam discussed in the main article—
changing its topological charge from � = 1 to � = 3.

APPENDIX A: CROSS-TALK MEASUREMENTS

A necessary requirement for performing the all-optical
modal decomposition of structured beams is to adopt or-
thonormal basis functions [39–44]. In essence, orthogonality
defines the degree of distinguishability of each mode (ba-
sis function) at the detection system, whereas normalization
ensures that the total energy of the optical field is con-
served when transformed from one basis system to another.
The Bessel functions deployed in our 3D structured beams,
however, are in general not orthogonal in nature. Neverthe-
less, one can still obtain a normalized pseudo-orthogonal
set of Bessel functions provided that their transverse wave
numbers kρ are sufficiently separated, as will be discussed
shortly.

To assess the degree of orthogonality within the Bessel
functions, we performed multiple cross-talk analysis. Here
cross-talk represents the amount of overlap between one mode
and another, and is mathematically represented by

∫ ∫
R2

V ∗
j Vj ′ρdρdφ. (A1)

Ideally, when the modes in the function space are orthog-
onal, the cross-talk should be zero as long as j 
= j ′. In our

FIG. 11. Cross-talk measurement for Bessel beams with different
values of �, while fixing the value of kρ at kρ = 3.48 × 104 m−1.

case, each Bessel function J�(kρ )ei�φ is defined by its radial
dependence kρ and azimuthal dependence ei�φ . To create a
discrete set of pseudo-orthogonal Bessel functions, we start
by analyzing the cross-talk among the Bessel modes with
different values of �, while fixing the parameter kρ . Figure 11
depicts the measured cross-talk between the Bessel modes
with different quantized charges �. The maximum cross-talk is
less than −10 dB in this case, which implies that the adopted
Bessel modes are sufficiently distinguishable in the azimuthal
direction.

In addition to the azimuthal dependence, the vortex Bessel
modes are also characterized by a radial dependency de-
scribed by the continuous variable kρ . We introduce the metric
δkρ to describe the separation between Bessel functions with
different kρ , in percentage form, such that

δkρ = k
j
ρ − k

j ′
ρ

k
j
ρ

× 100. (A2)

This defines the distance between one Bessel function
and another in the k space. Figure 12 depicts the cross-talk
measurements under different separations of kρ . It is observed
that, while the cross-talk is remarkable in case (a), it is
significantly reduced as the separation δkρ is increased. For
instance, at δkρ = 9.2%, the cross-talk is less than −10 dB
which implies that the Bessel functions are distinguishable
in the radial direction in that case. Accordingly, in all the
3D structured beam profiles presented in the main article, we
ensured that the separation among the Bessel functions in the
k space always satisfies the condition δkρ � 9.2%.

Consequently, it is possible to obtain a discrete set of
Bessel functions that are pseudo-orthogonal in both the radial
and azimuthal directions. Once this set is defined, each Bessel
mode can then be normalized with respect to its total energy
to satisfy the orthonormality condition and perform the modal
decomposition efficiently.
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FIG. 12. Cross-talk measurements for Bessel beams as function of δkρ : (a) δkρ = 3.8%, (b) δkρ = 4.6%, (c) δkρ = 5.35%, (d) δkρ =
6.12%, (e) δkρ = 6.8%, (f) δkρ = 7.6%, (g) δkρ = 8.4%, (h) δkρ = 9.2%.
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APPENDIX B: SPECTRAL DECOMPOSITION FOR THE
SECOND GENERATED 3D PATTERN

To access key quantities of the second generated beam
such as its Poynting vector and OAM, we performed full
modal decomposition and reconstruction of the field into its
Bessel basis along the propagation direction. Modal decom-
position also provides useful insights into the dynamics of
topological transition of the 3D structured beam from � = 1
to � = 3.

Figure 13 depicts the measured amplitudes and intermodal
phases among the Bessel beams of U (ρ, φ, z, t ) in compar-
ison with the theoretical predictions. The modal coefficients
are displayed at five distances: z = 3 cm, z = 6 cm„ z =
11 cm, z = 16 cm, and z = 19 cm, selected as illustrative
samples for the 3D structured beam’s evolution.

Evidently the amplitudes |A�,m| remain constant
throughout the beam propagation, whereas the intermodal
phases (proportional to ∠A�,meik�,m

z z) vary with propagation,
thus shaping the longitudinal beam profile. The frame at
z = 3 cm in Fig. 13 captures the intermodal phases within ψ1

as it progresses to become in-phase later on at z = 6 cm. The
Bessel beams of ψ3, on the other hand, are out-of-phase at
this position. They destructively interfere and their energies
are dispersed into the outer rings of the beam. Hence, they do
not contribute to the beam’s center and the topological charge
thereby becomes predominately � = 1. The opposite picture
is seen later on at z = 16 cm and z = 19 cm; where the Bessel
beams associated with ψ3 progress to become in-phase and
those associated with ψ1 become out-of-phase. Hence, the
topological charge � evolves from � = 1 to � = 3. Certainly,
there is an overlap region, which exists at z = 11 cm, and
where the contributions of both ψ1 and ψ3 are present in
the beam’s center, and where the topological transition takes
place.

FIG. 13. Spectral decomposition of the generated 3D structured
light into Bessel basis. (a) Amplitudes of A1,m, and A3,m, and (b)
intermodal phases among the Bessel modes within ψ1 and ψ3.
The coefficients are displayed at z = 3 cm, z = 6 cm, z = 11 cm,
z = 16 cm, and z = 19 cm.
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