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Imaging along conformal curves
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In this article, we prove that conformal transformation optics could be used to construct absolute instruments.
The Mikaelian lens, whose refractive index profile is 1/ cosh(x) [A. Mikaelian and A. Prokhorov, Progress in
Optics 17, 279 (1980)], are of imaging functionalities along lines and will be used as a generic lens. Under
a conformal mapping, it can be transformed to another lens, where imaging or self-imaging happens along
predesigned curves. Ray tracing simulations are performed to confirm the imaging functionalities.
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Absolute instruments are a very special type of lenses,
where any source in them will induce images or self-images
with no aberration [1–4]. The famous ones are Luneberg lens,
Eaton lens, and Maxwell’s fish-eye lens [5–7]. They have
many applications in antenna designs [8], lensing systems
[9], and cloaking designs [4,10]. They are usually of rotation
symmetry, and have been related to special curved surfaces,
which were called geodesic lenses [11,12]. Recently, another
type of absolute instruments was proposed without rotation
symmetry by employing analogy between geometrical op-
tics and classical mechanics based on the Hamilton-Jacobi
equation [13], which is the second example of such kinds
after the Lissajous lens [14]. The absolute instruments cannot
be designed directly from transformation optics (TO), which
is an important technique in controlling the rays and waves
arbitrarily [10,15–17]. Nevertheless, TO combining with such
lenses does bring about many important achievements, such as
transmuted Eaton lens [18] and flattened Luneberg lens [19].
More recently, another important lens, the Mikaelian lens, has
been recalled [3,20]. Its refractive index profile is 1/ cosh(x)
and are of imaging functionalities along lines. Originally,
people use it to design self-imaging waveguides. Now, it has
been shown to link with the famous Maxwell’s fish-eye lens
by a simple conformal mapping. Such a lens was implemented
in optical frequencies and demonstrated additional interesting
effect, the Talbol effect [21].

It is very interesting that, although the Mikaelian lens
is not an absolute instrument, by performing a conformal
mapping it becomes one. Can we use the Mikaelian lens
as a kernel and produce other lenses with similar imaging
functionalities? If yes, conformal transformation optics will
become another technique to construct such lenses. In this
article, we will simply start from the connection between
the Mikaelian lens and Maxwell’s fish-eye lens. Later on,
by scaling the Mikaelian lens, we found several interesting
imaging effects along circles, which were overlooked by
the community when studying the properties of generalized
Maxwell’s fish-eye lens. Finally, we outline two examples
based on two conformal mappings, which are usually used
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to produce bipolar coordinates and elliptic coordinates. All
the imaging functionalities will be confirmed by ray tracing
simulation from commercial software COMSOL.

Let us start from a conformal mapping of w = w(z) = u +
iv or z = z(w) = x + iy. Under the mapping, the refractive
index profile in z space and that in w space have the following
relationship [4,10]:

nz = nw

∣∣∣∣dw

dz

∣∣∣∣. (1)

If nw = 1
cosh(mu) , under the mapping of z = exp(w) [with

x = exp(u) cos v and y = exp(u) sin v], or w = ln(z), the
refractive index profile in z space can be written as [3,21]

nz = 2rm−1

1 + r2m
, (2)

which is simply a generalized Maxwell’s fish-eye lens (where
r =

√
x2 + y2). The profile in w space is a Mikaelian lens

[20], which has recently been realized in optical frequencies
[21]. It has a very interesting property that any source at an
arbitrary point (u0, v0) will induce images along u = ±u0

[21]. The parameter m is to scale the period of the images.
Fig. 1(a) shows the ray tracing simulation for the source at
(2, -8), and it cause images at (2, −8 + 2nπ ) along u = 2 (in
green and solid format) and [−2, −8 + (2n + 1)π ] along u =
−2 (in red and dashed format). Here n is an integer and m = 1.
We also plot the refractive index profile together in Fig. 1(a),
where nw = 1 for u = 0, and 0 for u goes to infinity. Under
the above conformal mapping, it goes back to the famous
Maxwell’s fish-eye lens [7], whose refractive index profile is
plotted in Fig. 1(b) with nz = 2 at the origin and 0 for r goes
to infinity. If we put a source at (2, 0), it will have a perfect
image at (−1/2, 0) and then a self-image at (2, 0). All the
light trajectories are circles, which are mapped simply from
a period of those in Mikaelian lens. If m < 1, e.g., m = 1/2,
the light trajectories will travel around the origin twice (or
1/m times, for other m) before it comes back as a self-image.
We then put a source at (2, 0), it causes a perfect image at
(1/2, 0) and a self-image at (2, 0), as shown in Fig. 1(c). Two
periods of the light trajectories around the origin are related to
a period of those in Mikaelian lens, and are no longer circles.
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FIG. 1. The ray trajectories and refractive index profiles for (a)
a Mikaelian lens, (b) a Maxwell’s fish-eye lens, and a generalized
Maxwell’s fish-eye lens with (c) m = 1/2 and (d) m = 2. The white
points are the sources while the yellow points are images. The solid
circles in green are mapped from the solid line in green, while the
dashed circles in red are mapped from the dashed line in red. The
color of the ray trajectories changing from black to gray and to white
denotes the propagation of time. We use arbitrary units [a.u.] for x

and y coordinates.

The refractive index profile is plotted as well, with a singular
infinity at the origin. Such a lens has been well studied [3,11].
However, for m > 1, it is still not very clear. But with the help
of Mikaelian lens, we can understand the effect very well. In
Fig. 1(d), we plot the refractive index profile for m = 2, with
the maximum value near r = 1. If we put a source at (2, 0),
it will cause images at (0, 1/2), (−2, 0), and (0, −1/2), and a
self-image. The light trajectories are related to two periods
of those in Mikaelian lens. Note that for the above three
cases of Maxwell’s fish-eye lenses, the source and images
are located at r = exp(u) or exp(−u). For u = 0, r = 1,
the two sets of images will be simply mapped to the unit
circle.

Now we come to study another intriguing effect for such
a lens for m > 1 . For simplicity, we study the imaging along
the unit circles. In Fig. 2(a), we plot the refractive index profile
and related light trajectories for m = 3. The maximum value
of the index is located closer to r = 1 compared to that for
m = 2 in Fig. 1(d). There are six images (or self-image) along
the unit circles, for a source at (1, 0). What happens if m
is no longer an integer? More interestingly, how about m is
an irrational number? We then plot the light trajectories for
m = π in Fig. 2(b). It is very interesting that the imaging
effect is still maintained, but the light will not come back to
the source point (1, 0) (i.e., no self-imaging effect). We also
plot the light trajectories for m = e in Fig. 2(c), where similar
effect happens. In principle, the imaging effect will happen
along the unit circle forever, if there is no loss. Note that all
the above three refractive index profiles are very close to each
other. If m is a rational number, say M/N, there will be still
self-imaging effect. However, it becomes a bit complicated.
For example, we plot the light trajectories for m = 4/3 in

FIG. 2. The ray trajectories and refractive index profiles for a
generalized Maxwell’s fish-eye lens with (a) m = 3, (b) m = π , (c)
m = e, and (d) m = 4/3. The white points are the sources while the
yellow points are images.

Fig. 2(d). There are eight images (or self-image) along the unit
circles, for a source at (1, 0). However, the light trajectories
will travel around the origin three times (6π ) before it comes
back as a self-image.

Since the Mikaelian lens has imaging functionalities along
lines, which could, in principle, be transformed to any ar-
bitrary curves, it could be used as a generic lens under any
kind of conformal mapping, and will bring about a series of
interesting lenses, which is the important point of this letter.
We will outline this method with two common mappings,
which are used to obtain bipolar coordinates and elliptic
coordinates. First, we consider the mapping of z = i cot( w

2 )
with

x = sinh v

cosh v − cos u
, (3)

y = sin u

cosh v − cos u
, (4)

which is usually used for bipolar coordinates. The inverse
mapping is w = 2cot−1[ z

i
] with

v(x, y) = cosh−1

⎛
⎝ x2 + y2 + 1√

(x2 + y2 + 1)2 − 4x2

⎞
⎠, (5)

[u(x, y) is not shown here]. Now we suppose to apply the
Mikaelian lens nw = 1

cosh(mv) , under the above mapping, it is
very easy to obtain the profile in z space:

nz = 1

cosh(mv)

2

|z2 − 1|
= 1

cosh[mv(x, y)]

2√
(x2 + y2 + 1)2 − 4x2

, (6)

which we shall call the bipolar Maxwell’s fish-eye lens.
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FIG. 3. The ray trajectories and refractive index profiles for a
bipolar Maxwell’s fish-eye lens with (a) m = 1, (b) m = 1/2, (c)
m = 2, and (d) m = 3. The white points are the sources while the
yellow points are images. The solid circles in green are mapped from
the line v = +1, while the dashed circles in red are mapped from the
line v = −1.

For m = 1, it will come back to the form of Maxwell’s
fish-eye lens nz = 2

x2+y2+1 . For bipolar coordinates, any fix u

or v are related to two orthogonal sets of circles. For v = ±1,
they are related to two circles: (x ∓ coth 1)2 + y2 = 1

sinh21
.

According to the imaging principle of Mikaelian lens, any
source at each circle will cause images or self-images at
these two circles. For example, we plot the ray trajectories
for this mapping for m = 1 (i.e., Maxwell’s fish-eye lens),
and the related refractive index profile in Fig. 3(a). The
source and self-image is at (coth 1 + 1

sinh 1 , 0) and the image
is at (− coth 1 + 1

sinh 1 , 0). If m = 1/2, the trajectories are no
longer circles, which are plotted together with the refractive
index profile in Fig. 3(b). The maximum values of the refrac-
tive index are singular infinities and at (1, 0) and (−1, 0). The
source and self-image is at (coth 1 + 1

sinh 1 , 0) and the image
is at (− coth 1 − 1

sinh 1 , 0). Before the imaging, the trajectories
travel around (1, 0) and (−1, 0) each time. There are also
trajectories for self-imaging around each singularity, which is
very similar to the generalized Maxwell’s fish-eye lens with
m = 1/2. If m = 2, the trajectories and the related refractive
index profile are plot in Fig. 3(c), where the maximum values
are at the origin. The source at (coth 1 + 1

sinh 1 , 0) will cause
another image at (coth 1 − 1

sinh 1 , 0) at the right circle and two
other images at the left circle before self-imaging. If m = 3,
the trajectories and the related refractive index profile are plot
in Fig. 3(d), which is similar to that in Fig. 3(c) but with a
more concentrating region with higher indexes. The source at
(coth 1 + 1

sinh 1 , 0) will cause two images at the right circle
and three other images at the left circle before self-imaging.

Second, we consider the mapping of z = cosh w with

x = cosh u cos v, (7)

y = sinh u sin v, (8)

FIG. 4. The ray trajectories and refractive index profiles for an
elliptic Maxwell’s fish-eye lens with m = 1 for the source at (a)
(cosh 1 cos π

4 , sinh 1 sin π

4 ) and (b) (0, sinh 1), and with (c) m = 2
and (d) m = 3 for the source at (0, sinh 1). The white points are the
sources while the yellow points are images.

which is usually used for elliptic coordinates. The inverse
mapping is w = cosh−1z with

u(x, y)=cosh−1

⎛
⎜⎜⎝

√√√√x2+y2+1+
√

(x2+y2+1)2−4x2

2

⎞
⎟⎟⎠,

(9)

[v(x, y) is not shown here]. Now we suppose to apply the
Mikaelian lens nw = 1

cosh(mu) , under the above mapping, we
can obtain the profile in z space:

nz = 1

cosh(mu)

1√
|z2 − 1|

= 1

cosh[mu(x, y)]

1√√
(x2 + y2 + 1)2 − 4x2

, (10)

which we shall call the elliptic Maxwell’s fish-eye lens. For
elliptic coordinates, any fixed u are related to a set of ellipses,
and any fixed v are related to a set of hyperbola, which
are orthogonal to the ellipses. However, it is a bit different
from the exponential mapping and the circular coordinates,
where u ranges from −∞ to +∞. In this case, u ranges
from 0 to +∞. Hence, both ±u are related to one single
ellipse. If we put a source at (cosh 1 cos π

4 , sinh 1 sin π
4 ), it

will form an image at (cosh 1 cos 3π
4 , sinh 1 sin 3π

4 ) for m = 1,
as shown in Fig. 4(a). The refractive index goes to infinity
at both (1, 0) and (−1, 0). There are some trajectories going
around (1, 0) for self-imaging, while others travel around
(−1, 0) for imaging. If the source is at (0, sinh 1), the image
overlaps with it, we then find self-imaging even with m = 1,
as demonstrated in Fig. 4(b). For m = 2, we plot the ray
trajectories and refractive index profile in Fig. 4(c), where the
index goes to infinity as well at both (1, 0) and (−1, 0). For
the source at (0, sinh 1), there will be images along the ellipse
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at (cosh 1, 0), (0, −sinh 1), and (−cosh 1, 0), respectively. For
m = 3, we also plot the ray trajectories and refractive index
profile in Fig. 4(d). The profile is similar to those of m = 1
and m = 2. However, it seems there are only three images or
self-images along the ellipse for the source at (0, sinh 1). This
is due to the overlapped effect like that in Fig. 4(b). If we
put the source at (cosh 1 cos π

4 , sinh 1 sin π
4 ), there will be six

images, like the circular case in Fig. 2(a).
In conclusion, we propose a method to construct new

types of absolute instruments by combining the Mikaelian
lens together with conformal mappings. There will be self-
imaging and imaging effects along closed conformal curves.
Such lenses will be very useful in conformal cloaking designs,
especially to reduce their refractive index ranges for easy
implementations. In addition, such a method can also be used
to design other lenses with special imaging functionalities.
For example, if the scaling parameter in Mikaelian lens is an

irrational number, the imaging effect will be maintained along
the curves forever while there will be no self-imaging effect,
and thereby the lens is no longer an absolute instrument. If
we choose other orthogonal directions for the Mikaelian lens,
e.g., the radial directions, the hyperbolic directions, or the
parabolic directions from parabolic coordinates, the imaging
effect will precisely happen along those predesigned open
curves. Hence our method is general for two dimensions
and could be used on special waveguide design, microcavity
design, and even cloaking designs in future. There are only
several conformal mappings for three dimensions, which still
needs further explorations on this aspect.
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