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Nondestructive detection of photonic qubits will enable important applications in photonic quantum infor-
mation processing and quantum communications. Here we present an approach based on a solid-state cavity
containing an ensemble of rare-earth ions. First a probe pulse containing many photons is stored in the ensemble.
Then a single signal photon, which represents a time-bin qubit, imprints a phase on the ensemble that is due to the
ac Stark effect. This phase does not depend on the exact timing of the signal photon, which makes the detection
insensitive to the time-bin qubit state. Then the probe pulse is retrieved and its phase is detected via homodyne
detection. We show that the cavity leads to a dependence of the imprinted phase on the probe photon number,
which leads to a spreading of the probe phase, in contrast to the simple shift that occurs in the absence of a cavity.
However, we show that this scenario still allows nondestructive detection of the signal. We discuss potential
implementations of the scheme, showing that high success probability and low loss should be simultaneously
achievable.
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I. INTRODUCTION

The ability to nondestructively detect photonic qubits,
without absorbing the photon and without revealing its qubit
state, would enable important applications in photonic quan-
tum information processing and quantum networks. For exam-
ple, photon-number-resolving quantum nondemolition (QND)
detectors and feedforward would allow implementing deter-
ministic two-qubit gates in linear optical quantum compu-
tation [1], and nondestructive detection of time-bin qubits
unlocks the path to novel quantum network architectures [2,3].
One promising avenue towards this goal is quantum nonlinear
optics [4]. Significant advances have been made through
strong nonlinear interactions in atom-cavity systems [5], non-
linearities mediated by Rydberg atoms [6], and ac Stark
shift [7–10].

Recent progress in cavity-enhanced light-matter interfaces
involving rare-earth ions (REIs) succeeded in solid-state im-
plementation of quantum memories and controlled light-
matter interaction in single or ensembles of REIs doped into
a crystal [11–15]. This promises a path towards robust and
scalable implementations of photonic quantum information
processing. Driven by progress in coupling REI to nanopho-
tonic cavities, a proposal for nondestructive photon detection
based on a single REI coupled to a photonic cavity has been
developed [16]. However, at the current state of technology
it is still challenging to achieve situations where a single
ion is coupled to a cavity in a reproducible and scalable
way. For practical reasons, it is therefore also of interest to
consider employing REI ensembles in photonic cavities for
nondestructive detection of photonic qubits.

One form of nonlinear interaction based on atomic ensem-
bles is to use a single photon to impart a detectable cross-
phase shift on a multiphoton coherent probe field [17,18].
The simultaneous presence of signal and probe fields in dif-
ferent configurations in an atomic system enables cross-phase
modulation based on the ac Stark shift [7,19]. This effect is
sensitive to the spatiotemporal overlap of probe and signal
fields. Storing the probe field in the atomic ensemble elimi-
nates any sensitivity to the timing of the signal [20], which
can be exploited for nondestructive detection of photonic
time-bin qubits without revealing any information about the
time-bin state of the signal, as proposed in Ref. [21]. Single-
shot and nondestructive detection of single photons based on
the ac Stark shift was shown to be impossible for a single
pass through atomic ensembles, as off-resonant absorption
loss becomes prohibitive for cross-phase shifts larger than
the intrinsic phase uncertainty of the probe field [21]. This
limitation can be circumvented with multiple passes through
the medium [21] or by enhancing the cross-phase shift with a
cavity. The multipass approach is difficult to realize in practice
because it requires very-low-loss switches. On the other hand,
as we will see below, the cavity introduces complications that
were not analyzed in Ref. [21], motivating the present study.

In this paper we analyze a scheme to construct a single-
photon QND detector in a solid-state REI ensemble inside a
cavity. A probe field is initially stored in the atomic ensemble.
Then a single-photon signal that is resonant with the cavity
and off-resonant with respect to the atomic transition interacts
with the atomic ensemble (see Fig. 1). The single-photon
signal is considered to carry quantum information encoded
in its timing [22]. Due to the ac Stark shift [23], a phase is
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FIG. 1. Scheme for nondestructive detection of a photonic time-
bin qubit. (a) Input and output single-photon time-bin signal fields
interacting with a nanophotonic crystal cavity coupled to an atomic
ensemble that contains a stored probe field. (b) Atomic level config-
uration for storage of the probe field in the atomic ensemble. The
cavity is in resonance with the probe for the storage process, but is
detuned from the probe and brought into resonance with the signal
for the nondestructive detection.

imparted on the state of the atomic ensemble that contains a
stored probe field. The phase shift on the atomic state leads to
a phase shift on the retrieved probe field. Given that the cross-
phase shift is cumulative and the probe field is stored during
the interaction, the phase shift on the retrieved probe field will
not reveal the time-bin qubit state of the signal. In the absence
of a cavity [21], an initial coherent state of the probe field |α〉
is retrieved as |αeiφ〉, where the signal pulse induces a phase
shift φ on the probe state. For multiple passes this phase shift
is simply multiplied by the number of passes. In contrast, in
the current scheme, we find that the cavity resonance becomes
sensitive to the number of atoms in the ground state, which
depends on the photon-number distribution of the stored probe
field. This leads to a dependence of the cross-phase shift (due
to the single-photon signal) on the photon-number distribution
of the probe field.

This paper is organized as follows. After discussing the
storage of the probe field in Sec. II, we analyze the cross-phase
shift in detail in Sec. III. In Sec. IV we show our results for a
practical discrimination between a single photon and vacuum
through quadrature detection. In Sec. V we describe an imple-
mentation based on rare-earth ion ensembles in nanophotonic
cavities. In Sec. VI we conclude that the implementation
of nondestructive photonic qubit detection should be within
reach for the present approach.

II. PROBE STORAGE

The proposal has two almost independent parts. First, it
needs to be ensured that the probe pulse, in a many-photon
coherent state, can be efficiently stored and retrieved from
the ensemble. Next comes the consideration that the signal,
without being absorbed, can give enough phase shifts to the
atomic ensemble storing the probe that the retrieved probe
state can be distinguished from the initial probe state.

In Sec. III we focus on the phase shift due to the signal
on the probe. However, to have that effect we need to store
and retrieve the probe pulse efficiently. Light storage in quan-
tum memories has been demonstrated in the single-photon
level in a variety of systems [24–28]. Specifically, single-
photon storage has been demonstrated conclusively in rare-
earth-ion–doped crystals using the atomic frequency comb
(AFC) quantum memory protocol with the added advantage
of multimode storage [25,26]. With our probe pulse, we are
aiming to store a relatively intense coherent pulse which is
in principle simpler than storing a single photon. The only
significant difficulty regarding storing an intense pulse is that
the number of photons stored should be much lower than the
total number of atoms participating in the storage. Otherwise a
significant portion of the atoms will reach the excited state
during storage, which will violate the assumptions of the
standard linear quantum memory storage protocols [29]. In
Sec. V we provide numerical estimates for parameters of our
proposal where we ensure such a parameter regime.

One of the fundamental constraints for probe storage is
governed by the phase-shift requirement of our protocol. As
we are using an optical cavity, the cavity transverse area must
be small to enhance the signal electric field considerably for
a large phase shift. Due to this exact same reason of higher
lateral confinement to increase the phase shift, waveguides
were used in Ref. [21].

Storage efficiency of quantum memories increases with
increasing optical depth [29] and optical depth is proportional
to both the density and length of the medium (here rare-earth
ions doped inside the cavity) light is stored. In the case of
probe storage without a cavity, as in the waveguide case
of [21], the storage pulse can be incident along the same
direction (e.g., along the waveguide in Ref. [21]) as the signal.
However, in the presence of a cavity the probe cannot be
stored directly along the cavity if the signal and probe are
detuned. This is because to maintain low signal loss we must
detune the cavity from the atoms so that spontaneous emission
is not enhanced. Hence, if the probe needs to be on resonance
with the atoms for storage (as in the AFC protocol), it is not in
resonance with the cavity anymore. As an alternative one can
try to store the probe from the side of the cavity. However,
in that case, as we need a small transverse area cavity for
a large phase shift, the transverse length of the cavity is
very small, resulting in an extremely small optical depth.
To overcome this problem, the probe pulse must be stored
along the cavity where there is enough optical depth and the
cavity also enhances the storage efficiency significantly. In
the AFC protocol the probe needs to be on resonance with
the atoms. Hence, to do probe storage along the cavity we
need to have the cavity on resonance with the probe (and so
with the atoms too) while the probe is stored. However, when
the signal arrives, we need the cavity to be on resonance with
the signal and detuned from the atoms to keep signal loss
minimal. To solve this problem, we can dynamically control
the cavity resonance frequency so that it is in resonance with
the probe for probe storage and retrieval, but in resonance
with the signal for nondestructive detection. This is feasible
with the current technology of piezoelectric motion con-
trollers as we only need to detune the cavity a few picometers
within a time span of around microsecond storage times
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of AFC memory. Requirements for the piezoelectric motion
controller are discussed in more detail later, once we estimate
the system parameters needed for implementation in Sec. V.
About the storage itself, the AFC quantum memory protocol
has been demonstrated to implement a high-efficiency ((56%)
quantum storage in rare-earth-ion–doped crystal inside a cav-
ity [30]. So, with the addition of the dynamical detuning, the
AFC protocol is one definite way to store the probe efficiently.

Another approach will be to keep the cavity permanently
detuned from the atoms. However, the probe needs to be on
resonance to the cavity to be stored efficiently. Hence, we can
implement an off-resonant Raman storage protocol. Although
a Raman memory has not been demonstrated in the rare-earth-
ion–doped crystal yet, it has been demonstrated widely in
atomic gases [31,32]. With the recent advancement in fab-
ricating high-finesse nanophotonic cavities [11,12,28,33,34]
and stoichiometric crystals [35,36], implementation of a Ra-
man memory storage in rare-earth ions seems well within
reach.

Concerning the storage state, the probe pulse can be stored
either in the excited state or in a second ground state. How-
ever, it is preferable to store the probe in a second ground
state for multiple reasons. First of all, the memory lifetime
will then be limited by the spin coherence time of the second
ground state instead of the much shorter optical coherence
time of the excited state. This will provide more time for
the signal to pass and also for the dynamical detuning of the
cavity. As the photon number in the probe pulse is a fraction
of the total number of atoms, the second ground state contains
many fewer atoms compared to the original ground state. So
if the signal photon imparts the phase shift on the second
ground state where the probe pulse is stored, the loss will be
less. Another significant issue in storing the probe pulse in
the excited state will be the probability of stimulated emission
while the signal is passing from excited-state atoms in which
the probe is stored. This may affect the signal fidelity. Hence,
storing the probe in a second ground state will definitely be
preferred if possible in a particular system. However, it may
not be feasible for all systems. It depends on how many
ground states there are in the particular system (rare-earth
ion). If only two ground states are used it may not be feasible
for all protocols as the other ground state may be used for
optical pumping to prepare a quantum memory. This is what
constrains us in our example in Sec. V where we use an AFC
quantum memory in Nd:YVO. Hence we consider storage in
the excited state for this particular example.

III. CROSS-PHASE SHIFT IN THE CAVITY

A. Theoretical model for cavity-enhanced QND

In our proposal, once the probe is stored in the atomic
ensemble inside the cavity a signal detuned from the atoms
passes through the cavity, inducing a phase shift on the atomic
ensemble through the ac Stark effect. A theoretical model is
constructed for the phase shift that a signal photon induces
on the atoms following [21]. However, our proposal deviates
from [21] in that the phase shift now occurs inside a cavity.
As we will see later, the cavity modifies the phase shift
depending on the number of stored probe photons which we

modeled by calculating the cavity field and its interaction with
the atoms. Following [21], we start the theory by formulating
the total Hamiltonian that governs our proposed system of the
signal and atomic ensemble

Ĥtot = Ĥ0 + Ĥint, (1)

Ĥ0 = h̄ωsa
†a +

∑
δ

h̄(ωge + δ)N (δ)σ̂ee, (2)

Ĥint = −h̄g

[
Êei�t

∑
δ

N (δ)σ̂eg (t ; δ) + H.c.

]
, (3)

where the cavity field Ê = âeiωs t .
The Hamiltonians are written in terms of collective atomic

operators defined as

σ̂νν (t ; δ) = 1

N (δ)

N (δ)∑
i=1

σ̂ i
νν (t ; δ), ν = {g, e} (4)

and

σ̂eg (t ; δ) = 1

N (δ)

N (δ)∑
i=1

σ̂ i
eg (t ; δ)e−iωp (t−zi/c). (5)

where individual atomic operators for the j th atom at position
zj are given by σ̂

j

νν ′ = |ν〉j 〈ν ′|, with ν, ν ′ = {g, e}. Here N (δ)
is the number of atoms in frequency mode δ, with the detuning
of this particular mode from the central frequency given by δ.
The atomic ensemble has a central frequency given by ωeg ,
while the cavity, on resonance with the signal, is detuned by
an amount � from the atoms and has a frequency ωs .

For relatively large detuning �, we find an effective in-
teraction Hamiltonian to describe the dynamics of the atomic
polarization due to off-resonant interaction with the cavity
field Ê . We start by finding the dynamics of the collective
atomic operator in the Heisenberg picture

˙̂σ eg (t ; δ) = i

h̄
[Ĥint, σ̂eg (t ; δ)] (6)

= −igÊ †e−i�t [σ̂gg (t ; δ) − σ̂ee(t ; δ)]. (7)

This leads to

σ̂eg (t ; δ) = −ig

∫ t

0
dt ′e−i�t ′ Ê †

s (t ′)[σ̂gg (t ′; δ) − σ̂ee(t ′; δ)].

(8)
If the signal passes for a time interval τs , the signal band-

width is given by 1/τs . Under the approximation of large de-
tuning (� � 1/τs) compared to the signal bandwidth, for any
signal field shape this integral can be evaluated approximately
by first integrating over the fast-varying part e−i�t ′ and then
multiplying it by the final value of the rest of the slow-varying
part

σ̂eg (t ; δ) = g

�
e−i�t Ê †

s (t )[σ̂gg (t ; δ) − σ̂ee(t ; δ)]. (9)

An effective Hamiltonian of the following form can be de-
duced from Eq. (3) using Eq. (9):

Ĥ eff
int = − h̄g2

�

∑
δ

N (δ)(Ê Ê † + Ê †Ê )[σ̂gg (t ; δ) − σ̂ee(t ; δ)].

(10)
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Using the Heisenberg relation, we can find the dynamics of
the atomic polarization using the free evolution and the above
effective interaction Hamiltonians

˙̂σ eg (z, t ; δ) = iδσ̂eg (z, t ; δ)

+ 2ig2

�
[Ês (z, t )Ê †

s (z, t ) + H.c.]σ̂eg (z, t ; δ). (11)

This can be used to calculate the phase shift on atoms due to
the signal field

σ̂eg (t = T2; δ) = eiδt ei�̂σ̂eg (t = T1; δ), (12)

where

�̂ =
∫ T2

T1

dt ′
2g2

�
(Ê Ê † + Ê †Ê ). (13)

Up to this point, we have simply found the phase shift a
signal will induce while passing off-resonantly to an atomic
ensemble in a cavity. The above consideration is fairly general
in that it does not assume anything about the system. This
treatment will be valid for atomic ensembles in a cold gas
or a solid-state system for a propagating signal or a cavity
field. The difference between the propagating [21] (waveguide
or free space) and the cavity case lies in the electric-field
operator Ê that we need to put in Eq. (13) in order to find the
phase shift. In our proposal, inside a cavity the electric field
gets changed from the free-space case due to the atom-cavity
interaction, which will play a pivotal role in our analysis. Here
we derive the cavity field Ê based on its dynamics and the
cavity input-output relation [37], where we introduce the input
signal field Êin. The rate of change in cavity field Ê is given by

˙̂E (t ) = −κ Ê (t ) +
√

2κ Êin(t ) + 2ig2

�
(σ̂gg − σ̂ee )Ê (t ). (14)

A probe pulse, which is stored in the atomic memory, is in
a many-photon coherent state with an average photon number
Np. We assume that the probe pulse is stored in a different
ground state, i.e., σ̂ee = 0. Hence, there are Ng atoms in the
ground state (σ̂gg − σ̂ee ) = Ng , resulting in

˙̂E (t ) = −κ Ê (t ) +
√

2κ Êin(t ) + 2ig2

�
NgÊ (t ). (15)

Operating in the bad cavity regime, where the cavity decay
rate κ is faster than the effective single-photon coupling and
the duration of the signal field, the cavity field dynamics
in Eq. (15) is essentially given by the steady-state solution
[ ˙̂E (t ) = 0], which leads to

Ê (t ) =
√

2κ

κ − 2iNgg2

�

Êin(t ). (16)

This enables us to find the phase shift per signal photon
in the next step. Here we consider a situation with a fixed
number of atoms Ng in the ground state. The rather compli-
cated scenario of our proposal where the many-photon probe
pulse (in a coherent state) is stored in the atoms before the
signal arrives has not been considered yet. As we want to
consider the phase shift due to a single-input signal photon, we

have the normalization condition
∫ T2

T1
dt ′(ÊinÊin

† + Êin
†Êin ) =

I . The phase shift per signal photon to an atomic medium with

exactly Ng atoms in the ground state can now be calculated by
replacing Ê in Eq. (13) using Eq. (16),

� = 4g2/κ�

1 + (2Ngg2/κ�)2
. (17)

The term 4g2/κ� in the numerator is the familiar dynamical
Stark shift enhanced by the cavity with decay rate κ . However,
the phase � also has a term in denominator in this case,
1 + (2Ngg

2/κ�)2, which depends on the number of atoms
in the ground state Ng . This term originated from the atom-
cavity interaction. Note that in our protocol where a coherent
probe pulse is stored in the atoms before the signal passes
above them, Ng is not a constant. So the phase � depends
on Ng and hence the number of photons stored, which is not
a constant. Coherent states by definition are in superposition
with different photon-number states as

∑
cn|n〉. If we use a

coherent state with average photon number 〈n〉 = Np, cn =
exp(−Np/2)N

n/2
p√
n!

, while |n〉 denotes an n-photon Fock state.
After the probe is absorbed in the atomic memory it will
correspond to an atomic state of

∑
cn|N − n〉|n〉 (a spin-

coherent state), where the first and second state correspond
to the number of atoms in the ground state |g〉 and spin-
ground state |s〉. Here N denotes the total number of atoms
participating in the atomic ensemble memory. Hence we can
define this photon-number-specific phase shift based on the
probe photon number

φn = 4g2/κ�

1 + [2(N − n)g2/κ�]2
. (18)

The term in the denominator of the phase varies with the
square of probe photon number. This phase shift dependence
on the number of stored probe photons occurs due to the
presence of the atoms in the cavity, which effectively shifts
the cavity resonance. Hence, the signal photon experiences
a detuning from the cavity and only part of the signal can
enter the cavity, leading to less phase shift of the atoms. This
is reminiscent of the single-atom conditional phase shift in a
cavity [38], although here we are dealing with a many-photon
probe state and hence many atoms are contributing to shifting
the cavity resonance according to the probe’s photon-number
distribution. Note that although only parts of the signal enter
the cavity, this does not affect the signal efficiency or fidelity
as we are using a one-sided cavity. We discuss this issue in
more detail in Sec. III E.

The phase-shift dependence on the number of stored probe
photons can be compensated partially by making the cavity
detuned from the input pulse. This will cancel the detuning
that was coming as an offset. For this we should detune the
cavity by an amount 2ig2

�
〈σgg〉 (〈σee〉 = 0 as all the excited-

state atoms are transferred to the spin ground state). However
even if this is incorporated, some residual dependence will
still be present as a coherent probe pulse will have finite
probabilities for different photon-number states (Fock states),
resulting in different amounts of phase shift based on the
number of stored probe photons. Therefore, all these different
phase contributions given by different Fock state components
of a stored probe pulse cannot be compensated simultaneously
by detuning the signal. This residual phase-shift dependence
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on the number of stored probe photons, due to the finite spread
of the stored probe pulse in photon-number states, will be
important for our analysis. So we attempt to understand this
by analyzing what happens to the probe (or the atomic state
generated by absorption of the probe) once the signal field has
given it the phase shifts.

For our coherent probe pulse with average photon number
〈n〉 = Np and a total of N atoms participating in the atomic
ensemble memory, we have 〈σgg〉 = N − Np. This implies
a necessary detuning of the signal from the cavity by an
amount 2ig2

�
(N − Np ). If the new input electric field is Êin1 =

Êine
(2ig2t/�)(N−Np ) and the corresponding new electric field in

the cavity is given by Êc, where Êc = Êe(2ig2t/�)(N−Np ), we
will have

˙̂Ec(t ) = −κ Êc(t ) +
√

2κ Êin1(t )

+ 2ig2

�
[σ̂gg − (N − Np )]Êc(t ) (19)

and hence a modified phase shift of

φn = 4g2/κ�

1 + {2[N − n − (N − Np )]g2/κ�}2

= 4g2/κ�

1 + [2(n − Np )g2/κ�]2
(20)

for a component of the probe pulse with n photons (i.e., in the
|n〉 state).

For the free-space case in Ref. [21], φn was indepen-
dent of n∀n, say, φn = φ. A coherent state given by |α〉 =
e−|α|2/2 ∑

αn√
n
|n〉 will transform to e−|α|2/2 ∑

αn√
n
einφ|n〉 =

|αeiφ〉 under such a phase shift for all its number state compo-
nents. So it will just become a phase-shifted coherent state.

In the cavity case, instead φn depends on n. If the term
in the denominator of φn, [2(n − Np )g2/κ�]2, is large (close
to 1 or larger) then the coherent state does not have an
exact phase shift anymore. Instead, the coherent state gets a
scattered phase shift as depicted in Fig. 2.

B. Husimi Q representation

The scattered nature of the phase shift is shown in Fig. 2,
where a quasiprobability distribution of initial and final probe
states is plotted in optical phase space using the Husimi Q rep-
resentation [39]. In Husimi Q representation, the quasiprob-
ability distribution (or Q function) of an optical state with
density matrix ρ̂ at a point α in phase space (corresponding
to the center of coherent state |α〉) is given by

Q(α) = 1

π
〈α|ρ̂|α〉. (21)

At a point in phase space, the Q function essentially calculates
the overlap between the optical state and the coherent state
centered on that point and hence is always positive. As we use
pure states in our calculation for both the initial and final probe
states, we will write the density matrix ρ̂ = |ψ〉〈ψ | where |ψ〉
is the pure state.

In Figs. 2(a)–2(c) the Q function is plotted for different
states in the optical phase space, so the X and Y axes
denote the two conjugate optical quadratures. Figure 2(a)

FIG. 2. (a)–(c) Plot of the Husimi Q function in the phase space
for the probe states with and without a signal photon. The colormap
is shown beside (b). For all the plots the initial probe pulse is in
a coherent state with average photon number Np = 100 and we
assumed perfect storage and retrieval for simplicity. (a) Initial probe
state. (b) Final probe state with parameters g2/κ� = 0.5/

√
Np ,

showing that the state is slowly dispersing in phase. (c) Final
probe state with parameters g2/κ� = 0.7/

√
Np . Here the probe is

completely dispersed in phase with very little probability left to be
found in the location of the initial probe state. (d) A discrete Fourier
transform (DFT) was done on probe state coefficients of (c). We
plotted abs[DFT(cn)] to show the distribution over the phase. The
Fourier transform shows the exact same pattern in different phases
that we already saw in the Q function.

shows that the Q function of the initial probe state is
peaked at (x = 10, y = 0) for a coherent state with average
photon number Np = 100 and zero phase, i.e., α = 10. In
Fig. 2(b) the Q function for the final probe, for parameter
values g2/κ� = 0.5/

√
Np, is plotted. Here the probe state

is somewhat scattered with a contribution from positive and
negative phases while maintaining the same photon number.
This shows through a few oscillations of the Q function
at the same radius from the center. However, it is still not
completely dispersed in phase as for these parameters the
noise term [2(n − Np )g2/κ�]2 in the denominator of φn in
Eq. (20) is still not large enough. For g2/κ� = 0.7/

√
Np in

Fig. 2(c) the probe is completely dispersed in phase and there
is negligible overlap with the initial probe state. Hence, we
can in principle distinguish the initial and final probe states
almost perfectly, implying a successful QND measurement.
This will be investigated in more detail below. In Fig. 2(d) a
discrete Fourier transform of the probe state is carried out,
i.e., of the number state (|n〉) coefficients cne

inφn , with cn

being the initial coherent state coefficients and φn given in
Eq. (20). As the photon number is maintained, the Fourier
transform should indicate the variation of the probe state in
the quadrature phase. The same oscillatory structure in phase,
exactly as in Fig. 2(c), is observed in Fig. 2(d).

C. Inner product

For successful nondestructive detection of the signal in our
scheme, one needs to distinguish between the initial and final
probe states practically with high probability. However, before
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FIG. 3. Overlap between initial and final probe states, quantified
as the square of the magnitude of the inner product (I) between
these two states, as a function of (a) g2/κ� for Np = 300 and (b)
Np for g2/κ� = 0.7/

√
Np . (a) In a certain parameter regime from

g2/κ� ∼ 0.7/
√

Np to g2/κ� ∼ 1.4/
√

Np the overlap almost van-
ishes. Hence initial and final state can in principle be distinguished
almost perfectly in this range. (b) The overlap decays almost as
1/

√
Np (disregarding the oscillations) as explained in the text. The

characteristic oscillations of the system, introduced by the phase shift
dependence on the number of stored probe photons as seen in Fig. 2,
are visible in the overlap as well.

considering practical protocols feasible for implementation,
it needs to be ensured that these two states have negligible
overlap. The overlap between the two states can be quantified
by an inner product (I) distance measure. This gives the
minimum theoretical error probability in distinguishing the
two states. Hence, the two states cannot be distinguished with
an error probability smaller than |I|2 using any protocol. This
is a theoretical minimum.

The value of the |I|2 changes as we change the value of
g2

√
Np/κ�. This is shown in Fig. 3(a). The graph is plotted

for values Np = 300. We see that around the parameter regime
from g2/κ� ∼ 0.7/

√
Np to g2/κ� ∼ 1.4/

√
Np there is al-

most no overlap between the two states. Hence here the two
states can in principle be distinguished perfectly. The graph
shows many fluctuations as g2/κ� is also in the denominator
of our phase term as noise. Hence, to make our protocol robust
against small experimental parameter fluctuations we should
choose our g2/κ� value so that it has minimal fluctuations,
like places close to g2/κ� = 0.7/

√
Np.

This value is used in Fig. 3(b) to show the |I|2 variation
with Np. We can easily see that the overlap between the initial
and final probe states is proportional to 1/

√
Np. Since the

initial probe is a coherent state it will always have a spread of
radius 1 in phase space. However, the final probe state being
spread all over the circle with photon number Np (considering
it almost uniformly for simplicity), almost like a band of width
1, will correspond to a total length of 2π

√
Np. Therefore, the

effective overlap between the two will decreases as 1/
√

Np.
However, this is a very crude argument. There are oscillations
in |I|2 with Np (induced by the characteristic oscillations seen
in Fig. 2), but the overall trend scales as 1/

√
Np.

D. Quadrature detection for practical discrimination

The initial and final probe states can be operationally
discriminated through homodyne detection. For that purpose

FIG. 4. The X quadrature measurement probability density of
probe states with (red solid line) and without (blue dashed line)
a signal photon present for probe photon number Np = 10 and
g2/κ� = 0.7/

√
Np .

the X quadrature is calculated for both of the states in terms
of photonic annihilation and creation operators â and â† as
the X quadrature operator can be written as X̂ = â + â†. If
eigenstates of X̂ are represented as |x〉, then we know from
the study of simple harmonic oscillators

|x〉 =
∑

n

Hn(x)

(2nn!)1/2

e−x2/2

π1/4
|n〉, (22)

where Hn(x) is an nth-order Hermite polynomial evaluated at
point x. To calculate the quadrature measurement probability
density at a quadrature value of x for our probe in a particular
quantum state |ψ〉 we calculated the value of |〈ψ |x〉|2.

For g2/κ� = 0.7/
√

Np and Np = 10 the X quadrature
detection probabilities are shown in Fig. 4. Now let us make
a cutoff (say, 1.64 in the above case) so that the initial probe
state has its X quadrature value higher than 1.64 with a high
probability (99.9% in the above case). Now whenever we get
an X quadrature measurement of our probe below that we
decide in favor of the final probe state and say that a single
photon passed through in those cases. In this way, we will only
be able to detect a signal with a certain success probability
(e.g., 72% for Np = 10 as shown in Fig. 4). However, the
probability that we make a false-positive decision about the
presence of a signal while it is not there is very low, only 0.1%.

If we allow 1% or 10% error rate in detecting false positives
(which will correspond to initial probe state probabilities
above the cutoff of 99% and 90%, respectively) we will get
success probabilities of detections of 81% and 85%, respec-
tively.

The success rates corresponding to different probe photon
numbers are presented in Table I for false-positive detection
(i.e., deciding there was a photon when there was none)
probabilities of 0.1% and 1%. One thing to be noted here
is that the |I|2 between the probe states with and without
a signal photon for Np = 10 was 0.0964. So any type of
measurement on the system with vanishing error rate can only
give you a maximum of 90.36% success rate. For the small
error rate of 0.1% we got 72.29% success rate for Np = 10.
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TABLE I. Success rate of our single-photon QND proposal
shown for different values of probe photon number Np and for
g2/κ� = 0.7/

√
Np . The success rates are mentioned for two dif-

ferent false positive detection probabilities of 0.1% and 1%.

Success rate of detection

Np 0.1% error rate 1% error rate

10 72.29% 81.46%
30 76.27% 83.62%
50 80.80% 86.31%

For vanishing error rates, we could not get very close to
the theoretical maximum as the X quadrature measurement
was not providing the perfect discrimination, at least for
small Np.

The different values between the theoretical discrimination
by the inner product and in a practical approach such as
quadrature measurement originates from the fact that in a
practical approach we always measure the probability distri-
bution (e.g., |〈ψ |x〉|2 for quadrature) and not the probabil-
ity amplitude (i.e., 〈ψ |x〉). Hence, even if two states have
a vanishing inner product they cannot be distinguished by
quadrature detection completely as long as they overlap in
quadrature values. However, this may not be an insurmount-
able difficulty. Other clever measurement schemes (e.g., in-
voking interference) may be constructed such that the states
do not overlap in the corresponding observable. In such an
ideal measurement scheme crafted for two particular states
the practically achievable discrimination should approach the
theoretical minimum predicted by the inner product.

In a more practical consideration, the values in Table I
show that the success rate for the quadrature detection
increases with increasing N . This is expected as the overlap,
i.e., |I|2, between the initial and final probe states decreases
with increasing N as shown in Fig. 3(b) (except for the small
characteristic oscillations). This is due to the fact that the final
probe state gets spread over a larger radius in the phase space,
while the spread in the initial probe state remains constant
in the phase space, as discussed in Sec. III C. So, for a much
larger N we would be able to nearly perfectly distinguish the
probe states in the presence and absence of a signal photon
even using the practical method of quadrature detection.

E. Signal fidelity for time-bin qubit detection

In this section we analyze the signal fidelity of the out-
put signal from the cavity once the signal has imparted the
necessary phase shift. As we discussed after Eq. (18), due
to the phase-shift dependence on the number of stored probe
photons, some parts of the signal get detuned from the cavity
and do not impart a phase shift to the atoms for all |n〉, where
n is a particular Fock state component of the probe pulse.
This remains even after phase compensation, performed by
detuning the input signal, due to the residual phase shift.
The detuned portion of the signal gets reflected and does not
contribute to the phase shift. However, this does not reduce
signal fidelity or efficiency as we use a single-sided cavity
with a fast decay rate compared to the signal bandwidth. As
a single-sided cavity is used, the input signal reflected from

the front and the back mirror interferes and due to the fast
cavity decay rate there is almost no time lag to form the
output signal. We show this mathematically in the following.
Using the input-output relation [37] for a one-sided cavity,
Êout (t ) = √

2κ Êc(t ) − Êin(t ), we find from Eq. (19)

Êout (t ) = κ + 2i(Np−n)g2

�

κ − 2i(Np−n)g2

�

Êin(t ). (23)

So the output signal field differs from the input field by

only a global phase θ of magnitude 2 arg(κ + 2i(Np−n)g2

�
) or

θ = 2 tan−1( 2(Np−n)g2

κ�
). This implies |Êout (t )|2 = |Êin(t )|2 for

all values of n.
If the signal photon is in a time-bin qubit then we need

to maintain coherence between the early- and late-time bins.
Note that, although Eout gets different phases for different
values of n, this does not affect the time-bin qubit state
as both the early- and late-time bins pass over the same
atomic ensemble at a small time difference. If the time lag
between early and late qubits is T , the coherence needs to
be maintained within this time interval, implying that Np − n

needs to remain constant in that time interval. Here n denotes
a specific photon-number state which is absorbed in the atoms
and the corresponding atomic excitation are transferred to
another ground state. Hence, n corresponds to excitations in
a second ground state, which may decay with time. If the rate
of decay of the second ground state is γs , then with time the
expectation value of n turns into ne−γsT . If γsT 	 1, then
the change in n goes as �n = n(1 − e−γsT ) ≈ nγsT . Now, for
small changes in n we can represent the change in magnitude
of θn as �θn, where

�θn =
2g2

κ�

1 + ( 2(Np−n)g2

κ�

)2 �n =
2g2

κ�

1 + ( 2(Np−n)g2

κ�

)2 nγsT . (24)

We include the initial and final probe state discrimination
condition of g2

κ�
≈ 1√

Np

obtained from inner product analysis.

The maximum value of �θn is around n = Np or (�θ )max ≈
2
√

NpγsT for γsT 	 1. For �θ = π the phase between two
time bins flips and as the phases will be different for different
values of n this will severely limit the signal fidelity. Hence we
will need to have (�θ )max 	 π for high-fidelity signal output.
Later, in Sec. V, we estimate Np = 6000. So for a signal
bandwidth of 1 MHz (i.e., T = 1 μs) and a moderate-spin
ground-state dephasing rate γs = 0.34 kHz at a temperature
of 5 K in Nd [40], we have (�θ )max ≈ 0.0527 ≈ π/60.

Given that the probe state and hence the stored atomic ex-
citations are in a coherence state with coefficients of photon-

number state |n〉 given by cn = exp(−Np/2)N
n/2
p√
n!

, we have the

signal fidelity for the time-bin qubit as
√∑

n |cn|2| 1+eiθn

2 |2. For
the above-mentioned parameters, where we store the probe
pulse in a second spin ground state with a long-lifetime signal,
the fidelity is 0.9999. Instead, if the probe is stored in the
excited state using a different protocol, e.g., atomic frequency
comb quantum memory protocol [25], we will have the de-
coherence rate as γh = 100 KHz for our doping as mentioned
in Sec. V. In that case, with a 1-MHz bandwidth signal the
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fidelity drops to 0.6915, but using a 10-MHz bandwidth signal
we will acquire a fidelity of 0.9216.

IV. SIGNAL LOSS

In order to analyze off-resonant absorption loss for a
cavity-enhanced signal we use the total Hamiltonian in
Eq. (1). This results in

˙̂σ eg (t ; δ) = (−γ + iδ)σ̂eg (t ; δ)

−igÊ †e−i�t [σ̂gg (t ; δ) − σ̂ee(t ; δ)]. (25)

The dynamics of the cavity field and the cavity input-output
relation is given by

˙̂E (t ) = −κ Ê +
√

2κ Êin(t ) + ige−i�t
∑

δ

N (δ)σ̂ge(t ; δ), (26)

Êout (t ) =
√

2κ Ê (t ) − Êin(t ). (27)

Given that the single-excitation wave functions are governed
by the same equations, we can find the steady-state solu-
tion to these equations by taking the Fourier transform of
Eqs. (25) and (26). Taking the Fourier transform of Eq. (25)
gives

σ̃eg (ω; δ) = −ig

i(ω − δ) + γ
Ẽ∗(ω − �). (28)

Using this result and assuming that � � δ ∀δ i.e., � is
larger than the inhomogeneous linewidth of the atoms consid-
ered, we can simplify the resulting expression for the cavity
field to

Ẽ (ω) =
√

2κ

iω + κ + ig2N

ω−�+iγ

Ẽin(ω). (29)

Using this result and the cavity input-output relation, we can
find the cavity output field. For the case where the signal
bandwidth is smaller than the signal-atom detuning �, we can
assume that the loss will be uniform and therefore analyze the
cavity output field at ω = 0. This is given by

Ẽout (ω = 0) =
(

2κ

κ − ig2N

�−iγ

− 1

)
Ẽin(0). (30)

In order to estimate the loss, we find the output intensity with
respect to the input field intensity

|Ẽout (0)|2 = α|Ẽin(0)|2,

α =
[

1 − 4γg2N

κ�2
+

(
2γg2N

κ�2

)2

+
(

2g2N

κ�

)2

+ O(1/κ3)

]
. (31)

Given that we assume κ to be the fastest rate in the system,
the main contribution to loss is given by

ζ = 4γg2N

κ�2
. (32)

However, the atoms are also within the cavity. If they are not
completely off-resonance, spontaneous emission is enhanced

by the Purcell factor 3Q

4π2
(λ0/n)3

V

(κ/2)2

(κ/2)2+�2 . Considering this
possible enhancement effect on spontaneous emission, the
formula for the signal loss in the cavity, i.e., Eq. (32), becomes
4γrg

2N

κ�2
3Q

4π2
(λ0/n)3

V

(κ/2)2

(κ/2)2+�2 . Note that now the homogeneous
linewidth γ is replaced by the radiative linewidth γr . This
is because the cavity enhances the radiative linewidth γr to
γr

3Q

4π2
(λ0/n)3

V

(κ/2)2

(κ/2)2+�2 and in the case of a large enhancement
that becomes the major contributing factor in the homoge-
neous linewidth and hence in the resulting dephasing.

In the phase-shift analysis we saw that g2

κ�
∼ 1√

ηrN
entails

faithful discrimination of the probe pulse, where ηr is the
probe retrieval efficiency and N is the number of atoms
excited by the probe. Based on the definition of the spon-
taneous emission rate in a solid where dipoles are oriented

in one direction γr = μ2
egk

3
s

πε0 h̄
and single-photon coupling g =

μeg

√
ωs

2h̄ε0V
, we find that g2

κ�
= 1

4π

λ2
0

n2A

Fγr

�
. Here F is the

finesse of the cavity and it is related to the cavity quality
factor as Q = F 2L

λ0/n
. Combining these formulas, we find the

cavity-enhanced loss

4γrg
2N

κ�2

3Q

4π2

(λ0/n)3

V

(κ/2)2

(κ/2)2 + �2
= 6

πηr

(κ/2)2

(κ/2)2 + �2
.

(33)

Considering ideal retrieval ηr ∼ 1, we find the expression
for loss to be 2

ηr

(κ/2)2

(κ/2)2+�2 . Hence the only way to have low loss
is to have a high value of � compared to κ/2. For � = 3(κ/2)
we have around 20% loss, while � = 3κ amounts to only
5.4% loss. Until now we have considered the ideal case with
ηr = 1, but for practical purposes that may not be achievable.
However, an ηr = 0.4 may well be achievable as that amounts
to a total memory efficiency of 16% only (considering storage
and retrieval efficiency to be identical). That will not make a
huge change in the corresponding values of � for similar loss
probabilities. Further, � values will only need to be multiplied
by a factor of approximately

√
1/0.4 ∼ 1.6, i.e., � = 2.4κ

and � = 4.8κ for 20% and 5.4% loss rates, respectively, when
ηr = 0.4.

V. IMPLEMENTATION

Implementation of the proposal in rare-earth-ion–doped
crystals has three stages: storing the probe, imparting a signifi-
cant phase shift by a single-photon level signal, and measuring
the retrieved probe to know the presence of the signal. We
already discussed the probe storage in Sec. II. There we
mentioned the necessity of dynamically detuning the cavity
to facilitate storage. We will return to this in more detail later
in this section. Almost all of this section is dedicated to the
next stage, which is estimating the imparted phase shift to
the probe. This is because many of the requirements for a
proposed system are decided based on this stage. In the final
stage, the probe pulse needs to be measured to distinguish
between the probe states with and without the signal. In
Sec. III D we suggested to perform a quadrature detection
for this purpose by means of homodyne detection, which is
a standard optical measurement scheme.
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A. Proposed parameter regime

The principal requirements for implementation of our pro-
posed scheme are dictated by the ability to impart a large
enough phase shift. Hence, we will first return to the phase-
shift requirements for our proposal. The inner product analysis
in Sec. III C of our theoretical model shows that g2/κ� ≈
1/

√
ηrNp needs to be satisfied to distinguish between the

probe states with and without a signal photon. This can be
rearranged to write it in terms of the factor f = g2

κ�

√
ηrNp ≈

1. By considering single-photon coupling g = μeg

√
ωs

2h̄ε0V
and

the radiative transition rate γr = μ2
egk

3
s

3πε0 h̄
, this condition is equiv-

alent to f = 1
4π

λ2
0

n2A

Fγr

�

√
ηrNp ≈ 1, where n is the refractive

index inside the cavity and F is the finesse. Considering
N atoms inside the cavity mode volume V , we have Np ∝
N ∝ V . Hence, we conclude that f ∝ γr

�
F

√
L
A

; note that this
depends linearly on the finesse, but only on the square root of
the length.

This analysis shows that the implementation of the pro-
posal in the rare-earth-ion–doped ensemble demands a high-
finesse, small-transverse-area, and preferably long cavity.
Nanophotonic rare-earth-ion–coupled cavities are being fab-
ricated in photonic crystal cavities etched inside rare-earth-
ion–doped crystals [12,13,33,34], in a silicon photonic crystal
cavity evanescently coupled to rare-earth ions [14], or in fiber
tip microcavities containing rare-earth-ion–doped nanocrys-
tals [15].

The rare-earth ion, which will be doped in such a cavity to
interact with the photon, will require a large dipole moment
for higher atom-photon coupling (higher g and so γr ) to
increase the phase shift. For our estimates we have chosen
neodymium (Nd3+ in Nd:YVO) as it is one of the rare-earth
elements with a higher dipole and high optical coherence time
[41,42]. The optical coherence time is important as we are
going to use the AFC quantum memory protocol for probe
storage in the excited state. We will be using the Z1 to Y1 lev-
els in the Nd3+, 4I9/2 → 4F3/2 transition at 879 nm (see Fig. 1
of [41]). These levels in Nd:YVO are particularly useful as
each of these Z1 and Y1 levels (Kramers doublet) split into two
levels, creating a four-level system with favorable selection
rules under an applied magnetic field along the YVO crystal
axis [41]. The selection rules are such that light polarized
along the crystal axis (or perpendicular to it) interacts only
with each set of sublevels and there is no crosstalk between
them (or vice versa). This effectively creates convenient �

systems inside the four-level system. In [41] it was shown
experimentally that the branching ratio between the direct and
cross transitions is 95%–5%, which is quite close to a perfect
selection rule. In our proposal both the probe and signal will
be polarized along the crystal axis and interact with only one
sublevel, as both light and the cavity will be far detuned from
the other sublevel. The two sublevels will be far detuned by
a large applied magnetic field. Although both the signal and
probe only interact with one sublevel, we will still use the
� system for optical pumping to prepare the AFC quantum
memory for probe storage.

The only experimentally free parameter in the phase-shift
formula (and hence in f ) is �, which can be decreased to

increase the phase shift. However, � is constrained by signal
loss. As shown in Sec. IV, signal photon loss on resonance
with a cavity with a high-quality factor is given by 2

ηr

(κ/2)2

(κ/2)2+�2 ,
where the cavity-enhanced spontaneous emission dominates
the decoherence process. Hence, a large detuning compared
to cavity linewidth (around � > 3κ) is necessary for low loss.

We are now using the AFC storage protocol in Nd:YVO
photonic crystal cavities [11] as an example to provide an
estimate for implementation of the scheme. The main condi-
tion for successful implementation is to reach the phase-shift
condition g2/κ� ∼ 1/

√
ηrNp while simultaneously having

� � 3κ to keep the loss low. Here we propose one set of
parameters to reach the desired regime g = 2π × 8 MHz, κ =
2π × 30 MHz, � = 2π × 100 MHz, ηr = 0.5, and Np =
6000. This yields f = g2

κ�

√
ηrNp = 1.16, which is around 1

and hence sufficient for a successful QND detection of a single
photon. The corresponding value for loss is 2

ηr

(κ/2)2

(κ/2)2+�2 =
0.073 or 7.3%. For Np = 6000 the probability to distinguish
between the probe states with and without a signal photon
present by an X quadrature measurement is very high. The
probe state that interacted with the signal is scattered all over
a circle in phase space with a radius of around 77 (∼√

6000),
while the probe state without the signal is a coherent state,
which is highly localized. Based on this, we estimate the
probability of overlap between the X quadrature distributions
of the two states to be less than 4%. Hence, we can distinguish
between the two states with very low error rates with a success
probability of over 96%. Incorporating the effect of the 7.3%
loss, this would produce around 89% success probability in
total.

Nanophotonic cavities built in Nd:YVO have already
achieved experimental quality factors around 20 000 [34],
which corresponds to a cavity linewidth κ = 2π × 17 GHz.
Achieving κ = 2π × 30 MHz will probably require a combi-
nation of increasing the finesse and the length of the cavity.
This may be realistic given the steady and fast recent progress
in building high-quality-factor photonic crystal cavities
[13–15]. For the Nd:YVO system Ref. [34] suggests that
it may be possible to improve the finesse by an order of
magnitude or more by changes in the fabrication process
such as decreasing the sidewall angle for the nanocavities and
postfabrication annealing. Increasing the length of the cavity
should also be possible, but will require longer milling times
(for ion-beam-based fabrication). Having sufficiently many
ions in the cavity to be able to store Np = 6000 photons as
suggested above probably requires an increase in the cavity
length by at least an order of magnitude, taking into account
the fact that the AFC memory protocol requires spectral tai-
loring, which reduces the available number of atoms. Another
attractive way to increase the number of atoms would be
to use recently developed stoichiometric rare-earth crystals
[35,36] where an ultranarrow inhomogeneous linewidth has
been observed. However, currently these crystals are made
only from weak dipole elements such as Eu3+, which is not
good for our proposal. A nanocavity etched in a stoichiometric
crystal, made of a rare-earth element with a strong dipole
element, would definitely be useful as many more atoms can
be accommodated inside the cavity.
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The other approach towards ensemble QND measurements
can be increasing atom-cavity coupling or g value [13]. One
way towards this is by decreasing the cavity mode volume
through incorporation of dielectric discontinuities [43] into
cavity design. However, the number of available atoms for
phase shift also decrease with decreasing cavity mode volume

as reflected in f ∝ F

√
L
A

. So, for the purpose of ensemble
QND only decreasing the cavity transverse area will help,
while decreasing the cavity length to decrease the mode
volume will adversely affect the ensemble QND detection.
Another strategy to increase the coupling factor may be to
change the ac Stark shift interaction to a higher dipole 4f ↔
5d transition while storing the probe using the 4f ↔ 4f

transition which has desirable optical and spin coherence
properties. However, this will need a doubly resonant cavity
[13].

Recently, other attractive nanocavity systems with rare-
earth ions incorporated into them have been developed
[14,15]. In Ref. [14] a Si-photonic crystal cavity was man-
ufactured through which light is evanescently coupled to a
single Er3+ ion, present inside a lightly doped Er:YSO crystal.
This is an attractive system with a cavity quality factor of
51 000 for the Er3+ transition at a wavelength of 1.5 μm. This
led to the coupling of individual Er3+ ions to the cavity. A
similar system can probably be constructed for higher dipole
moment rare-earth ions such as Nd3+, but the rare-earth ions
are evanescently coupled here, which decreases the cavity
coupling g and the Purcell factor compared to what would
have been possible if they were present inside the cavity. The
evanescent coupling also decreases the number of atoms that
can be coupled to the cavity.

Another system containing a Eu3+-doped nanocrystal in-
side a free-space cavity between a fiber tip and a mirror
was introduced recently [15]. This also has attractive cavity
parameters of finesse 17 000, κ = 1.3 GHz, and a corre-
sponding cavity quality factor of around 400 000. The much
higher finesse and quality factor of the cavity paves the way
for implementing our proposal. However, this design uses a
nanocrystal of dimensions 40–60 nm. Hence, not many ions
can be accommodated inside the crystal, at least inside a
reasonable frequency range of 100 MHz to 2 GHz, which may
impose some limitations. A short-frequency range is required
so that the detuning � does not need to be too large.

B. Dynamical switching of the cavity

After the probe storage we need to detune the cavity by
� ∼ 100 MHz for it to be on resonance with the signal and
later detune it back to retrieve the probe. The cavity is initially
in resonance with the atoms at a frequency of ν ∼ 340 THz. If
the original cavity length is L and the change in length needed
to detune the cavity by an amount � (in frequncy) is �L, then
�L
L

= �
ν

∼ 3 × 10−7. Considering the above strain and the
Young modulus of the YVO crystal of 133 GPa [44], we can
calculate the necessary stress to be 44 kPa. Here we are taking
a commercial piezoelectric detector as an example, P-882.1
in Ref. [45]. This has a 6-mm2 surface area. Hence, 44-kPa
stress will correspond to an applied force of 0.26 N. Piezoelec-
tricity can in general deliver far-higher-magnitude maximum

forces, referred to as block forces, than this [45,46]. In this
specific case of [45], the piezoelectric actuator has a block
force of 190 N corresponding to a maximum displacement of
8 μm. Hence the force necessary in our case is only about
0.14% of the maximum force. Resolution becomes important
in applying such a small force. Piezoelectric actuators also
generally have subnanometer resolution in precise positioning
[45]. For the maximum displacement of 8 μm the block force
is 190 N [45] and for subnanometer resolution the minimum
force produced will be at most 0.023 N. We need a force
of 0.26 N, hence this gives us at most a 10.8% error or
about 11-MHz error in positioning the 30-MHz cavity. This
can affect our phase shift to some extent. This commercial
piezoelectric actuator [45] has microsecond response times
which are around the AFC storage times. Also, there has
been a great deal of ongoing research on submicrosecond
piezoelectricity [47].

The other issue with the strain given by piezoelectricity is
that this deforms the crystal structure, which causes a small
Stark shift between Nd levels. There is a lack of experimental
data in the literature on the strain- (or equivalently stress-)
induced Stark shift of Nd:YVO; however, experiments have
been performed on other crystals such as Nd:YAlO3 [48]. In
Nd:YAlO3 the magnitude of stress-induced shift in the Z1

to Y1 transition in Nd3+, 4I9/2 → 4F3/2 levels is found to
be around 32.05 Hz/Pa [using Eq. (2b) in Ref. [48]]. This
will imply 1.41 MHz of stress-induced shift to our desired
transition. This is small compared to our required detuning of
100 MHz. For an approximately linear rise of the piezoelectric
actuator over 50 ns this will give a phase shift to the probe of
magnitude about 2π × 0.035 rad. However, this shift will not
affect our proposal adversely as this phase shift will be present
independent of the presence of the signal. However, an un-
predictable error in the piezoelectric displacement will affect
the proposal. This is because the probe will be unpredictably
phase shifted and hence on making a quadrature measurement
there will be some probability for a false-positive result. So,
for a 5% error in piezoelectric displacement this will result
in a phase shift of 2π × 0.035. Our proposal has a similar
quantity like the phase shift g2/κ� ∼ 1/

√
6000 = 0.012 and

hence, naively, there should be about 30% error. However, the
probe will not be scattered over the phase space due to this
phase shift as it occurs due to the Stark shift in the atoms and
has nothing to do with the presence of the cavity. Hence, the
probability of false-positive detection will be very low even
for a phase shift comparable to the value of 2π × 0.012 rad
as due to the cavity in the presence of a signal final probe
state quadrature gets scattered all over the phase space, i.e.,
in a 2π -rad angle. So this strain-induced Stark shift will only
decrease the success probability by a very small amount. If
we consider that the final probe states spreads uniformly,
this will correspond to roughly 0.012/1 ≈ 1% lower success
probability.

Another attractive approach toward achieving the dynam-
ical detuning is to detune the atoms, instead of the cavity,
by the Zeeman effect using an external magnetic field. A
magnetic field is already present to enforce the selection rules.
The magnitude of this magnetic field needs to be increased to
give an extra 100-MHz detuning between the atoms quickly.
Similar to the piezoelectric strain-induced shift, in the Zeeman
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shift process the dynamical fluctuations while detuning the
atoms will affect the phase shift.

C. Combining cavity and multipass approach

Another avenue towards implementation can be combining
the cavity approach with the multipass approach described
in [21]. In the multipass approach, instead of using a cavity,
the signal is simply passed multiple times through the crystal
(in a waveguide) using an optical switch. However, multipass
arrangement alone cannot achieve single-photon QND as it
will require many passes (greater than 200) [21], which is
currently not feasible as the optical switches, essential for
the multipass arrangement, cause far too much switching loss
for so many passes. However, if we combine the multipass
arrangement with the cavity then we may be able to restrict
ourselves with much fewer passes. The principle advantage of
this scheme is that loss can be decreased significantly without
having a large detuning, which will improve the phase shift
considerably.

In the multipass arrangement, as the photon passes over the
atoms multiple (say, m) times, both the phase shift and loss
gets multiplied by m [21], i.e., the phase is equal to m

g2

κ�
∼

1√
ηrN

and the loss is equal to m
4γrg

2N

κ�2
3Q

4π2
(λ0/n)3

V

(κ/2)2

(κ/2)2+�2 .

However, the loss is proportional to ( g2

κ�
)2. Considering

m
g2

κ�
∼ 1√

ηrN
, we eventually end up with loss decreased by a

factor of m, i.e., 6
mπηr

(κ/2)2

(κ/2)2+�2 . Now, even with (κ/2)2

(κ/2)2+�2 ∼ 1,
we can achieve low loss simply by having a moderate value
of m. For ηr ∼ 1 and m = 10 we will have 20% loss while
having the last factor as close to 1 as possible. Hence, we
can have low loss with as small a detuning as the ac Stark
shift approximation allows us to. Also, the phase shift is
multiplied by m. So now it will be much easier to achieve
the new phase-shift condition m

g2

κ�
∼ 1√

ηrN
for much more

moderate values of g, κ , and N , especially with a small value
of � allowed. This will also mean that now both the signal
and the atoms are in resonance with the cavity. So there will
also be no need for dynamically detuning the cavity using
piezoelectricity or other techniques. However, there are also
going to be extra losses from the optical switches used in
the multipass and especially due to the mode matching of
the cavity with the optical fiber. The main hurdle for this
scheme is that cavity mode matching is quite bad for most
optical systems right now. In the nanocavities of [11], the

optimal coupling transmission achieved right now is 27%. The
multipass-cavity combination will only be useful if this value
can be improved significantly (to 95% or higher).

VI. CONCLUSION

In summary, we performed a detailed theoretical analysis
for a cavity-enhanced nondestructive photonic qubit detector
using an atomic ensemble and determined the necessary pa-
rameters for implementation of the scheme in an ensemble of
rare-earth ions doped in a crystal. A single-pass configuration
such as in the proof-of-principle experiment of Ref. [21]
is unable to reach single-photon level sensitivity due to a
tradeoff between phase shift and loss. This can be overcome
by using a cavity. We showed that the presence of the cavity
also introduces a significant complication because the phase
shift acquires a dependence on the probe photon number,
in addition to the desired dependence on the signal photon
number. We analyzed this effect in detail to determine the
final probe state, using the Husimi Q representation in phase
space and calculating the quadrature distributions, which al-
lowed us to determine the success probability and error rate
of the scheme as a function of various parameter values.
We modeled the cavity-enhanced loss and estimated system
parameters for Nd:YVO nanocavities as an example system
toward implementation. For a successful implementation of
the scheme a small transverse area, high finesse, and relatively
long cavity are needed. Although these values have not yet
been achieved in current systems, we think that they are within
reach, given the recent rapid progress in coupling rare-earth
ions to optical cavities. We thus hope that the present work
will prepare the ground for the experimental realization of
nondestructive photonic qubit detection in the not too distant
future.
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[4] D. E. Chang, V. Vuletić, and M. D. Lukin, Nat. Photon. 8, 685

(2014).
[5] A. Reiserer, S. Ritter, and G. Rempe, Science 342, 1349

(2013).
[6] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,

2313 (2010).

[7] H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).
[8] M. Hosseini, K. M. Beck, Y. Duan, W. Chen, and V. Vuletić,
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