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Quadrature bases that incorporate spatiotemporal degrees of freedom are derived as eigenstates of momentum-
dependent quadrature operators. The resulting bases are shown to be orthogonal for both the particle-number and
the spatiotemporal degrees of freedom. Using functional integration, we also demonstrate the completeness of
these quadrature bases.
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I. INTRODUCTION

Quantum information promises various new technologies,
including quantum imaging [1–3], quantum metrology [4–6],
and quantum communication [7–9]. Many of the systems that
implement these quantum information technologies use quan-
tum optics [10]. In such cases, we often find that the physical
setup predominantly employs either the spatial degrees of
freedom [11–13] or the particle-number degrees of freedom
[14–16]. Where the spatial degrees of freedom are used, the
implementation is often made in terms of spatial modes,
such as orbital angular momentum modes [17,18]. Those
implementations that employ the particle-number degrees of
freedom often use so-called continuous variables [19,20].

However, one cannot completely exclude the influence of
other degrees of freedom from any quantum optics implemen-
tation. When spatial modes are used, one usually assumes
that the states are single-photon states or two-photon states
[21–23]. Nevertheless, the laser sources and nonlinear crystals
actually produce coherent states and squeezed states, thus pol-
luting these low-particle-number states with higher-particle-
number states [24,25]. The effects of these undesirable contri-
butions are treated as ‘noise’ in the system.

On the other hand, continuous-variable systems always
incorporate some spatiotemporal description of the optical
field. In these implementations, multiple modes are allowed,
but it is often assumed that these are fixed discrete modes
[15,19,20,26]. (Obviously, there are many exceptions, for
instance, in the context of quantum imaging [27,28].) How-
ever, in practical systems, distortions and decoherence can
introduce unwanted variability in these modes [29–31] that
may not be represented by the finite set of fixed modes.

A comprehensive approach that combines all the degrees of
freedom allows one to perform thorough analyses of all such
scenarios. It is especially relevant in cases where all these de-
grees of freedom are affected. Such a comprehensive approach
requires the incorporation of both spatiotemporal and particle-
number degrees of freedom into the analytic tools. If the
current state of the art for implementations that focus on only
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one degree of freedom is able to achieve remarkable successes
as they do, just imagine how powerful implementations that
incorporate all these degrees of freedom would be [32–37].
There is a clear benefit of analytical tools that incorporate both
spatiotemporal and particle-number degrees of freedom.

In the endeavor to combine particle-number degrees of
freedom and spatiotemporal degrees of freedom, there are
different approaches to choose from. One approach is to
expand the states under investigation in terms of orthogonal
bases. Operators can then be expressed in terms of overlaps
among different bases elements. However, such an approach
assumes the existence of a basis that is not only complete
and orthogonal with respect to the particle-number degrees of
freedom but, at the same time, also complete and orthogonal
with respect to the spatiotemporal degrees of freedom. To find
such a basis is not a simple matter. It is the topic of this paper.

An alternative approach is to define states in terms of
operators that would produce those states when they operate
on the vacuum state. For normalized states, these would be
unitary operators, often expressed as exponential operators,
containing Hermitian operators in their exponents. The latter
is often expressed as multivariate polynomials of creation and
annihilation operators. It is particularly convenient if these
polynomials are no higher than second order, thus naturally
leading to the notion of Gaussian states [14,20]. Operations on
states are represented by products of operators, which can be
manipulated via the appropriate commutation relations. Due
to the creation and annihilation operators, this approach is
often associated with second quantization.

One way to incorporate spatiotemporal degrees of freedom
in the latter approach is to include multiple sets of creation
and annihilation operators to represent different modes. This
necessarily leads to a discrete set of modes representing
the spatiotemporal degrees of freedom [19,20]. However,
it is not always desirable to perform analyses in terms of
discrete modes. The result may require a truncation in the
number of modes to allow explicit computations. Such a
truncation can lead to large deviations between predictions
and experimental results. For example, when discrete modes
were used for the analysis of the evolution of biphoton states
in turbulence [38], the resulting set of coupled differential
equations had to be truncated before they could be solved.
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Moreover, the complexity of the analysis grew rapidly with
the size of the truncated set. The predictions obtained from
such a truncated set of equations gave a large disagreement
compared with experimental results [39]. Only by performing
the analysis in terms of the continuous plane-wave basis could
this truncation problem be overcome [40,41]. Hence, it is
preferable to incorporate spatiotemporal degrees of freedom
into a particle-number formalism in such a way that it will
allow one to use a continuous parametrization of both the
particle-number degrees of freedom and the spatiotemporal
degrees of freedom.

Although we focus here mainly on the inclusion of the
spatiotemporal degrees of freedom with the particle-number
degrees of freedom, with a little more effort, we also incor-
porate the spin degrees of freedom, thus exhausting all the
degrees of freedom associated with the photon field. To do so,
we make a slight simplification of the notation to avoid overly
complex expressions.

In this paper, we derive the eigenbases associated with so-
called fixed-momentum quadrature operators. The resulting
bases are called spatiotemporal quadrature bases. Although it
makes sense heuristically that these bases would be complete
and orthogonal, we proceed to show this explicitly. Since
these bases incorporate the spatiotemporal degrees of freedom
in terms of continuous degrees of freedom, they naturally lead
to a functional formalism—a path-integral approach [42–44].
However, by themselves, these spatiotemporal quadrature
bases do not yet represent a fully fledged formalism. They
only provide the first step. The next step, which is to use these
quadrature bases for the development of a generalized Wigner
formalism, is beyond the scope of the current paper. However,
we briefly discuss such a generalized Wigner formalism later.

The paper is organized as follows. In Sec. II we provide
some background information and define convenient notation.
The derivation of the spatiotemporal quadrature bases is pro-
vided in Sec. III. Orthogonality and completeness conditions
for these bases are considered in Secs. IV and V, respectively.
Finally, in Sec. VI a discussion and outlook are provided.

II. PRELIMINARIES

Before we address the main topic of this paper, namely,
the derivation of the spatiotemporal quadrature bases, we first
consider some preliminary results that would be needed later.
It also gives us the opportunity to define convenient notation
and to show alternative approaches that do not work.

A. Fixed-momentum Fock states

The quantization of the electromagnetic field in the context
of particle physics led to the definition of creation and annihi-
lation operators a

†
s (k) and as (k), which carry spatiotemporal

degrees of freedom in the form of the wave vector k, which
is proportional to the three-dimensional momentum vector,
and spin degrees of freedom, represented by the spin index s.
The creation and annihilation operators are assumed to obey a
Lorentz covariant commutation relation,

[âs (k1), â†
r (k2)] = (2π )3ω1δs,r δ(k1 − k2), (1)

where δs,r is the Kronecker delta, δ(k1 − k2) is a (three-
dimensional) Dirac delta function, and the angular frequency
ω1 is related to the wave vector via the dispersion relation
ω1 = c|k1|. The creation operators produce the elements of a
momentum basis a

†
s (k)|vac〉 = |k, s〉, which serves as a com-

plete orthogonal basis for all single-photon states. It satisfies
a Lorentz covariant orthogonality condition that reads

〈k1, r|k2, s〉 = (2π )3ω1δr,sδ(k1 − k2). (2)

As the first attempt, one can generalize the single-photon
momentum basis to a fixed-momentum Fock basis, where all
photons in each basis element share the same spin and wave
vector,

|n, k, s〉 = 1√
n!

[a†
s (k)]n|vac〉,

〈n, k, s| = 1√
n!

〈vac|[as (k)]n,

(3)

where n is the occupation number of photons in the state.
The appropriate number operator for which these Fock states
serve as eigenstates, with the occupation number n being the
eigenvalue, is given by

n̂ =
∑

r

∫
a†

r (k′)ar (k′)
d3k′

(2π )3ω′ . (4)

At this point, we introduce a simpler notation to alleviate
the complexity of subsequent expressions. To this end, inte-
grals over momentum space with spin sums are henceforth
denoted

∑
s

∫
. . .

d3k

(2π )3ω
→

∫
. . . d̄ sk. (5)

Unfortunately, the attempt to define Fock states with fixed
momenta leads to divergences. The inner product between
two of these fixed-momentum Fock states with occupation
numbers m, n > 1 gives a product of Dirac delta functions
with the same argument:

〈m, k1, r|n, k2, s〉 = δm,n(〈k1, r|k2, s〉)n

= δm,n[(2π )3ω1δr,sδ(k1 − k2)]n. (6)

The product of Dirac delta functions will inevitably lead to
unwanted divergences in any calculation. As a result, such
an attempt to incorporate the spatiotemporal degrees of free-
dom with the particle-number degrees of freedom fails. It
follows that any other fixed-momentum basis (such as fixed-
momentum quadrature bases or fixed-momentum coherent
states) would suffer the same affliction.

B. Fixed-spectrum Fock states

A slight variation on the theme of fixed-momentum Fock
states is the notion of a fixed-spectrum Fock state, in which
all the photons in the state share the same spectrum of plane
waves. Making the presence of the spectrum explicit in the
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notation by the subscript F , we express these Fock states

|nF 〉 = 1√
n!

(â†
F )n|vac〉 = (|1F 〉)n√

n!
,

〈nF | = 1√
n!

〈vac|(âF )n = (〈1F |)n√
n!

,

(7)

where the fixed-spectrum creation and annihilation operators
are defined by

â
†
F =

∫
a†

s (k)Fs (k) d̄ sk,

âF =
∫

F ∗
s (k)as (k) d̄ sk.

(8)

Fixed-spectrum single-photon states are expressed as

|1F 〉 =
∫

|k, s〉Fs (k) d̄ sk,

〈1F | =
∫

F ∗
s (k)〈k, s| d̄ sk.

(9)

The fixed-spectrum Fock states also act as eigenstates of the
number operator in Eq. (4): n̂|nF 〉 = |nF 〉n.

In all these expressions, the spectrum is represented by
Fs (k), being a function of the three-dimensional wave vector
k and the spin index s. It is normalized according to the
expression ∫

|Fs (k)|2 d̄ sk = 1. (10)

The normalized spectrum ensures that 〈1F |1F 〉 = 1 and
[aF , a†

F ] = 1. As a result, the inner product between arbitrary
Fock states with different spectra gives

〈mF |nG〉 = δmn(〈F,G〉)n, (11)

where

〈F,G〉 ≡
∫

F ∗
s (k)Gs (k) d̄ sk. (12)

Hence, if we select a discrete set of spatial modes that is or-
thogonal and complete in terms of the spatiotemporal degrees
of freedom to represent the spectra in these Fock states, we
would obtain a set that obeys an orthogonality condition both
in the spatiotemporal degrees of freedom and in the particle-
number degrees of freedom. Such a discrete fixed-spectrum
Fock basis is denoted {|nm〉}, where m is an index for the
spatialtemporal modes.

Unfortunately, it would not be complete in both these
degrees of freedom. Trying to expand a state consisting of
the tensor product of two single-photon elements of the basis
|ψ〉 = |1m〉|1n〉, where m 	= n, one finds that all the inner
products between |ψ〉 and the discrete fixed-spectrum Fock
basis elements are 0. As a result, it cannot be represented in
terms of the discrete Fock basis, which means that the discrete
fixed-spectrum Fock basis is not complete. Again, our attempt
fails.

C. Completeness of the fixed-spectrum Fock basis

For the moment, we ignore the orthogonality require-
ment and only focus on completeness. In what follows, we

eventually see that it makes sense to include all functions
as spectra, and not just those that form an orthogonal basis
for the spatial degrees of freedom. A completeness condition
over such a space would naturally lead to a path-integral
formulation [42–44], because integrals over such a space are
functional integrals that run over all the possible spectral
functions in the space.

An expansion of an arbitrary pure state in terms of the full
set of fixed-spectrum Fock states would have the form of a
functional integral,

|ψ〉 =
∑

n

∫
|nF 〉Cn[F ] D[F ], (13)

where F represents the complex functions for the spectra that
define the fixed-spectrum Fock basis, the coefficient function
Cn[F ] is a functional (i.e., a function of functions), and the
measure of the integral D[F ] runs over all such functions F .

To investigate the completeness of the set of all fixed-
spectrum Fock states, we consider the possibility of resolving
the identity operator in terms of this set. For this purpose, we
consider the functional integral for an operator given by

L̂ =
∑

n

∫
|nF 〉〈nF | D[F ]. (14)

Using Eq. (7), one can write it as

L̂ =
∑

n

∫
1

n!
(|1F 〉〈1F |)n D[F ]

=
∑

n

∫
1

n!

(∫
|k1, r〉Fr (k1)F ∗

s (k2)〈k2, s|

× d̄ rk1 d̄ sk2

)n

D[F ]. (15)

To evaluate the functional integral, we interpret it as an
ensemble averaging process, but with some differences. The
majority of functions in the space over which the functional
integral runs would be similar to random functions. It is also
reasonable to assume that the function values of most of these
functions would be normally distributed. Those functions in
the space that do not qualify as normally distributed random
functions would form a subset of measure 0. To make this
statement stronger than a mere assumption, one can specify
it as a condition in the definition of the fixed-spectrum Fock
basis. As a result, the functional integral of the product of
a function with its complex conjugate, evaluated at different
arguments, would produce the equivalent of a completeness
condition over the space of functions:∫

Fr (k1)F ∗
s (k2) D[F ] = (2π )3ω1δr,sδ(k1 − k2). (16)

Note that there are two differences between what we have
here and what is usually implied in delta-correlated random
functions 〈χ (x1)χ∗(x2)〉 = �δ(x1 − x2). The first difference
is that the ensemble average always implies that the sum is
divided by the number of elements. In the functional inte-
gral, there is no such division process implied. The second
difference is that, to produce the singularity at the origin of
the Dirac delta function, the random functions must have
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amplitudes of infinite magnitude. In the space of spectra
that we consider, all functions are of finite energy, implying
finite amplitudes. These two differences cancel each other to
produce effectively the same result. Since we sum over an
infinite number of finite amplitudes but do not divide by the
number of functions, we end up with a divergent value at the
origin. It is also assumed that∫

Fr (k1)Fs (k2) D[F ] =
∫

F ∗
r (k1)F ∗

s (k2) D[F ] = 0. (17)

The functional integrals over products of more than two
functions either give 0 for uneven numbers or break up into
a sum of products of integrals over just two functions for even
numbers of functions, analogous to the ensemble averages
of products of normally distributed random functions. For
example,∫

Fr (k1)F ∗
s (k2)Fu(k3)F ∗

v (k4) D[F ]

= (2π )6ω1ω3[δr,sδu,vδ(k1 − k2)δ(k3 − k4)

+ δr,vδu,sδ(k1 − k4)δ(k3 − k2)]. (18)

In general, we can express the completeness condition to all
orders as∫ M∏

m=1

F (km; rm)
N∏

n=1

F ∗(qn; sn) D[F ]

= δM,N

∑
pert

N∏
n=1

(2π )3ωnδ[rn, sPn]δ(kn − qPn), (19)

where the summation runs over all permutations and the
subscript Pn represents a permutation of all N indices in
the product. The Kronecker delta function for the spin is
represented as δ[r, s] ≡ δr,s . We see that each function F

needs to be matched to a complex conjugate F ∗, and vice
versa. If any of these functions remains unmatched, the result
is 0.

The relationship in Eq. (19) serves as a generalized com-
pleteness condition for the space of all functions. It is now
considered as a defining condition for the space of functions
that defines the fixed-spectrum Fock basis.

As a result, the expression in Eq. (15) becomes

L̂ =
∑

n

(∫
|k, s〉〈k, s| d̄ sk

)n

=
∑

n

In ≡ 1, (20)

where In is a projection operator for n-particle states (an
identity operator within the subspace of n-particle states)
and 1 is the identity operator for the entire space, including
states with arbitrary numbers of particles. The representation
succeeds as a resolution of the identity operator, which shows
that, provided that the condition in Eq. (19) is satisfied, the
fixed-spectrum Fock basis is a complete basis for both the
particle-number degrees of freedom and the spatiotemporal
degrees of freedom:

∑
n

∫
|nF 〉〈nF | D[F ] = 1. (21)

As a result, we obtained a successful completeness con-
dition at the cost of orthogonality of the basis. Based on
Eqs. (17) and (21), we also have∫

|mF 〉〈nF | D[F ] = δmnIn, (22)

which we need later.

D. Fixed-spectrum coherent states

In our pursuit for a complete orthogonal basis in spatiotem-
poral and particle-number degrees of freedom, any attempt
to consider coherent states may seem like a waste of time,
because one already knows that coherent states are not mu-
tually orthogonal. However, we consider the completeness
properties of fixed-spectrum coherent states for the benefit of
later use.

The fixed-spectrum coherent states can be defined as an
expansion in terms of fixed-spectrum Fock states

|αF 〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!

|nF 〉, (23)

where α is a complex constant. In terms of the fixed-spectrum
displacement operator, they are given by

|αF 〉 = D̂(αF )|vac〉 = exp(â†
α − âα )|vac〉, (24)

where

â†
α =

∫
αs (k)â†

s (k) d̄ sk,

âα =
∫

α∗
s (k)âs (k) d̄ sk.

(25)

The complex function αs (k) is composed of the product of the
complex parameter α and the normalized complex function
Fs (k). Note that, according to Eq. (10),

||αs (k)||2 ≡
∫

|αs (k)|2d̄ sk

= |α|2
∫

|Fs (k)|2d̄ sk = |α|2. (26)

The inner product between different fixed-spectrum coher-
ent states (i.e., where the photons in the respective coherent
states in general have completely different spectra) can be
calculated with the aid of Eq. (11). It reads

〈αF |βG〉 = exp

(
−1

2
|α|2 − 1

2
|β|2 + 〈α, β〉

)

= exp

(
−1

2
||αs (k) − βs (k)||2

)
exp(i�), (27)

where, from Eq. (26),

||αs (k) − βs (k)||2 =
∫

|αs (k) − βs (k)|2d̄ sk (28)

gives the metric distance between the two spectra, and

� = Im{〈α, β〉} = Im

{∫
α∗

s (k)βs (k) d̄ sk

}
, (29)

with Im{·} giving the imaginary part of the argument.
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Therefore, the inner product between different fixed-
spectrum coherent states is related to the metric distance
between their associated complex spectra in the space of func-
tions. So, even when 〈α, β〉 = 0, we still have 〈αF |βG〉	=0.
Not surprisingly, it is not possible to define a basis in terms
of such coherent states that are orthogonal. The space of
functions for all fixed-spectrum coherent states forms a metric
space (or normed vector space). The metric in the space of
functions is related to the inner product between the associated
fixed-spectrum coherent states, as

d{α, β} ≡ ||αs (k) − βs (k)||2 = − ln(|〈αF |βG〉|2). (30)

To investigate the completeness of the fixed-spectrum co-
herent bases, we first consider

L̂ =
∫

|αF 〉〈βF |D[F ], (31)

where the complex constants α and β are allowed to be
different and where the functional integral runs only over the
normalized functions F . Using the definition of the coherent
states in Eq. (23) and applying Eq. (22), we get

L̂ = exp

(
−1

2
|α|2 − 1

2
|β|2 + α∗βI

)
. (32)

By setting α = β, we obtain∫
|αF 〉〈αF | D[F ] = exp(−|α|2 + |α|2I ). (33)

Next, we also integrate over α:∫
|αF 〉〈αF | D[αF ] =

∫
exp(−|α|2 + |α|2I ) dα

= π

∞∑
n=0

In = π1. (34)

Hence, the functional integral over all complex functions
αF = αF (k) provides us with a completeness condition,

1 = 1

π

∫
|αF 〉〈αF | D[αF ], (35)

which is analogous to what one obtains without the spatiotem-
poral degrees of freedom. The fixed-spectrum coherent states
represent a (over-) complete basis, even though they are not
orthogonal.

Since the identity is idempotent, we must have 12 = 1.
Due to the nonorthogonality of the coherent states, Eq. (27),
it leads to the awkward identity

1 = 1

π2

∫
|αF 〉〈αF |βG〉〈βG| D[αF ] D[βG]

= 1

π2

∫
|αF 〉 exp

(
−1

2
|α|2 − 1

2
|β|2 + 〈α, β〉

)
〈βG|

×D[αF ] D[βG], (36)

which comes in handy later.

E. Fixed-spectrum quadrature bases

One can define fixed-spectrum quadrature operators di-
rectly in terms of the fixed-spectrum creation and annihilation

operators

q̂F = 1√
2

(âF + â
†
F ),

p̂F = −i√
2

(âF − â
†
F ).

(37)

Their commutation relation is given by

[q̂F , p̂G] = iRe{〈F,G〉}, (38)

where Re{·} represents the real part of the expression.
The fixed-spectrum quadrature basis elements are the

eigenstates of the fixed-spectrum quadrature operators

q̂F |qF 〉 = |qF 〉q,

p̂F |pF 〉 = |pF 〉p (39)

and are assumed to be given by the expansions

|qF 〉 =
∑

n

|nF 〉�n(qF ),

|pF 〉 =
∑

n

|nF 〉�n(pF )
(40)

in terms of the fixed-spectrum Fock states. To find the expres-
sions for the coefficient functions, we compute the overlaps

�n(qF ) = 〈nF |qF 〉 = 1√
n!

〈vac|(âF )n|qF 〉,

�n(pF ) = 〈nF |pF 〉 = 1√
n!

〈vac|(âF )n|pF 〉,
(41)

where we have used Eq. (7) to express the fixed-spectrum
Fock states in terms of fixed-spectrum annihilation operators.
We now convert the products of annihilation operators into
generating functions for such products,

∑
n

ηn

√
2nn!

�n(qF ) = 〈vac| exp

(
η√
2
âF

)
|qF 〉,

∑
n

(−i)nηn

√
2nn!

�n(pF ) = 〈vac| exp

(−iη√
2

âF

)
|pF 〉,

(42)

where η is the generating parameter and where we have
introduced convenient constants in anticipation of our goal.
Next, we exploit the fact that

〈vac| exp(Kâ
†
F ) = 〈vac| (43)

to insert exponentiated creation operators,

∑
n

ηn

√
2nn!

�n(qF )

= 〈vac| exp

(
η√
2
â
†
F

)
exp

(
η√
2
âF

)
|qF 〉,

∑
n

(−i)nηn

√
2nn!

�n(pF )

= 〈vac| exp

(
iη√

2
â
†
F

)
exp

(−iη√
2

âF

)
|pF 〉. (44)
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The exponential operators are combined using the Baker-
Campbell-Hausdorff formula. The resulting combined expo-
nential operators can be expressed in terms of fixed-spectrum
quadrature operators. Hence,∑

n

ηn

√
2nn!

�n(qF ) = 〈vac| exp

(
ηq̂F − η2

4

)
|qF 〉

= �0(qF ) exp

(
ηq − η2

4

)
,

∑
n

(−i)nηn

√
2nn!

�n(pF ) = 〈vac| exp

(
ηp̂F − η2

4

)
|pF 〉

= �0(pF ) exp

(
ηp − η2

4

)
, (45)

where we have used the eigenvalue equations in Eq. (39) to
pull the exponentiated quadrature operators through the basis
elements. These results resemble the generating function for
Hermite polynomials, given by

exp(2xν − ν2) =
∞∑

n=0

νn

n!
Hn(x), (46)

where ν is the generating parameter. The coefficient functions
are therefore given by

�n(qF ) = �0(qF )√
2nn!

Hn(q ),

�n(pF ) = (i)n�0(pF )√
2nn!

Hn(p)

(47)

in terms of Hermite polynomials, up to the zeroth-order
coefficient functions �0(q ) and �0(p), which are yet to be de-
termined. At this point, we note that the possible dependences
on the normalized spectrum F appear only in the zeroth-order
coefficient functions. So, if they depend only on the q and
p parameters, and not on the normalized spectrum, then the
same will be true for all coefficient functions. Therefore, we
assume that one can replace qF → q and pF → p in these
expressions.

To find the expressions for the zeroth-order coefficient
functions, we consider the inner product between coeffi-
cient functions of different orders. Comparing the resulting
expressions with the orthogonality condition for Hermite
polynomials∫

Hm(x)Hn(x) exp(−x2) dx = √
π2nn! δmn, (48)

we see that, if

|�0(q )|2 = 1√
π

exp(−q2),

|�0(p)|2 = 2
√

π exp(−p2),

(49)

then the coefficient functions will obey the orthogonality
conditions ∫

�m(q )�∗
n(q ) dq = δmn,∫

�m(p)�∗
n(p) dp = 2πδmn.

(50)

Assuming that the zeroth-order coefficient functions are real-
valued functions, we obtain expressions for the coefficient
functions, given by

�n(qF ) = 1

π1/4
√

2nn!
Hn(q ) exp

(
−q2

2

)
,

�n(pF ) = (i)n
√

2π1/4

√
2nn!

Hn(p) exp

(
−p2

2

)
.

(51)

These coefficient functions are the same as those one has
without the spatiotemporal degrees of freedom. In addition to
the orthogonality conditions given in Eq. (50), the coefficient
functions of Eq. (51) also obey completeness conditions,
given by ∑

n

�∗
n(q )�n(q ′) = δ(q − q ′),

∑
n

�∗
n(p)�n(p′) = 2πδ(p − p′).

(52)

What is the effect of the spectra on the inner products
among quadrature basis elements? Based on Eq. (11), the
inner product between q states with different spectra becomes

〈qF |q ′
G〉 =

∑
n

μn�∗
n(q )�n(q ′), (53)

where μ ≡ 〈F,G〉. Using Eq. (51) and Mehler’s formula [45],
which is given by

∞∑
n=0

ρn

2nn!
Hn(x)Hn(y)

= 1√
1 − ρ2

exp

[
2ρxy

1 − ρ2
− (x2 + y2)ρ2

1 − ρ2

]
, (54)

we obtain an expression for the inner product that reads

〈qF |q ′
G〉 = 1√

π (1 − μ2)
exp

[
−μ(q − q ′)2

1 − μ2

]

× exp

[
− (1 − μ)(q2 + q ′2)

2(1 + μ)

]
. (55)

For G → F , but keeping the q’s different, we have μ → 1.
We see that Eq. (55) is singular for μ → 1. So we replace
μ = 1 + ε/2 and consider the limit where ε → 0. It gives

〈qF |q ′
F 〉 = lim

ε→0

1√
πε

exp

[
− (q − q ′)2

ε

]
. (56)

One can show that the right-hand side represents a limit
process for the Dirac delta function

lim
ε→0

1√
πε

exp

[
− (q − q ′)2

ε

]
= δ(q − q ′). (57)

Hence, we obtain the orthogonality condition

〈qF |q ′
F 〉 = δ(q − q0). (58)

A similar condition applies for the p basis.
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On the other hand, if F and G are orthogonal, we have
μ → 0, so that

〈qF |q ′
G〉 → �∗

0(q )�0(q ′) = 1√
π

exp

[
−(q2 + q ′2)

2

]
. (59)

As a result, the fixed spectrum quadrature basis elements
lose their orthogonality. Even if we use a discrete modal
basis for the spatiotemporal degrees of freedom, we still do
not obtain an orthogonal basis for both particle-number and
spatiotemporal degrees of freedom. So, if we remain within
the subspace associated with a specific spectral function, the
fixed-spectrum quadrature bases are orthogonal bases, but
beyond that they are not orthogonal.

F. Completeness of fixed-spectrum quadrature bases

Considering the completeness of the fixed-spectrum
quadrature bases, we first restrict the bases to the subspace of
a specific spectral function and integrate over the q parameter.
We obtain∫

|qF 〉〈qF | dq =
∑
m,n

|mF 〉〈nF |�m(q )�∗
n(q ) dq

=
∑

n

|nF 〉〈nF | = IF , (60)

thanks to the orthogonality of the coefficient functions. The
result represents a projection operator for states with arbitrary
numbers of photons, but where their spatiotemporal degrees
of freedom are defined by a specific spectral function F .

To investigate the completeness of the fixed-spectrum
quadrature bases for the entire space of spectral functions, we
need to employ functional integrals, as done in Sec. II C. First,
we consider the case where the spectrum is the same, but the
q parameters are different:

L̂ =
∫

|qF 〉〈q ′
F | D[F ]. (61)

Substituting Eq. (40), we obtain

L̂ =
∑
mn

∫
|nF 〉�m(q )�∗

n(q ′)〈mF | D[F ],

=
∑

n

�n(q )�∗
n(q ′) In, (62)

where we have used Eq. (22). It cannot be simplified further.
However, if we also integrate over q and use the orthogonality
of the coefficient functions, Eq. (50), we get∫

L̂ dq =
∑

n

∫
�n(q )�∗

n(q ) dq In

=
∑

n

In = 1. (63)

So, the entire space, including all normalized functions and all
q parameters, provides a complete basis. The same applies for
the p basis.

We are almost there. The fixed-spectrum quadrature bases
are complete, but not orthogonal, unless we restrict them to
subspaces for specific spectral functions.

III. EIGENSTATES OF FIXED-MOMENTUM
QUADRATURE OPERATORS

The stage is set to derive bases that are both complete and
orthogonal with respect to the entire space of quantum states
that can be defined in terms of both spatiotemporal degrees of
freedom and particle-number degrees of freedom. These bases
are what we call spatiotemporal quadrature bases.

For derivation of the spatiotemporal quadrature bases, we
start with the notion of fixed-momentum quadrature operators.
These operators are directly defined in terms of the creation
and annihilation operators for photonic states, which obey the
Lorentz covariant commutation relation given in Eq. (1). The
fixed-momentum quadrature operators are given by

q̂s (k) = 1√
2

[âs (k) + â†
s (k)],

p̂s (k) = −i√
2

[âs (k) − â†
s (k)].

(64)

They obey a Lorentz covariant commutation relation that
reads

[q̂r (k1), p̂s (k2)] = i(2π )3ω1δr,sδ(k1 − k2). (65)

The term fixed-momentum quadrature operator follows from
the fact that they explicitly depend on the value of the wave
vector.

It is now assumed that the fixed-momentum quadrature
operators give rise to eigenstates and eigenvalue functions
according to the following eigenvalue equations:

q̂s (k)|q〉 = |q〉qs (k),

p̂s (k)|p〉 = |p〉ps (k).
(66)

The eigenvalue functions are real-valued functions because
the quadrature operators are Hermitian. They can be separated
into a real-valued magnitude times real-valued normalized
functions qs (k) = qFs (k) and ps (k) = pGs (k). For the sake
of notational simplicity, we generally distinguish between the
whole eigenvalue function and the magnitude simply by the
presence or absence of the argument. The functions Fs (k) and
Gs (k) are normalized in the sense∫

F 2
s (k)d̄ sk =

∫
G2

s (k)d̄ sk = 1. (67)

In the derivation that follows, we ignore the spin index to
alleviate the complexity of the expressions. After the deriva-
tion, we reintroduce the spin indices.

It has been shown in Sec. II A that, when the eigenstates
depend explicitly on the momentum, they will not be well
defined. Therefore, we assume that all the momentum de-
pendences are integrated out. As a result, |q〉 	= |q(k)〉 and
|p〉 	= |p(k)〉. Focusing on the first equation in Eq. (66), we
therefore start with an ansatz for |q〉 of the form

|q〉 = |vac〉V0 +
∫

|k〉V1(k)d̄k

+ 1

2!

∫
|ka〉|kb〉V2(ka, kb )d̄kad̄kb

+ 1

3!

∫
|ka〉|kb〉|kc〉V3(ka, kb, kc )d̄kad̄kbd̄kc + . . . ,

(68)
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where Vn(·) denotes coefficient functions to be determined.
The subscript n is not the spin; it represents the order of the
term in which it appears. Applying the eigenvalue equation to
the ansatz and solving the coefficient functions order by order,
one obtains expressions for all coefficient functions with n >

0 in terms of V0. The first few are given by

V1(k) =
√

2V0q(k),

V2(ka, kb ) = 2V0q(ka )q(kb ) − V0δ(ka − kb ),

V3(ka, kb, kc ) = 2
√

2V0q(ka )q(kb )q(kc )

− 3
√

2V0q(ka )δ(kb − kc ), (69)

and so forth. Substituting these coefficient functions back into
the ansatz in Eq. (68), we obtain an expression of the form

|q〉 = |vac〉V0 + (|Q〉 − |R〉)V0 + 1

2!
(|Q〉 − |R〉)2V0

+ 1

3!
(|Q〉 − |R〉)3V0 + . . .

= V0

∞∑
m=0

1

m!
(|Q〉 − |R〉)m

= V0 exp (|Q〉 − |R〉), (70)

where V0 is a global constant and

|Q〉 ≡
√

2
∫

|k, s〉qs (k) d̄ sk,

|R〉 ≡ 1

2

∫
|k, s〉|k, s〉d̄ sk,

(71)

with the spin indices being reintroduced. Note that

âs (k′)|Q〉 = |vac〉
√

2qs (k′),

âs (k′)|R〉 = |k′, s〉,
(72)

which implies that

âs (k′) exp(|Q〉) = exp(|Q〉)
√

2qs (k′),

âs (k′) exp (−|R〉) = − exp (−|R〉)|k′, s〉.
(73)

The creation operator just adds a factor of |k′〉. As an aside,
it is interesting that exp (|R〉) acts like an ‘antivacuum’ state
in the sense that the application of an annihilation operator
creates a ket vector in the same way that it would normally be
created by a creation operator acting on the vacuum state.

One can use the results in Eq. (73) to test whether our
solution satisfies the first eigenvalue equation in Eq. (66):

q̂s (k)|q〉 = V0√
2

[exp(|Q〉) exp (−|R〉)
√

2qs (k)

− exp(|Q〉) exp (−|R〉)|k, s〉
+ exp(|Q〉) exp (−|R〉)|k, s〉]

= |q〉qs (k). (74)

It confirms that the expression for the eigenstates, given
in Eq. (70), satisfies the eigenvalue equation. However, the
constant V0 is still unspecified.

A similar procedure can be followed to obtain an expres-
sion for the eigenstate |p〉. It is given by

|p〉 = W0 exp (i|P 〉 + |R〉), (75)

where W0 is a global constant, |R〉 is given in Eq. (71), and

|P 〉 ≡
√

2
∫

|k, s〉ps (k) d̄ sk. (76)

IV. ORTHOGONALITY

Since the fixed-momentum quadrature operators are Her-
mitian, it makes sense that the spatiotemporal quadrature
bases would be orthogonal bases. However, what does it mean
in the context of an infinite functional space? To investigate
the orthogonality of these bases and to find expressions for
V0 and W0, we need to compute 〈q|q ′〉 and 〈p|p′〉. At the
same time, it is helpful to compute 〈q|p〉. For this purpose, we
follow an operator approach, defining annihilation operators
for |Q〉, |P 〉, and |R〉, given by

âQ =
√

2
∫

âs (k)qs (k) d̄ sk,

âP =
√

2
∫

âs (k)ps (k) d̄ sk,

âR = 1

2

∫
âs (k)âs (k) d̄ sk.

(77)

The corresponding creation operators are obtained as the
adjoint operators, so that |Q〉 = â

†
Q|vac〉, |P 〉 = â

†
P |vac〉, and

|R〉 = â
†
R|vac〉. Using these operators, we then define creation

operators for the eigenstates

â†
q = V0 exp(â†

Q − â
†
R ),

â†
p = W0 exp(iâ†

P + â
†
R ),

(78)

so that |q〉 = â
†
q |vac〉 and |p〉 = â

†
p|vac〉. The overlaps among

the eigenstates are then given by

〈q|q ′〉 = 〈vac|âq â
†
q ′ |vac〉,

〈p|p′〉 = 〈vac|âpâ
†
p′ |vac〉,

〈q|p〉 = 〈vac|âq â
†
p|vac〉.

(79)

Starting with the last expression in Eq. (79), we obtain

〈q|p〉 = V0W0〈vac| exp(âQ) exp (−âR )

× exp(iâ†
P ) exp(â†

R )|vac〉. (80)

To evaluate this expression, one can rearrange the exponential
operators in normal order. However, in the process new oper-
ators are generated in addition to the current ones. As a result,
we expect to get an expression of the form

exp(k1âQ) exp(k2âR ) exp(k3â
†
P ) exp(k4â

†
R )

= exp(h0) exp(h1â
†
Q) exp(h2â

†
P ) exp(h3â

†
R )

× exp(h4ŝ) exp(h5âQ) exp(h6âP ) exp(h7âR ), (81)
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where k1, k2, k3, and k4 are assumed to be known constants;
h0, h1, h2, h3, h4, h5, h6, and h7 are unknown constants; and

ŝ ≡ 1

2

∫
[â†

s (k)âs (k) + âs (k)â†
s (k)]d̄ sk. (82)

To obtain the required relationship, we follow a standard
procedure where one introduces an auxiliary variable t into
the exponents on the left-hand side and converts the unknown
constants into unknown functions of t on the right-hand side:

exp(tk1âQ) exp(tk2âR ) exp(tk3â
†
P ) exp(tk4â

†
R )

= exp[h0(t )] exp[h1(t )â†
Q] exp[h2(t )â†

P ] exp[h3(t )â†
R]

× exp[h4(t )ŝ] exp[h5(t )âQ] exp[h6(t )âP ] exp[h7(t )âR].

(83)

For consistency, the unknown functions must go to 0 for t = 0.
Next, we apply a derivative with respect to t on both sides

and then remove as many of the exponential operators as
possible by operating with the respective inverse operators on
the right-hand sides of both sides of the equation. The rather
complicated expression that is obtained can be simplified with
the aid of the identity

exp(X̂)Ŷ exp(−X̂) = Ŷ + [X̂, Ŷ ] + 1

2!
[X̂, [X̂, Ŷ ]]

+ 1

3!
[X̂, [X̂, [X̂, Ŷ ]]] + . . . , (84)

where X̂ and Ŷ are two arbitrary operators. In Appendix A,
we provide all the necessary commutation relations to perform
this task. The simplified expression can then be separated into
different differential equations for all the unknown functions.
Upon solving these differential equations, we obtain

h0(t ) =
(
k2

1k4q
2t + k2k

2
3p

2t + 2k1k3μ
)
t2

1 − k2k4t2
,

h1(t ) = k1k4t
2

1 − k2k4t2
,

h2(t ) = k3t

1 − k2k4t2
,

h3(t ) = k4t

1 − k2k4t2
,

h4(t ) = − ln(1 − k2k4t
2),

h5(t ) = k1t

1 − k2k4t2
,

h6(t ) = k2k3t
2

1 − k2k4t2
,

h7(t ) = k2t

1 − k2k4t2
,

(85)

where μ = 〈q, p〉 is the inner product between the eigen-
value functions. One can now substitute the functions back
into Eq. (83). For the case under consideration, as given in
Eq. (80), we substitute k1 = 1, k2 = −1, k3 = i, and k4 = 1.
Then we set t = 1 to obtain the expression for the product of

exponential operators in normal order:

âq â
†
p = V0W0 exp

(
q2

2
+ p2

2
+ iμ

)
exp

(
â
†
Q

2

)

× exp

(
iâ

†
P

2

)
exp

(
â
†
R

2

)
exp [− ln(2)ŝ]

× exp

(
âQ

2

)
exp

(−iâP

2

)
exp

(
− âR

2

)
. (86)

The expression for the overlap follows by contracting the
vacuum state on both sides. For this purpose, we note that
exp(KâQ)|vac〉 = |vac〉, regardless of the value of K . The
same applies for âP and âR . Using the normal-ordered form
for ŝ, as given in Eq. (A6), we obtain

〈vac| exp[− ln(2)ŝ]|vac〉 = exp[− ln(2)�] = 1

2�
, (87)

where � is defined in Eq. (A6). So, the overlap becomes

〈q|p〉 = V0W0

2�
exp

(
q2

2
+ p2

2
+ iμ

)
. (88)

We now define the global constants as

V0 = 2�/2 exp

(
−q2

2

)
,

W0 = 2�/2 exp

(
−p2

2

)
.

(89)

As a result, the overlap becomes

〈q|p〉 = exp (iμ) = exp

[
i

∫
qs (k)ps (k)d̄ sk

]
. (90)

To consider the other two overlaps in Eq. (80), we note
that they can be obtained from the same result with the appro-
priate substitutions. For 〈q|q ′〉, we need to replace P → Q′
and p → q ′. The inner product now represents μ → 〈q, q ′〉.
Using these replacements, together with the appropriate as-
signment for the constants — k1 = 1, k2 = −1, k3 = 1, and
k4 = −1 — we obtain

h0(t ) = −[q2t + (q ′)2t − 2μ]t2

1 − t2
,

h1(t ) = h6(t ) = −t2

1 − t2
,

h2(t ) = −h3(t ) = h5(t ) = −h7(t ) = t

1 − t2
,

h4(t ) = − ln(1 − t2).

(91)

These functions are all singular at t = 1. Therefore, we need
to consider the overlap as a limit. For this purpose, we
substitute t = 1 − ε and Eq. (89). The resulting overlap then
becomes

〈q|q ′〉 = lim
ε→0

1

ε�
exp

{−[q2 + (q ′)2 − 2μ]

2ε

}
. (92)

Note that

q2 + (q ′)2 − 2μ = ||qs (k) − q ′
s (k)||2 � 0, (93)
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where

||fs (k)||2 ≡
∫

f 2
s (k)d̄ sk. (94)

For ||qs (k) − q ′
s (k)||2 > 0 the limit in Eq. (92) gives 0, and

for ||qs (k) − q ′
s (k)||2 = 0 the limit gives ∞. Hence, the result

behaves as a Dirac delta functional, which runs over an ∞
number of degrees of freedom. It enforces the equality of the
eigenvalue functions q(k) and q ′(k). We can thus express the
overlap as

〈q|q ′〉 = δ[qs (k) − q ′
s (k)], (95)

where we have ignored some unspecified constant factor. A
similar expression applies for the remaining overlap:

〈p|p′〉 = δ[ps (k) − p′
s (k)]. (96)

The expressions in Eqs. (95) and (96) represent the required
orthogonality conditions for the spatiotemporal quadrature
bases.

V. COMPLETENESS

To investigate the completeness of the spatiotemporal
quadrature bases, we consider an operator defined by

B̂ =
∫

|q〉〈q| D[q]. (97)

Having shown in Eq. (35) that the fixed-spectrum coherent
states can be used to resolve the identity, we operate on both
side with identities resolved in terms of coherent states:

B̂ =
∫

1|q〉〈q|1 D[q]

= 1

π2

∫
|αF 〉〈αF |q〉〈q|βG〉〈βG| D[q] D[αF ] D[βG]. (98)

To develop the expression further, we need the overlap be-
tween the quadrature basis and the fixed-spectrum coherent
states. It is computed in Appendix B. After substituting the
expressions for these overlaps, Eq. (B5), into the above ex-
pression, we evaluate the functional integration over q. The
result is

B̂ = κ

π2

∫
|αF 〉 exp

{
−

∫
1

2
|αs (k)|2 − α∗

s (k)βs (k)

+ 1

2
|βs (k)|2 dk

}
〈βG| D[αF ] D[βG], (99)

where κ as an unspecified constant. Comparing this result with
Eq. (36), we see that it is proportional to an identity operator.
Hence,

1

κ

∫
|q〉〈q| D[q] = 1. (100)

A similar procedure gives

1

κ

∫
|p〉〈p| D[p] = 1. (101)

The expressions in Eqs. (100) and (101) imply that the spa-
tiotemporal quadrature bases do indeed obey the completeness
conditions.

VI. DISCUSSION AND OUTLOOK

In our endeavor to find bases that incorporate both particle-
number degrees of freedom and spatiotemporal degrees
of freedom, we have found that the eigenstates of fixed-
momentum quadrature operators satisfy our requirements.
These quadrature bases are complete and orthogonal with
respect to both particle-number degrees of freedom and spa-
tiotemporal degrees of freedom. We refer to these as spa-
tiotemporal quadrature bases, because the term ‘quadrature’
already gives reference to the particle-number degrees of
freedom.

We have derived expressions for the spatiotemporal
quadrature basis elements, both in terms of integrals over
the single-photon momentum basis and in terms of operators
that create these basis elements from the vacuum. The latter
allows us to compute the overlaps among elements of these
bases to show that they give rise to the notion of Dirac delta
functionals, which represent orthogonality conditions for the
bases. Using functional integrals, we have also shown that
the spatiotemporal quadrature bases satisfy the completeness
conditions.

One may get the impression that the spatiotemporal
quadrature bases are very similar to the fixed-spectrum
quadrature bases. The only real difference is the appearance of
|R〉 in the expressions for the spatiotemporal quadrature bases.
Yet, it is quite easy to show that the fixed-spectrum quadrature
basis elements are not able to serve as eigenstates of the fixed-
momentum quadrature operators, according to the eigenvalue
equations in Eq. (66). What is the role of |R〉 that could lead to
such a significant difference between these bases? To demon-
strate the role of |R〉, one can try to expand a spatiotemporal
quadrature basis element in terms of a fixed-spectrum Fock
basis for a spectral function given by the eigenvalue function
q(k) for that element. Such an expansion reproduces only the
equivalent fixed-spectrum quadrature basis element (without
the |R〉), and not the spatiotemporal quadrature basis element
(with the |R〉). Hence, we conclude that the fixed-spectrum
quadrature basis elements are the projections of the spatiotem-
poral quadrature basis elements onto the subspaces associated
with the spectral functions given by q(k). The presence of
|R〉 in the expressions of the spatiotemporal quadrature bases
imply that their elements extend beyond the subspaces defined
by their spectral functions q(k).

With the spatiotemporal quadrature bases in hand, one
can formulate powerful analytical tools to investigate the
evolution of quantum states that incorporate all the degrees
of freedom that photonic states can possess. The idea is to
generalize Wigner functions, which represent the particle-
number degrees of freedom, to the notion of Wigner func-
tionals, which incorporate both the particle-number degrees of
freedom and the spatiotemporal degrees of freedom. Formally,
such a Wigner functional would be defined by a functional
integral,

W [q, p] ≡
∫ 〈

q + x

2

∣∣∣∣ρ̂
∣∣∣∣q − x

2

〉

× exp

[
−i

∫
p(k)x(k)dk

]
D[x], (102)
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based on the spatiotemporal q basis. Such Wigner functionals
would then be able to represent not only quantum states that
depend on all these degrees of freedom, but also operators
that incorporate all these degrees of freedom. As such, the
formalism would be useful for measurements of states with
arbitrary numbers of photons that incorporate spatiotemporal
degrees of freedom [32–37]. One would compute the pre-
dicted outcomes from such measurements with a functional
integral,

〈Â〉 =
∫

WÂ[q, p]Wρ̂[q, p] D[q, p], (103)

where Â represents the Hermitian operator for the measure-
ment.

Apart from the Wigner functionals, one can also con-
sider the generalization of other quasidistributions, such as
the Glauber-Sudarshan P distribution [46,47] or the Husimi
Q distribution [48]. For such cases, one may employ the
fixed-spectrum coherent states, leading to functional integral
expressions. For instance, a density operator would be repre-
sented in terms of the functional P distribution by

ρ̂ =
∫

|αF 〉P [αF ]〈αF | D[αF ]. (104)

These quasidistributions would be related to the Wigner func-
tionals via functional integral expressions.

Such a formalism based on Wigner functionals (or func-
tional quasidistributions) is currently still a work in progress
and is therefore beyond the scope of the current paper. The
hope is eventually to develop a tool that would enable one
to study physical situations in quantum optics where multiple
degrees of freedom are playing significant roles in what is
being observed.

APPENDIX A: COMMUTATION RELATIONS

Here, we derive the commutation relations that are associ-
ated with the operators in Eq. (77). Our starting point is the
commutation relation for â(k) and â†(k), given in Eq. (1).

If [X̂, Ŷ ] = Ẑ, then [Ŷ †, X̂†] = Ẑ†. So, we do not provide
commutation relations that can be obtained directly from
others by performing an adjoint operation.

We group the commutation relations in batches. First, all
annihilation operators commute among themselves:

[âs (k), âQ] = [âs (k), âP ] = [âs (k), âR] = 0,

[âQ, âQ] = [âP , âP ] = [âR, âR] = 0, (A1)

[âQ, âP ] = [âQ, âR] = [âP , âR] = 0.

Unless the relation contains both âQ and âP , as in

[âQ, â
†
P ] = 2

∫
qs (k)ps (k)d̄ sk ≡ 2μ, (A2)

we do not, henceforth, show the commutation relation for
them both since they are the same. In Eq. (A2), μ represents
the inner product between the functions

μ = 〈q, p〉 ≡
∫

qs (k)ps (k) d̄ sk. (A3)

The next batch involves â†(k):

[âQ, â†
s (k)] =

√
2qs (k),

[âP , â†
s (k)] =

√
2ps (k), (A4)

[âR, â†
s (k)] = âs (k).

Then we have relations that include the R operators,

[âR, â
†
Q] = âQ,

(A5)
[âR, â

†
R] = ŝ,

where ŝ is the symmetrized number operator, given in
Eq. (82). It can also be written in normal-ordered form,

ŝ =
∫

â†
s (k)âs (k) d̄ sk + 1

2

∫
δ(0)d̄ sk = n̂ + �, (A6)

where � is a divergent constant. The commutation relations
involving the symmetrized number operator are

[âs (k), ŝ] = âs (k),

[âQ, ŝ] = âQ, (A7)

[âR, ŝ] = 2âR.

APPENDIX B: QUADRATURE REPRESENTATIONS
OF FIXED-SPECTRUM COHERENT STATES

Here, we consider how to expand fixed-spectrum coherent
states in terms of the spatiotemporal quadrature bases. For this
purpose, we employ the eigenstate property of the coherent
states,

âQ|αF 〉 = |αF 〉
√

2〈q, α〉,
(B1)

âR|αF 〉 = |αF 〉 1
2A2,

where

A2 ≡
∫

α2
s (k) d̄ sk. (B2)

Therefore,

〈q|αF 〉 = V0〈vac| exp(âQ − âR )|αF 〉

= V0〈vac|αF 〉 exp

[√
2〈q, α〉 − 1

2
A2

]
. (B3)

If we express αs (k) in its real and imaginary parts,

αs (k) → 1√
2

[qs0(k) + ips0(k)], (B4)

and use Eq. (89), we obtain

〈q|αF 〉 = 2�/2 exp

{
−

∫
1

2
[qs (k) − qs0(k)]2

− ips0(k)

[
qs (k) − 1

2
qs0(k)

]
d̄ sk

}
. (B5)
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