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Particle distinguishability is a significant challenge for quantum technologies, in particular for photonics,
where the Hong-Ou-Mandel (HOM) effect clearly demonstrates it is detrimental to quantum interference. We
take a representation theoretic approach in first quantization, separating particles’ Hilbert spaces into degrees
of freedom that we control and those we do not, yielding a quantum-information-inspired bipartite model
where distinguishability can arise as correlation with an environment carried by the particles themselves. This
makes it clear that the HOM experiment is an instance of a (mixed) state discrimination protocol, which
can be generalized to interferometers that discriminate unambiguously between ideal indistinguishable states
and interesting distinguishable states, leading to bounds on the success probability of an arbitrary HOM
generalization for multiple particles and modes. After setting out the first quantized formalism in detail, we
consider several scenarios and provide a combination of analytical and numerical results for up to nine photons
in nine modes. Although the quantum Fourier transform features prominently, we see that it is suboptimal for
discriminating completely distinguishable states.
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I. INTRODUCTION

Interference lies at the heart of quantum mechanics, and
thus it holds the promise of fundamental advantages over
nonquantum technologies, with far-reaching ramifications in
communication, metrology, simulation, and computation. The
nemesis of quantum interference is distinguishability, with
the Hong-Ou-Mandel (HOM) effect [1] being a prototypical
example. Recent advances in scaling linear optics for univer-
sal quantum computation [2–4], and the race to demonstrate
quantum computational supremacy via analog computations
that sample the scattering amplitudes of multipartite states
[5–13], highlight the need for a thorough understanding
of distinguishability in multimode quantum interference
[14–23].

Rather than the usual second quantized approach, we can
gain insight by bringing quantum information concepts to bear
in first quantization [24–27]. Distinguishability can then be
modeled, for example, as entanglement between controlled
and uncontrolled degrees of freedom of individual particles,
with loss of interference being caused by the decoherence
that results when the uncontrolled Hilbert space is marginal-
ized. This can be formalized by observing that bosonic (and
fermionic) Fock states of two (sets of) degrees of freedom
can have natural Schmidt decompositions, corresponding to
so called unitary-unitary duality in many-body physics [28].

An example of a pertinent idea from quantum information
is state discrimination [29–31]; we start by showing how
this reproduces the well-known HOM distinguishability test
for two particles. In principle, the formalism accommodates
any number of particles and modes, and we show how this
generalizes for multimode quantum interference, taking a
representation theoretic approach (Secs. II and III); this com-

plements a number of generalizations in the literature [32–40].
We set up the state discrimination problem in the linear optical
framework, assuming we have access to passive transforma-
tions (networks of phase shifters and beam splitters) and pro-
jective measurements via photon number counting detectors
(Sec. IV A). This restriction on the allowed measurements
yields a highly nontrivial constraint on the mixed-state dis-
crimination scenario—this problem is what we study here. In
particular, the optimization problem that results is nonlinear,
as is usually the case in multiphoton interferometry [41],
necessitating numerical techniques described in Sec. IV C.

The results are as follows: In Sec. V A, we present two
general upper bounds valid for any photon number when
discriminating (i) a state with a single distinguishable photon
from the completely indistinguishable state and (ii) the com-
pletely distinguishable from the completely indistinguishable
state; in Sec. V B, we show why the HOM test is the only test
of distinguishability for arbitrary states of two photons and
demonstrate the generality of the formalism by considering
three photons in two modes; in Sec. V C, we use a mix of
analytical and numerical techniques to argue the optimality
of a balanced three-mode network (tritter) as a discriminator
for both completely distinguishable and singly distinguishable
states; in Sec. V D 1, we look at discrimination of singly dis-
tinguishable states with higher photon numbers up to N = 9
and show that the quantum Fourier transform (QFT) saturates
the bound, suggesting it is the optimal interferometer for all
N ; and finally, in Sec. V D 2, we look at the discrimination of
completely distinguishable states with higher photon numbers
and give examples of the best-known interferometers up to
N = 8, found by observing a pattern emerging from the op-
timizations. Most of these results are summarized in Table I.
Although it is not surprising that the QFT features heavily,

2469-9926/2018/98(4)/043839(16) 043839-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043839&domain=pdf&date_stamp=2018-10-19
https://doi.org/10.1103/PhysRevA.98.043839


STASJA STANISIC AND PETER S. TURNER PHYSICAL REVIEW A 98, 043839 (2018)

the results show that it is not optimal for discriminating
completely distinguishable states, thus motivating the search
for optimal discriminating networks for other states of inter-
est.

II. MOTIVATION

A. Hong-Ou-Mandel interference

We will use the HOM scenario as an example that sets
out the main features of our distinguishability model and its
relationship to state discrimination. Each HOM photon has
two pertinent degrees of freedom: one is spatial, namely the
interferometer arms, and the other is temporal, namely the
arrival times. We are usually interested in the case where it
is the spatial degree of freedom over which we have control
(via interferometry) and so we call this the system degree
of freedom. We interpret the temporal degree of freedom
as a label—in general, this would include all the particles’
degrees of freedom which we do not control. Since we assume
complete control of the system (including the possibility
of making the system states identical), it is the label that
determines the particles’ distinguishability, via correlations
between the system and label degrees of freedom. In a real
HOM experiment, we are interested in preparing situations
with varying distinguishability, so we do in fact manipulate
the temporal label degree of freedom as well, but for appli-
cations we usually think of the system-label correlations as
having been determined by means beyond our control.

The HOM scenario has two spatial system modes which
we will call “top” and “bottom” (s = ↑,↓), and two photons,
requiring two temporal label modes that we will call “early”
and “late” (l = ←,→). (Note that these symbols will need
to be ordered—we have avoided the obvious choice of s and
l = 1, 2 to reduce confusion with other indices in this section;
in Sec. III A we will revert to integers for the general case.)
Photon creators are written as â

†
sl [42], giving rise to Fock

states, which we can write as arrays where rows correspond to
system modes and columns to label modes. An example of a
completely distinguishable two-photon state is

|ψd〉 = â
†
↑←â

†
↓→|vac〉 =

∣∣∣∣1 0
0 1

〉
, (1)

with an early photon in the top arm and a late one in the
bottom, while

|ψi〉 = â
†
↑←â

†
↓←|vac〉 =

∣∣∣∣1 0
1 0

〉
(2)

corresponds to an indistinguishable state where both photons
are early.

Ideally, an interferometer acts only upon the system, corre-
sponding to a unitary transformation on the two spatial modes

â
†
sl �→

∑
t

â
†
t lUts . (3)

Here U is a 2×2 unitary matrix corresponding to the two-
port interferometer, sometimes called the transfer matrix. We
assume that the interferometer acts trivially upon the label
modes (the photons remain early or late), corresponding to
the 2×2 identity transfer matrix 1l. For a suitable choice of

ordering of the four possible creators, the full 4×4 transfer
matrix acting on all four modes (↑←,↑→,↓←,↓→) is
given by

U ⊗ 1l. (4)

It is tempting to interpret the tensor product in Eq. (4) as that
between the system and the label. A quantum information
theoretic approach to distinguishability would then ignore
(trace out) the label, arriving at reduced states on the system
where all the nontrivial transformations and measurements
occur. However, this matrix acts on the space of operators, not
on the state space which is a tensor product of four system-
label harmonic oscillators in the second quantized model. In
order to trace out the label, we will use a first quantized
description.

Second quantized Fock states can be related to first quan-
tized single-particle states as follows. Viewing each excitation
of the four-mode aggregate as a particle with four available
states (↑←,↑→,↓←,↓→), and recognizing that as bosons
the total state must be symmetric under particle exchange,
we have a one-to-one relationship between the Fock states of
two bosons in four modes and symmetric states of two four-
dimensional particles (qudits, here with d = 4). Applying this
procedure to the indistinguishable state of Eq. (2), we have

|ψi〉 =
∣∣∣∣1 0
1 0

〉
(5)

= Sym(|↑←〉1|↓←〉2) (6)

= 1√
2

(|↑←〉1|↓←〉2 + |↓←〉1|↑←〉2) (7)

= 1√
2

(|↑↓〉S + |↓↑〉S)|←←〉L, (8)

where the subscripts 1 and 2 have been used as (fictitious)
particle labels that get permuted, and we have rearranged the
tensor product structure in the last line to arrive at a state in
the S(ystem) ⊗ L(abel) basis. Similarly, one finds

|ψd〉 =
∣∣∣∣1 0
0 1

〉
(9)

= Sym(|↑←〉1|↓→〉2) (10)

= 1√
2
|↑↓〉S|←→〉L + 1√

2
|↓↑〉S|→←〉L. (11)

We see that Eq. (8) is in a product state (Schmidt rank 1) of
system and label [43], so the label states are uncorrelated to
the system states; learning the label does not allow one to learn
anything about the system, as expected for indistinguishable
particles. Equation (11) is entangled (Schmidt rank 2), with
the system states perfectly correlated to the labels (↑ to ←
and ↓ to →), making the photons completely distinguishable.

It will be useful to rewrite states of both the system and
label according to their permutation symmetry. Schur-Weyl
duality [28,44] ensures that this basis can be chosen to also
have good quantum numbers for the unitary group action of
the interferometer, in this case U(2) [45]. The irreducible
representations (irreps) of U(2) are well known, and for only
two particles Young diagrams provide a compact notation for
the basis states that carry these irreps; they are (for arbitrary,
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ordered single-particle quantum numbers x < y) the symmet-
ric triplet

| x x 〉 = |xx〉, (12)

√
2| x y 〉 = |xy〉 + |yx〉, (13)

| y y 〉 = |yy〉, (14)

and the antisymmetric singlet
√

2
∣∣∣ x

y

〉
= |xy〉 − |yx〉. (15)

We can now rewrite Eqs. (8) and (11) as

|ψi〉 =
∣∣∣∣1 0
1 0

〉
= | ↑ ↓ 〉S|←←〉L, (16)

|ψd〉 =
∣∣∣∣1 0
0 1

〉
= 1√

2
| ↑ ↓ 〉S|←→〉L + 1√

2

∣∣∣ ↑
↓
〉
S

∣∣∣←→〉
L
. (17)

Note that total exchange symmetry is preserved because the
system and label states in the second term of Eq. (17) are
both antisymmetric. We can now see clearly that in this case
the Schur-Weyl bases provide a Schmidt decomposition of the
Fock arrays and that the completely distinguishable state has
nonzero amplitude outside the totally symmetric irrep; we will
discuss the generalization of these features in Sec. III B.

Tracing out the label degree of freedom, we arrive at
the reduced density matrices that describe the state of the
system. Another feature of the Schur-Weyl basis is that
these states will be block diagonal, each block correspond-
ing to an irrep. Thus, ordering our triplet-singlet basis as{
| ↑ ↑ 〉, | ↑ ↓ 〉, | ↓ ↓ 〉,

∣∣∣ ↑
↓
〉}

, we have

ρi = TrL[|ψi〉〈ψi|] =

⎡
⎢⎣

0 0 0
0 1 0
0 0 0

0

⎤
⎥⎦, (18)

ρd = TrL[|ψd〉〈ψd|] = 1

2

⎡
⎢⎣

0 0 0
0 1 0
0 0 0

1

⎤
⎥⎦. (19)

A coincidence count occurs when both the top and bot-
tom modes are occupied, defining the coincidence subspace

spanned by
{
| ↑ ↓ 〉,

∣∣∣ ↑
↓
〉}

. The projector onto this subspace

has matrix representation

M(1,1) =

⎡
⎢⎣

0 0 0
0 1 0
0 0 0

1

⎤
⎥⎦, (20)

where we have used an occupation (one excitation in each of
the two system modes) in the subscript.

The unitary evolution of these input states due to the
interferometer is given by the two-photon representation of
the transfer matrix. Again, in the Schur-Weyl basis this
is block diagonal, specifically a direct sum of the triplet
and singlet matrix representations of U(2). The matrix ele-
ments in the coincidence subspace for an arbitrary two-mode

interferometer with transfer matrix U are

U⊗2 ∼= U ⊕ U =

⎡
⎢⎣

∗ ∗ ∗
∗ perU ∗
∗ ∗ ∗

detU

⎤
⎥⎦, (21)

where per and det are the matrix permanent and determinant
functions, ∗ are matrix elements for events outside the coinci-
dence subspace, and we use ∼= to denote the fact that U ⊗ U

only equals U ⊕ U after the basis change. This can be
confirmed by direct calculation from Eq. (3), or equivalently
by using the Schur-Weyl transformation, which for U(2) is the
familiar Clebsch-Gordan transformation of angular momen-
tum theory.

The probability of a coincidence count is given by the Born
rule, which from Eqs. (18)–(21) is given by

P(1,1) = Tr
[
(U ⊕ U )ρ

(
U ⊕ U

)†
M(1,1)

]
(22)

= Tr
[(

U ρU
† + U ρU

†)
M(1,1)

]
(23)

=
{|perU |2 if ρ = ρi

1
2 |perU |2 + 1

2 |detU |2 = per|U |2 if ρ = ρd
,

(24)

where we have written |U |2 for the elementwise absolute
value squared of a matrix U .

It follows that in order to see no coincidences for an
indistinguishable state, which has only a triplet component,
we need an interferometer whose transfer matrix permanent
vanishes. By parametrizing an arbitrary U ∈ U(2), one can
confirm that only a balanced beam splitter has this property
(see Sec. V B). We also see that the distinguishable state has
a singlet component that scatters through any U according to
the determinant, and since any element of U(2) has |detU | =
1, this component will always give rise to coincidences. Thus,
in a HOM experiment one uses a balanced beam splitter
to see a “dip” in coincidence counts in the system as one
manipulates the label degree of freedom from distinguishable
to indistinguishable and back again.

B. State discrimination

By choosing to measure a coincidence count as well as U

to be a balanced beam splitter, the HOM situation described
above ensures that P(1,1) = 0 when the input is ρi, while P(1,1)

happens to be maximized when the input is ρd (see Sec. V B).
This is reminiscent of what is known as unambiguous mixed-
state discrimination [46].

A general state discrimination protocol [30,31] consists of
two parties, a source (Alice) and a detector (Bob), who agree
on an ensemble of states {pk, ρk} to be discriminated. The
source draws a random sample from this ensemble according
to the distribution {pk} and sends it to the detector, whose
task is to identify which state was sent as best as possible.
This is accomplished by finding a measurement, given by
a set of POVM elements {Ek} that maximize the expected
probability of success:

∑
k pkTr[ρkEk], known as minimum

error discrimination. For unambiguous discrimination (UD),
we have the further constraint that no mistakes are allowed to
be made, that is, Tr[ρkEj ] = 0 for all k �= j , at the price of
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having to add an outcome E? to the POVM that corresponds
to failing to identify the state.

By rearranging Eq. (22) and defining

M(1,1)(U ) = (
U ⊕ U

)†
M(1,1)

(
U ⊕ U

)
, (25)

the HOM measurement scenario described above can now be
summarized by

find U maximizing Tr[ρdM(1,1)(U )] (26)

subject to Tr[ρiM(1,1)(U )] = 0. (27)

That is, find an interferometer that maximizes the probability
of seeing a coincidence for a distinguishable input state,
subject to the constraint that it never gives coincidences for an
indistinguishable input state. It is now clear this is an instance
of an UD problem, with the solution being a balanced beam
splitter in the HOM case.

This gives a direction in which to generalize the HOM
scenario to any number of particles in any number of modes
as a UD problem. A key distinction from general UD is the
restricted form of the available POVM elements, which must
be projective measurements defined by the interferometer U

and the N -photon occupation n being detected. In particular,
we expect that known optimal measurements for two-state
discrimination will not be available in linear optics. When
speaking generally about measurements, we will use the
notation E for POVM elements, while, as above, Mn(U ) is
reserved for photon counts. Because Mn(U ) is a polynomial
of degree N in the variables U and U †, this measurement
restriction makes the UD optimization problem nonlinear.

III. BACKGROUND: MANY PARTICLES AND MODES

From the HOM example [e.g., Eq. (17)], we see that the
symmetry of the system and label states and the correlations
between them play a key role in the distinguishability of
the particles. We therefore proceed with an analysis for any
number of particles and modes using Schur-Weyl duality in
Sec. III A; this applies equally well to any degree of freedom,
in particular it applies to the system and label independently.
In Sec. III B, we then consider bosonic particles with two
degrees of freedom specifically using unitary-unitary dual-
ity [28].

A. Schur-Weyl duality in first quantization

In the first quantized picture of the HOM example above,
each photon was considered as a d-dimensional quantum
system, with d the number of modes available. Schur-Weyl
duality states that the Hilbert space of N qudits can be
decomposed as

(Cd )⊗N ∼=
⊕

λ

C{λ} ⊗ C(λ), (28)

where C{λ} carries irrep λ of the group of unitary transfor-
mations on a qudit, U(d ), C(λ) carries irrep λ of the group
of permutations of qudits, SN , and ∼= signifies that the left-
and right-hand sides are related by a change of basis (a
Schur-Weyl transform). Following Ref. [44], a Schur-Weyl

basis which realizes this decomposition is denoted |λqp〉
where λ labels the irrep of both the unitary and the sym-
metric groups simultaneously [47], q = 1, 2, . . . , d{λ} indexes
a basis of the unitary irrep, and p = 1, 2, . . . , d(λ) indexes
a basis of the symmetric irrep. These dimensions can be
computed, for example, by the Weyl character and hook length
formulas respectively [48]. There is an implied dependence
of q and p on λ, the set of which in turn depends on the
number of particles N and the number of modes d. The irrep
λ = (λ1, λ2, . . . , λd ) can be specified using Young diagrams,
where λj is the number of boxes in row j , λ1 � λ2 � · · · �
λd , and

∑
j λj = N . The indices q and p correspond to the

different ways of filling boxes with the numbers {1, . . . , d}
and {1, . . . , N} to make semistandard (with repetition) and
standard (without repetition) Young tableaux respectively,
where numbers cannot decrease as you move right in a tableau
and must increase as you go down.

We can further refine this notation by observing that the
basis can be chosen such that the representation theoretic
weight of a state corresponds to the occupation n, which has
also been called a type in this context [44]. Subspaces of
states with the same occupation are then invariant under the
Schur-Weyl transform in this basis, and the unitary index q

can be uniquely specified by an occupation n and an inner
multiplicity r (the number of which is also known as a Kostka
number), which accounts for the fact that there can be more
than one orthogonal state with the same weight in a unitary
irrep λ. As we are focusing on the action of the unitary group,
p will be referred to as an outer multiplicity, accounting for
the fact that the same unitary irrep λ can occur more than
once. We can therefore write Schur-Weyl basis states in the
form |λpnr〉, where the irrep dependence of p, n, and r has
again been suppressed to prevent clutter. We will often shorten
the notation such that |λpn〉 := |λ, p, n, r = 1〉, |λnr〉 :=
|λ, p = 1, n, r〉, and |λn〉 := |λ, p = 1, n, r = 1〉, reducing
clutter when the multiplicity is trivial; since λ and n are
vectors while p and r are scalars there should be no ambiguity.
Coincident input or output will be denoted with occupation
number 1 = (1, 1, . . . , 1), with exactly one particle in each
mode (corresponding in first quantization to one qudit in each
basis state).

For small N and d, writing states in terms of Young
tableaux can be more compact, as in the HOM discussion of
the previous section. The shape of a tableau is specified by λ,
which is filled with mode indices specified by n, following
the rules for semistandard tableaux. The inner multiplicity
r corresponds to different semistandard fillings of the same
λ and n, while the outer multiplicity p (corresponding to
different standard fillings with fictitious particle indices) will
be labeled with a subscript. For example, for three photons
(N = 3) in three modes (d = 3), the coincident n = 1 =
(1, 1, 1) subspace for irrep λ = (2, 1) = is spanned by four
states given by p, r ∈ {1, 2}. If we index the modes 1, 2, and
3, the two notations are related as

(29)

(30)
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(31)

(32)

while, e.g., the n = (2, 1, 0) subspace for irrep λ = (2, 1) is
spanned by the two states

(33)

(34)

because the Young tableau 1 2
1 is not semistandard and there-

fore such states do not exist.

1. Implementation of the Schur-Weyl transform

An example of a Schur-Weyl transformation is the triplet-
singlet basis change given in Eqs. (12)–(15), where (when
d = 2) it is the same as the well-known Clebsch-Gordan
transformation. There are several ways to implement this basis
change more generally [49,50]; we use the method described
in Ref. [28], which we will briefly outline here.

Every irrep {λ} of U(d ) can be assigned a highest weight
state, which is annihilated by an appropriate set of raising
operators that are realized in terms of the bosonic creators
and annihilators. Given as a Young tableau, this state can be
expressed in terms of single-particle (qudit) states using Slater
determinants, with the single-particle basis being indexed
from 1 to d. In much the same way as is done for U(2)
in angular momentum theory, we then use corresponding
lowering operators to find a set of states that span the irrep.
The size of this set is known, namely d{λ}. A Gram-Schmidt
procedure is then used to orthonormalize the set (note that
there is freedom in choosing how to do so when there are
multiplicities; see, e.g., Sec. III C 2). Outer multiplicities are
handled by utilizing the dual SN action to permute a highest
weight state in order to find corresponding highest weights
for the multiple copies of irrep {λ}. Again, the number of
such linearly independent highest weight states is known,
namely d(λ), and orthonormalization is required. The lowering
procedure is then repeated until a complete set of λ states
are found. Iterating through all λ then gives a complete set
of states {|λqp〉}, from which we can determine the required
basis transformation. Transformations for different N and d

can be computed once and stored for later use.

B. Unitary-unitary duality

In the HOM example, we saw that each photon had two de-
grees of freedom, the system and the label, and that, as bosons,
first quantized multiphoton states had to be totally symmetric
under particle permutations. Independently decomposing both
the system and label Hilbert spaces according to Schur-Weyl,
one is then led to ask what states of the form∑

λqp

λ′q ′p′

ψ
λqp

λ′q ′p′ |λqp〉S|λ′q ′p′〉L (35)

are totally symmetric? This can be viewed as a coupling
problem for irreps of the symmetric group—we wish to
construct composite states of permutational momentum zero.
The answer turns out much like it does in angular momentum
theory: that λ, p must equal λ′, p′, respectively, and that
the coupling coefficients are all equal and independent of
p [25,51]. Thus, totally symmetric pure system-label states
are of the form ∑

λqq ′
ψλqq ′ |λqq ′〉SL, (36)

where we have defined

|λqq ′〉SL := 1√
d(λ)

d(λ)∑
p=1

|λqp〉S|λq ′p〉L. (37)

These states carry the symmetric irrep of the global unitary
group, U(dSdL), acting on the dSdL modes of the combined
system and label. As discussed above, we can replace q with
pairs n, r in all of these expressions.

Equations (36) and (37) imply a decomposition of the
totally symmetric irrep of U(dSdL) into irreps of its unitary
subgroups U(dS) and U(dL) that act on the system and label
independently. These irreps are labeled simultaneously by λ,
hence “unitary-unitary duality”:

Sym((CdS ⊗ CdL )⊗N ) ∼=
⊕

λ

C{λ}S ⊗ C{λ}L , (38)

where we include subscripts on the right-hand side to remind
us which unitary subgroups the irreps belong to Ref. [52]. An
interferometer U is given by an element of the system unitary
subgroup U(dS), and thus it acts on states in irrep λ according
to the irreducible matrix representation Uλ,

U : |λqq ′〉SL �→
∑
q ′′

|λq ′′q ′〉SLUλ
q ′′q . (39)

Just as with a single degree of freedom, the space of second
quantized dS × dL Fock arrays can be put into one-to-one
correspondence with first quantized totally symmetric states
by the procedure exemplified in Eqs. (5)–(8). Thus, we can
write an arbitrary partially distinguishable state, which is an
element of the totally symmetric subspace of (CdS ⊗ CdL )⊗N ,
in a basis of first quantized states given by Eq. (37). We may
now trace out the label to arrive at mixed states describing
any partially distinguishable state of N photons in dS modes.
We can order the basis so that the reduced system state
and the action of any system interferometer will both be
block diagonal according to irreps λ, a potentially significant
simplification.

C. States of interest

We will focus our attention on three types of N -photon
states: completely indistinguishable, singly distinguishable,
and completely distinguishable, described below (the general
case will be discussed in Sec. VI). We are not considering loss
(where entire qudits would be traced out), so N will be fixed
throughout. Situations with mixed system-label states and/or
partial distinguishability can be written in terms of the basis
of Eq. (36) [53], or equivalently that of Fock arrays. We give
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examples of this generality with partial distinguishability for
two photons in two modes in Sec. V B 1 and of mixed system-
label states for three photons in three modes in Sec. V C 2.
Otherwise, we will restrict ourselves to the case where the
total system-label state is pure, corresponding to a source that
produces states that are always (in)distinguishable in exactly
the same way; generalization is, in principle, straightforward.

In practice, the space of label states available to a photon
is as large as that of the uncontrolled degrees of freedom; in
general, it is infinite dimensional many times over. However,
in any given N particle experiment with N fixed, in order
to model the distinguishability we need only consider the
subspace spanned by the label states, which can be at most
N dimensional. In other words, the most distinguishable N

photons can be is for each of the N labels to be in an
orthogonal state, and so we consider only dL � N .

In order to set dS, consider first two photons that are in
the same system mode. In first quantization, this means each
photon is in the same system state, implying the two-photon
system state is symmetric, and so in order to maintain total
symmetry—or by unitary-unitary duality—the state of the
label must also be symmetric; cf. Eq. (8). This means that
states in the antisymmetric irrep are not available and so
restricts the combined state to a subspace of those allowed
in Eq. (36). This argument extends to any number of photons,
where the situation corresponds to any Fock array that is not
full rank N . Thus in order to consider the full set of states
available and arbitrary distinguishability, we must have input
states that have a single photon in each system mode, i.e.,
dS � N . Unless indicated otherwise, we will consider the case
with dS = dL = N ; following common terminology, we will
say the photons are (system) coincident, and we will call the
space of such system-label states the coincident subspace.
The reader may wish to refer ahead to Sec. V C for concrete
examples of the following.

1. Completely indistinguishable states

A completely indistinguishable state is one in which every
photon’s label state is the same. As mentioned above, such
a state lies in the symmetric label subspace with λ = (N ).
Since the symmetric irrep of SN is one dimensional, d(N ) = 1,
and Schur-Weyl duality tells us that the corresponding unitary
irrep is always outer multiplicity free. Moreover, (N ) is also
inner multiplicity free (there is only one way to symmetrize a
product of single-particle states), so we can replace q with the
system occupation 1 and q ′ with the label occupation (N, 0)
(ordering our label modes such that the occupied one is first
and with the understanding that the list of zeros is as long as
it needs to be, in this case N − 1). The total state in Eq. (37)
therefore becomes

â
†
11â

†
21 · · · â†

N1|vac〉 =

∣∣∣∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0
...

. . .
1 0 · · · 0

!

(40)

= Sym(|11〉|21〉 · · · |N1〉) (41)

= |(N ), 1〉S|(N ), (N, 0)〉L, (42)

where we have included N − 1 redundant zero columns in the
Fock array so we can easily compare with the other states in
this section. In the second line, we have written the state in
the single-particle basis, cf. Eqs. (6) and (10), and we have
suppressed trivial multiplicities in the last line. We see that
this is always a product state, with no correlation between the
system and label, as expected for completely indistinguishable
particles. The reduced system state is

ρi = TrL[|(N ), 1〉|(N ), (N, 0)〉〈(N ), 1|〈(N ), (N, 0)|] (43)

= |(N ), 1〉〈(N ), 1|, (44)

supported on the one-dimensional intersection of the sym-
metric system subspace given by (N ) with the coincident
subspace defined by the system occupation number 1.

2. Singly distinguishable states

The next state we consider is one where a single photon
has become distinguishable from the rest; assuming all efforts
are being made to produce the completely indistinguishable
state, this should be the most likely error to occur. Ordering
our modes so that the “bad” photon is in system mode N and
label mode 2, we have

â
†
11â

†
21 · · · â†

N2|vac〉 =

∣∣∣∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0
...

. . .
0 1 · · · 0

!

(45)

= Sym(|11〉|21〉 · · · |N2〉), (46)

where in the last line we have not yet performed the Schur-
Weyl transform. Considering this symmetrization, one ob-
serves that although all N ! permutations of the N distinct
system indices will occur, since only two distinct label modes
are involved, there are only N single-particle states available
to the label degree of freedom, namely those with the j th
photon in label mode 2 and the rest in label mode 1; de-
note these states |2j 〉L. Such a label state will be perfectly
correlated to all system states with the j th photon in mode
N ; for each j we can factor these (N − 1)! system states
off and denote the resulting normalized state |Nj 〉S. Thus, in
the system-label basis, the singly distinguishable state can be
written as

Sym(|11〉|21〉 · · · |N2〉) = 1√
N

N∑
j=1

|Nj 〉S|2j 〉L, (47)

e.g., Eq. (11). These sets of states are orthonormal, and we
recognize this as an entangled state with Schmidt coefficients
1/

√
N .

Now consider Schur-Weyl transforming this state into the
form of Eq. (36). Because there are only two distinct label
modes involved, the only label irreps that can occur are those
whose Young diagrams have two or fewer rows. Moreover,
because only a single photon is “bad,” the only two-rowed
diagram allowed is that with a single box in the second
row. Thus, the label state is supported only by irreps λ =
(N ) and (N − 1, 1). By unitary-unitary duality, the system
is therefore also supported only on these two irreps. The
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totally symmetric irrep (N ) is always both inner and outer
multiplicity free; for irrep (N − 1, 1), the outer multiplicity
is d((N−1,1)) = N − 1. It remains only to work out the inner
multiplicities for irrep (N − 1, 1). The system and label have
occupations 1 and (N − 1, 1, 0) respectively (the marginals
of the Fock array). There is only one Young tableau of shape
(N − 1, 1) consistent with occupation (N − 1, 1, 0) (that with
the 2 in the second row box), so the label states are inner
multiplicity free. The system occupation 1 is consistent with
N − 1 Young tableau of shape (N − 1, 1) (all those without a
1 in the second row box), and so the system inner multiplicity
is N − 1. When we insert these observations into Eq. (36), the
Schur-Weyl transformed state is

ψ(N ),1,1,(N−1,1,0),1|(N ), 1, 1, 1〉S|(N ), 1, (N − 1, 1, 0), 1〉L

+
N−1∑
r=1

ψ(N−1,1),1,r,(N−1,1,0),1√
N − 1

N−1∑
p=1

|(N − 1, 1), p, 1, r〉S

× |(N − 1, 1), p, (N − 1, 1, 0), 1〉L. (48)

We can factor the second term and redefine coefficients to
yield another Schmidt decomposition:

ψ(N )|(N ), 1, 1, 1〉S|(N ), 1, (N − 1, 1, 0), 1〉L

+ ψ(N−1,1)√
N − 1

N−1∑
p=1

(
N−1∑
r=1

φr |(N − 1, 1), p, 1, r〉S

)

× |(N − 1, 1), p, (N − 1, 1, 0), 1〉L. (49)

Because the Schur-Weyl transformations yielding Eq. (37) are
performed independently, the system-label entanglement can-
not be changed. From Eq. (47), we know that the Schmidt co-
efficients are all 1/

√
N , so we must have ψ(N ) = 1/

√
N and

ψ(N−1,1) = √
(N − 1)/N . The amplitudes φr do not affect

this entanglement at all—they depend on how one chooses
to orthonormalize multiplicities in the Schur-Weyl transform
and encode the fact that we chose the “bad” photon to be in
system mode N . We can always choose r = 1 to correspond
to this specific situation, and then use the subgroup of U(dS)
that permutes system modes to find the states corresponding
to the “bad” photon being in any other mode.

Making this choice and tracing out the label in Eq. (49)
yields the singly distinguishable reduced state (now suppress-
ing trivial multiplicities)

ρs = 1

N
|(N ), 1〉〈(N ), 1|

+ 1

N

N−1∑
p=1

|(N − 1, 1), p, 1, 1〉〈(N − 1, 1), p, 1, 1|.

(50)

We see that this is mixed over N dimensions of the coincident
subspace, overlapping the symmetric and almost symmetric
(N − 1, 1) irreps.

3. Completely distinguishable states

A completely distinguishable state has each particle in a
distinct label mode, paired with a unique system mode. We

can choose to order the modes such that the corresponding
Fock array is diagonal; cf. Eq. (1). Generalizing the sym-
metrization procedure of Eqs. (5)–(8) to N particles, one finds
that all N ! possible terms will occur in the single-particle
picture, and they will each occur once. The unique pairing of
system and label modes manifests as maximal entanglement
between the system and label single-particle states in the
coincident subspace. As above, because the Schur-Weyl trans-
formations yielding Eq. (37) are performed independently, the
system-label entanglement is preserved. This means that the
transformed state must also be maximally entangled with the
same Schmidt rank. Thus,

â
†
11â

†
22 · · · â†

NN |vac〉 =

∣∣∣∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0
...

. . .
0 0 · · · 1

!

(51)

= Sym(|11〉|22〉 · · · |NN〉) (52)

= 1√
N !

∑
λpr

|λ, p, 1, r〉S|λ, p, 1, r〉L,

(53)

with the sum running over all allowed values of irrep, outer,
and inner multiplicities. The completely distinguishable re-
duced system state is therefore

ρd = 1

N !

∑
λpr

|λ, p, 1, r〉〈λ, p, 1, r| (54)

= 1

N !
|(N ), 1〉〈(N ), 1|

+ 1

N !

∑
λ �=(N ),p,r

|λ, p, 1, r〉〈λ, p, 1, r|, (55)

which is completely mixed over the N !-dimensional coinci-
dent subspace.

D. Unitary parametrization

The unitary subgroup U(dS) corresponds to the set of inter-
ferometers that act on the system modes. We can parametrize
these unitaries with what is known as a Reck scheme in
optics [54,55], decomposing an arbitrary U into a sequence
of single-mode unitaries (phase shifters) and unitaries that act
on neighboring modes (beam splitters). As shown in Fig. 1,
such a scheme can be viewed as ds − 1 layers, indexed by k,
each with k phase shifters and beam splitters, followed by a
final phase shift on each mode. Because we are only interested
in number state inputs and number counting measurements,
only the phase shifters between beam splitters play a role.
Hereafter, when we refer to U , we will therefore be referring
to this smaller interferometer, without the initial and final sets
of phase shifters.

E. Measurements

We will assume that we have access to photon num-
ber resolving detectors for the system (see Sec. VI for a
discussion of a relaxation). The measurement POVM ele-
ments are projections on all states with photon occupation n,
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FIG. 1. Example of a Reck scheme parametrizing an arbitrary
unitary transformation on four modes (dS = 4), grouped into layers
Tk . Each one-mode (phase shifter) and two-mode (beam splitter)
subtransformation contributes one real parameter. Only the phase
shifters situated between beam splitters (ω1,3, ω2,2, ω2,3) contribute
to our problem.

Mn = ∑
λpr |λpnr〉〈λpnr|. Note that this includes projections

onto system states that are not symmetric; as shown in
Eq. (17), distinguishable states can contain nonsymmetric sys-
tem components that still give rise to clicks. Comparing with
Eq. (54), we see that M1 = N ! ρd—that is, up to normaliza-
tion, a coincidence count is a projection onto the completely
distinguishable state. As discussed above, we will usually
include the interferometer in our definition of a measurement,
yielding parametrized POVM elements

Mn(U ) = (⊕λU
λ ⊗ 1lλ)†Mn(⊕λ′Uλ′ ⊗ 1lλ

′
), (56)

where 1lλ corresponds to the irrep of the identity permutation
in accordance with Eq. (28), [note that we omit this when it is
only one dimensional, e.g., Eq. (21)].

IV. DISCRIMINATION OF DISTINGUISHABLE
STATES

We will be interested in two problems: Discriminating the
completely indistinguishable state, ρi, from the distinguish-
able states (i) ρs and (ii) ρd. From Eqs. (44), (50), and (55),
we observe that each of these states is of the form

ρ = αρi + (1 − α)ρī, α �= 0, (57)

where ρi is pure and ρī is diagonal in the Schur-Weyl ba-
sis with support outside the symmetric subspace λ = (N ).
From well-known results for the discrimination of two mixed
states [56], the fact that ρi lies within the support of the
mixed state to be discriminated means that the optimal mea-
surement is essentially the same for either minimum error or
unambiguous discrimination; one wishes to project onto the
support of ρī . In particular for UD, the error-free constraint
means that we are forced to set Ei = 0, and thus the prior
probabilities do not affect the optimal choice of measure-
ment operators. This reflects the fact that there is no way to
unambiguously discriminate the indistinguishable state ρi—
we can either conclude that the state was distinguishable by
observing an output that is completely suppressed by quantum
interference or fail to conclude anything at all. Our task is
therefore to minimize the probability of failure E? = 1l −
Es,d, equivalently maximizing the probability of unambigu-
ously detecting a singly or completely distinguishable state,
respectively.

If our measurements are unrestricted, the best choice of
POVM is to project onto the nonsymmetric subspace. This

choice is suitable for not only the states ρs,d but by extension
any state to be discriminated from ρi. However, as mentioned
in Sec. III E, in practice we only have access to number
counting measurements—we will therefore want to approx-
imate this projection as best possible. The approximation will
be sensitive to the state we are discriminating: for example,
Eqs. (50) and (55) show that ρs can be optimally discriminated
by projecting onto only the (N − 1, 1) irrep, while for ρd

one wants to project on to all of the nonsymmetric irreps. As
we will see, this can lead to different interferometers being
optimal for discriminating different distinguishable states.

A. Restriction to linear optical measurements

In order to discriminate distinguishability in linear optics,
we wish to find the best we can do with the measurements
we have, namely those in Eq. (56). In the HOM case, the UD
problem described by Eqs. (26) and (27) involves only a single
occupation POVM element, the coincidence count Mn(U )
with n = (1, 1). There are many ways we can approach the
generalization of the HOM case. One way would be, given
a specific occupation n, to find U maximizing Tr [ρMn(U )]
subject to Tr [ρiMn(U )] = 0. Notice that any n that can be
made to satisfy Tr [ρiMn(U )] = 0 for a suitable U is an
unambiguous discriminator, but a single n is not necessarily
the optimal choice. In general, it is possible for multiple
occupations to satisfy the UD constraint simultaneously, each
contributing to the probability of success.

We therefore consider a different optimization, where we
wish to find the subset of all discriminating occupations, call
it D, that optimizes the success probability simultaneously,
for the same choice of U :

find U and D maximizing
∑
n∈D

Tr[ρMn(U )] (58)

subject to, for all n ∈ D, Tr[ρiMn(U )] = 0. (59)

Note that the quantity we are maximizing gives us the total
probability of successful discrimination, which is the sum
over all the unambiguously discriminating events in the set
of occupations D.

While the former choice of optimization focuses on giving
an optimal interferometer for discrimination given a specific
measurement occupation, the latter optimization focuses on
the highest probability of discrimination across all measure-
ment patterns. In general, we find that these two problems
give different optimal interferometers; here we will focus on
the latter optimization over both U and D; see Sec. VI for a
discussion of a variation of the problem.

B. Scattering probabilities

Let us look at what the probability of a specific measure-
ment pattern n being detected at the output of an arbitrary
interferometer U is for the states of interest, starting with the
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completely distinguishable state. From Eqs. (55) and (56),

Tr
[
ρdMn(U )

] = Tr

⎡
⎣
⎛
⎝ 1

N !

∑
λ,p,r

|λ, p, 1, r〉〈λ, p, 1, r|
⎞
⎠(⊕μUμ ⊗ 1lμ

)†⎛⎝ ∑
λ′,p′,r ′

|λ′, p′, n, r ′〉〈λ′, p′, n, r ′|
⎞
⎠(⊕μ′Uμ′ ⊗ 1lμ

′)⎤⎦
= 1

N !

∑
λ,p,r,r ′

Tr[|λ, p, n, r ′〉〈λ, p, n, r ′|(Uλ ⊗ 1lλ)|λ, p, 1, r〉〈λ, p, 1, r|(Uλ ⊗ 1lλ)†]

= 1

N !

∑
λ,p,r,r ′

|〈λ, p, n, r|Uλ ⊗ 1lλ|λ, p, 1, r ′〉|2

= 1

N !

∑
λ,r,r ′

d(λ)|〈λ, n, r|Uλ|λ, 1, r ′〉|2, (60)

where in the last line we have used the fact that outer multi-
plicities p give rise to identical copies of unitary irreps to write
the probability in terms of irreducible unitary matrix elements.
When r = r ′ = 1, these matrix elements are immanants [57]
of a matrix U

n

1 whose rows and columns are determined by
the input and output occupations of the interferometer given
by U [58,59]. Moreover, the completely distinguishable case
can be interpreted as independent classical particles evolving
stochastically [60], leading to the remarkable fact that the sum
in Eq. (60) can always be written in terms of the permanent of
the matrix given by the elementwise square amplitudes of U

n

1 ,

cf. Eq. (24) and note that U
1
1 = U .

The calculation for the singly distinguishable and com-
pletely indistinguishable state is the same as Eq. (60), only
with fewer irreps occurring. If we recall from Sec. III C 2 that
d((N−1,1)) = N − 1, Eq. (50) gives

Tr[ρsMn(U )] = 1

N
|〈(N ), n|U (N )|(N ), 1〉|2

+ N − 1

N

∑
r

|〈(N − 1, 1), n, r|

× U (N−1,1)|(N − 1, 1), 1, 1〉|2, (61)

where the sum is over all r consistent with n, and Eq. (44)
gives

Tr[ρiMn(U )] = |〈(N ), n|U (N )|(N ), 1〉|2, (62)

where as mentioned above these matrix elements are express-
ible in terms of perUn

1 [61].
We observe that not all occupations are useful for unam-

biguous discrimination. Measurements where all the photons
are bunched into a single mode only occur in the sym-
metric irrep; that is, if n = (0, .., 0, N, 0, ..., 0), then Mn =
|(N ), 1, n, 1〉〈(N ), 1, n, 1|. In this case, Eqs. (60) and (61)
are proportional to Eq. (62), and since Eq. (59) has to be
satisfied, they will always give zero. Completely bunched
events can therefore never help unambiguously discriminate
the indistinguishable state, and we will exclude such events
from our searches.

C. Numerical optimization approach

In the Results section, there is a mixture of analytical
and numerical results. To construct the cost function for our

numerical work, we took into consideration the following
criteria: The measurement operator Mn can only be included
in the optimization if Eq. (59) is satisfied; when this is the
case, it is added to a sum being optimized as per Eq. (58). The
cost function chosen was

C(U ) = −
∑

n

exp(−ξ Tr[ρiMn(U )]) Tr[ρMn(U )], (63)

where ξ is adjusted (usually depending on the choice of N ,
and ranging from 2 to 60) to penalize results where Mn

might be added to Eq. (58) and optimized without satisfy-
ing Eq. (59). A high penalty ξ guarantees that the value
of Tr [ρiMn(U )] is close to zero before Tr [ρMn(U )] is
optimized and added to the sum. Combining this with the
Eqs. (60) and (61), we have

Cd(U ) = −1

N !

∑
λ �=(N )

d(λ)

∑
n

e−ξ |〈(N ),n|U (N )|(N ),1〉|2

×
∑
r,r ′

|〈λ, n, r|Uλ|λ, 1, r ′〉|2, (64)

Cs(U ) = 1 − N

N

∑
n,r

e−ξ |〈(N ),n|U (N )|(N ),1〉|2 |〈(N − 1, 1), n, r|

× U (N−1,1)|(N − 1, 1), 1〉|2. (65)

PYTHON was used to optimize these functions with the
Scipy library function BASINHOPPING using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) as the optimization algorithm. The
seeds were generated using Numpy random number genera-
tion. Though this optimization function will help us explore
the space, it neither guarantees that minimum is global nor
exactly solves the original optimization problem. This will
be problematic with minima that are close together, as, for
example, exp (−ξ Tr [ρiMn(U )]) gets closer to 1 for values of
Tr [ρiMn(U )] that are close to 0. In some situations, this value
can be quite high combined with a high value of Tr [ρMn(U )],
skewing the results toward a possible nonoptimal solution for
the original problem. We could avoid this by choosing an ap-
propriately high ξ as a function of the number of occupations(
N+dS−1

N

)
; however, if too high, exp (−ξ Tr [ρiMn(U )]) will

behave like a step function, which does not reward transitional
values enough. Therefore, we do not make any strong claims
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of optimality for the interferometers found numerically when
they do not saturate the general bounds presented in Sec. V A.

V. RESULTS

A. General bounds

Recall from Sec. IV A the best possible unrestricted dis-
crimination measurement is to project onto the nonsymmetric
subspace, E(N ) = ∑

λ �=(N ),p,n,r |λpnr〉〈λpnr|. Such a POVM
element would be equally good for both singly and completely
distinguishable states, and indeed any distinguishable state
of the form in Eq. (57). The success probability of such a
measurement is given by

Tr[ρ(⊕λU
λ ⊗ 1lλ)†E(N )(⊕λU

λ ⊗ 1lλ)]

= Tr[(αρi + (1 − α)ρī )E(N )]

= 1 − α

=
{

1 − 1
N

if ρ = ρs

1 − 1
N! if ρ = ρd

, (66)

where we have used the fact that any projector onto irreps is
unitarily invariant. These then are universal upper bounds on
the success probability for singly and completely distinguish-
able states, respectively. However, since we are restricted to
photon number counting measurements, we will see that while
the first bound is achievable, the second is not, in general. We
will go through various examples in detail in the following
sections.

B. Two modes

1. Two photons in two modes

In the case of two photons in two modes, the states to be
discriminated are, from Eqs. (44), (50), and (55),

ρi = | 1 2 〉〈 1 2 |, and (67)

ρs = ρd = 1
2 | 1 2 〉〈 1 2 | + 1

2

∣∣∣ 1
2

〉〈
1
2

∣∣∣. (68)

Observing that there is only one available state which is not
symmetric, it is easy to write down an arbitrary partially
distinguishable system state in this case, since there is but one
parameter:

ρ = α| 1 2 〉〈 1 2 | + (1 − α)
∣∣∣ 1

2

〉〈
1
2

∣∣∣. (69)

As discussed in Sec. IV B, only occupations that do not
have all the photons bunched in the same mode can be used
for meaningful discrimination, in this case leaving only one
choice of projector, the coincidence M(1,1) = | 1 2 〉〈 1 2 | +∣∣∣ 1

2

〉〈
1
2

∣∣∣.
In our discussion in Sec. II, we claimed that the optimal

discriminator is given by a coincidence count and a balanced
beam splitter; we can now prove this assertion. First, note
that since there is only one antisymmetric state, the anti-
symmetric irreducible representation of any U has but one
matrix element and so the action of any interferometer on this
state is trivial [in Eq. (21) given by its determinant]. Thus,
the only contribution to the nonsymmetric part of Eq. (60)

is
∣∣∣〈 1

2

∣∣∣U ∣∣∣ 1
2

〉∣∣∣ = 1, and there is nothing to maximize in

Eq. (58). All that is left is to satisfy the constraint, Eq. (59).
Parametrizing U as[

eiφ cos θ eiϕ sin θ

−e−i ϕ sin θ e−i φ cos θ

]
, (70)

one finds that the constraint is then perU = cos2 θ − sin2 θ =
cos 2θ = 0, with the family of solutions {(φ, ϕ, π/4)| 0 �
φ � π, 0 � ϕ � π}. The solutions do not depend on the
phases φ or ϕ, as we would expect from the discussion
in Sec. III D, but only on the choice of the beam-splitter
reflectivity, which is balanced as claimed.

We see that not only does unambiguous discrimination
return the HOM measurement as was discussed in Sec. II A, it
is optimal for an arbitrary partially distinguishable two-photon
state.

2. Three photons in two modes

As an example of the utility of the formalism, in this sub-
section we will make a slight digression and consider the sim-
plest nontrivial case with N (= 3) > dS(= 2). As mentioned
in Sec. III C, this restricts the kinds of distinguishable states
that can occur; we consider situations with two photons in one
system mode and the third in the other. The indistinguishable
state is â

†
11â

†
11â

†
21|vac〉 = ∣∣2

1

〉
, with reduced state

ρi = | 1 1 2 〉〈 1 1 2 |. (71)

There are essentially two types of distinguishable state in

this situation. The first is â
†
11â

†
11â

†
22|vac〉 = |2 0

0 1〉, and the sec-

ond is â
†
11â

†
12â

†
21|vac〉 = |1 1

1 0〉. Other states are equivalent to

the above for the reasons discussed in Sec. III C 2. Further,
the (now incompletely) distinguishable state â

†
11â

†
12â

†
23|vac〉 =

|1 1 0
0 0 1〉 has a reduced state that is the same as Eq. (72), and

will therefore have the same discrimination measurement and
success probability. The reduced state for the first case is

(72)

while that for the second case is

(73)

Note that Eq. (58) does not depend on the amplitude of the
symmetric part of the state—its contribution has to be zero by
Eq. (59). It only depends on the nonsymmetric components,
and since ρs1 and ρs2 are equally weighted across the available
nonsymmetric states, the optimal discriminator will be the
same. However ρs2 does have half of the amplitude of ρs1 in
this subspace, which will halve the success probability.

There are four possible occupations to measure; how-
ever, as mentioned in Sec. IV B, the bunched ones can
be disregarded and the optimization carried out on M(2,1)
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and M(1,2). We parametrize U again as in Eq. (70).
For M(2,1), Eq. (59) reduces to |〈 1 1 2 |U | 1 1 2 〉| =
|(cos θ + 3 cos 3θ )/4| = 0. Since 0 � θ � π , this equation is
true for θ ∈ {π/2, arccos (

√
2/3), arccos (−√

2/3)}. On the
other hand, Eq. (59) for M(1,2) is |〈 1 2 2 |U | 1 1 2 〉| =
|(sin θ − 3 cos 3θ )/4|. This equation cannot be zero for the
above choice of angles that ensure |〈 1 1 2 |U | 1 1 2 〉| =
0. Thus, only one of the outcomes can be used to
discriminate these states; without loss of generality, we
choose to optimize for M(2,1). In this case, we want

to maximize Tr [ρs1M(2,1)(U )] = =
2 cos2 θ/3. When θ = π/2, we get success probability of 0.
When θ = ± arccos (

√
2/3), we get success probability of

4/9. Thus, an optimal discriminating interferometer is U =
[
√

2 1
−1

√
2
]/

√
3, with success probabilities 4/9 for ρs1 and 2/9

for ρs2 .

C. Three modes

From now on, we will only consider coincident input
with N = dS. For three photons in three system modes, the
completely indistinguishable reduced state is from Eq. (44),

ρi = |(3), 1〉〈(3), 1| = | 1 2 3 〉 〈 1 2 3 |. (74)

There are now three different singly distinguishable states,
depending on which system mode the bad photon is in. In
the Schur-Weyl basis (see Sec. III A 1), their full system-label
states, as per the discussion in Sec. III C 2, are

(75)

(76)

(77)

While for completely distinguishable states permuting system
modes has no effect on the reduced state, here the reduced
states will not be invariant. However, because permutations
of system modes lie inside the set of allowed operations [that
is, SdS ⊂ U(dS)], if we optimize for one of these states, the

resulting interferometer will be easily related to the others by
including some mode swapping. Therefore, we can focus on
one of these states and the success probabilities that we find
will be the same for the other two; Eq. (75) has the reduced
state [cf. Eq. (50)]

(78)

It is also natural to ask about discrimination of mixtures of the
three states in Eqs. (75), (76), and (77); we will discuss this in
Sec. V C 2.

The completely distinguishable state corresponding to

â
†
11â

†
22â

†
33|vac〉 =

∣∣∣1 0 0
0 1 0
0 0 1

〉
per Eq. (55) is

(79)

For the following, let us define two sets of measurement
operators: Those with two photons in one mode,
M(2,1,0) = ∑

λ �= ,p
|λ, p, (2, 1, 0)〉〈λ, p, (2, 1, 0)|, M(2,0,1),

M(1,0,2), M(1,2,0), M(0,1,2), and M(0,2,1), which we denote
M2, and those with each photon in a different mode, that is,
M1 � M(1,1,1) = ∑

λ,p,r |λ, p, 1, r〉〈λ, p, 1, r|. As discussed
in Sec. IV B, the measurements M(3,0,0) = | 1 1 1 〉〈 1 1 1 |,
M(0,3,0), and M(0,0,3) will not be helpful for discrimination.

1. Discriminating singly distinguishable states

Let ρλ denote the (un-normalized) part of a state supported
on the subspace of irrep λ. Notice that ρs has no support in the

antisymmetric subspace, so that
∑

n Tr [ρs Mn(U )] = 2/3

and
∑

n Tr [ρs Mn(U )] = 0. This means that for any subset
of occupations D and any U for which Eq. (59) holds, the
success probability will be bounded by 2/3. It is well known
how to saturate this; use a balanced tritter, U = QFT3, and all
the occupations from M2, where QFTN is defined as

QFTN = 1√
N

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 ω1 · · · ωN−1

...
...

...
1 ωN−1 · · · ω(N−1)(N−1)

⎤
⎥⎥⎥⎦ (80)

and ω = exp 2πi
N

. A parametrization that realizes a balanced
tritter is given in Fig. 2.

2. Discriminating mixed singly distinguishable states

A short digression regarding mixed system-label states:
If we were (uniformly) ignorant about which mode the bad
photon was in, we would have an equal mixture of Eqs. (75),
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FIG. 2. The best-known interferometer for discriminating com-
pletely indistinguishable from distinguishable states of three photons
in three modes is QFT3, with a success probability of 2/3. Up
to phases, it consists of two balanced beam splitters, one 2 : 1
beamsplitter, and one π/2 phase shifter.

(76), and (77). The resulting mixed state is

(81)

The overlap
∑

n Tr [ρsmMn(U )] = 2/3 for M2 again satu-
rates the bound, and a balanced tritter remains the best choice
of interferometer. This can be seen from the symmetry of
the QFT which treats a bad photon in any mode essentially
the same way and so should be true for analogous singly
distinguishable mixed states for all N ; however, we will not
discuss mixed system-label states further here.

3. Discriminating completely distinguishable states

Using the cost function from Eq. (64) and a range of
penalties ξ ∈ {2, 4, 6, 8, 10}, we find that the highest success
probability in the completely distinguishable case is 2/3. The
measurement operators are always the full set M2 with a
balanced tritter as a solution, just as in the previous section.
However, this does not saturate the bound in Sec. V A, which
is 5/6 in the case of three photons. To investigate this further,
we try to understand the structure of the state a bit better and
use numerical evidence to show that a balanced tritter is likely
to be optimal.

From Eq. (79), we have
∑

n Tr (ρd Mn(U )) = 2/3 and∑
n Tr (ρd Mn(U )) = 1/6, so that

∑
n Tr (ρd Mn(U )) =

5/6, which is the discrimination bound. Notice that oper-
ators from M2 do not have support on the antisymmetric
subspace. Therefore, if we only pick operators from M2

as the discriminating operators and assume they can si-
multaneously satisfy Eq. (59), then

∑
n∈M2

Tr (ρdMn(U )) =∑
n∈M2

Tr (ρd Mn(U )) � 2/3. This is exactly what happens
for the interferometers from our optimization.

This tells us that if we want the success probability to
be larger than 2/3, the only operator left, M(1,1,1), would
have to be included. Our numerical results show that, on the
contrary, it is unlikely for any D that includes M(1,1,1) to give
a success probability over 1/2. We do this with a new cost
function, much like Eq. (64) but modified to force M(1,1,1) to
be included:

Cd,111(U ) = η Tr(ρiM(1,1,1)(U )) + Cd(U ), (82)

where η is a penalty to ensure Eq. (59) for M(1,1,1) has to be
satisfied and Cd(U ) is as defined in Eq. (63). This penalty is

set to η = 10, making the first term an order of magnitude
higher than the second term of Eq. (82), where we took
ξ = 6. As we learned in Sec. III D, we can ignore the outside
phase shifters of the standard Reck parametrization; therefore,
we are only optimizing over four parameters, θ2,1, θ2,2, θ1,2,
and ω1,2. The lowest value of the cost function found by
the optimization techniques in Sec. IV C is −0.500426. This
corresponds to a success probability of 0.5 in discriminating
between the two states, which is lower than the 2/3 achievable
when M(1,1,1) is not included.

While this does not give us definitive proof that no scheme
that includes a threefold coincidence can give success proba-
bility higher than 2/3, it does strongly indicate that this should
be true. Moreover, with the same optimization functions
we investigated how many of the other operators alongside
M(1,1,1) we can pick at the same time, and it seems that the best
we can do is to have four from M2 satisfy Eq. (59) simulta-
neously. However, in all the situations when this occurs, some
of the terms in Eq. (58) are zero; thus, the success probability
remains at 1/2, which can be achieved using just M(1,1,1) and
a balanced beam splitter.

The balanced tritter uses all the measurement operators
from M2, with each contributing 1/9 to achieve the success
probability 2/3. To draw attention to the difference between
optimizing a single operator and multiple operators at once,
mentioned in Sec. IV A, we notice that optimizing for
one operator from the set M2 yields a success probability
higher than 1/9 (for some other choice of U ). Taking
this further, we can search numerically for the single best
outcome, with a cost function similar to that of Eq. (64),
except we now focus only on a single n, that is C(n,U ) =
−2

∑
λ,r,r ′ exp (−ξ |〈(3), n|U |(3), 1〉|2)|〈λ, n, r ′|U |λ, 1, r〉|2.

We find M(1,1,1) is a clear winner with a total success
probability of 1/2, achievable by a balanced beam splitter as
mentioned above. All of the other operators by themselves
only ever give an optimized success probability of 1/8. Notice
that 6×1/8 = 3/4 > 2/3, showing that the strategy that gives
us the best success chance with a single operator from M2

can not be achieved simultaneously by all six of them.

D. Four and more modes

1. Discriminating singly distinguishable states

Using the numerical optimization described in Sec. IV C,
we also examined the discrimination of singly distinguishable
states for N = 4 and 5 photons. Together with the results for
N = 2 and 3, we see the optimization return interferometers
equivalent to QFTN , each giving a success probability 1 −
1/N , saturating the bound in Sec. V A. We have confirmed
this behavior by direct calculation up to N = 9.

2. Discriminating completely distinguishable states

Numerical optimization for the N = 4 and 5 photon com-
pletely distinguishable states yields success probabilities of
19/24 and 31/36, respectively. Both of these are less than the
general bounds of Sec. V A (23/24 and 35/36, respectively),
and so we cannot conclude they are optimal. We observe
that they do both exceed the singly distinguishable bound
of 1 − 1/N , consistent with the intuition that it is easier to
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TABLE I. The best known interferometers for discrimination of the singly and completely distinguishable states of N = 2 to 8 photons
in N modes. For N = 2 and 3 the quantum Fourier transform (QFTN ) is optimal for both ρs and ρd, but for N � 4 the interferometers for
each are different; we include all probabilities of success for comparison. For singly distinguishable states, the quantum Fourier transform
saturates the bound and so is optimal for each N ; due to the QFT ’s symmetry it does not matter which port the ‘bad’ photon (see Sec. III C 2)
is in, however this is not true of the ρd interferometers and so we include best, worst and average success probabilities assuming each port
is equally likely to be ‘bad’. The completely distinguishable state is essentially unique, so there is only one success probability to report; an
asterix ∗ indicates extensive numerical optimization leads us to believe the N = 3, 4, 5 cases are optimal despite being far from the bound; it is
remarkable that the ρd interferometers have constant optical depth (made up of QFT3s followed by QFT2s) for each N . Interestingly, the two
success probabilities for the QFT are always equal except for N = 6, the only case in the table that is not a power of a prime (see Discussion).
The measurement outcomes that lead to these probabilities are specified in Table II.

043839-13



STASJA STANISIC AND PETER S. TURNER PHYSICAL REVIEW A 98, 043839 (2018)

discriminate a completely distinguishable state than one that
is less distinguishable.

The numerics are sensitive to the penalties used in Eq. (64),
due to the existence of interferometers with very similar
performance. For N = 4, a penalty ξ = 10 returns an inter-
ferometer with success probability 25/32 that minimizes the
cost function with a value of −0.839477, while a better in-
terferometer with success probability 19/24 exists but gives a
higher value of −0.836287. Increasing the penalty to 50 yields
costs −0.78455 and −0.79277 for these two interferometers
respectively, showing that the latter is now the minimum.
However, increasing the penalty makes optimization more
difficult, because the landscape flattens and gradients go to
zero. For this reason, penalties of 10, 13, 15, 17, 20, 25, 35,
and 50 were used for N = 4 and 10, 12, 14, 15, 16, 18, 20, 35,
and 60 for N = 5.

While the complexity of the calculations precluded any
further optimization for N > 5, we notice that the best inter-
ferometers for N = 2, 3, 4, 5 can be composed out of QFT3

followed by QFT2s. This suggests a recursive structure for
the best discriminating interferometers; for N = 6, 7, 8 we
tried combinations of QFTN , QFTN−1, and so on, and found
that discriminators composed of QFT3s followed by QFT2s
performed the best. This is remarkable as these are of constant
optical depth (the maximum number of beam splitters and
phase shifters that each photon encounters), independent of
N . Indeed, increasing the optical depth beyond this seems to
decrease the success probability, which allowed us to limit our
search to a manageable number of configurations. These are
educated guesses, however, and do not rule out the existence
of better interferometers that might be found.

Table I contains a summary of these results. We report the
probabilities for the best interferometers found to successfully
discriminate ρs and ρd from ρi up to N = 8. The measurement
outcomes that achieve these probabilities up to N = 5 are
specified in Table II, where in the interest of saving space we
give the occupations that fail (i.e., correspond to the ambigu-
ous POVM element E?) instead of the successful discrimina-

tors, because the latter far exceed the former. For comparison,
for each interferometer we include success probabilities for
both states of interest to be discriminated from the completely
indistinguishable state. Note that as discussed above for N =
3, although the QFTN interferometer is optimal for ρs no
matter which system mode the bad photon is in, this will not
be true for interferometers that lack the symmetry of QFTN .
Indeed, the best ρd discriminator does not treat each system
mode the same way, and so when using such an interferometer
to discriminate ρs we report best, worst, and average success
probabilities, assuming each system mode is equally likely to
contain the bad photon.

VI. DISCUSSION AND FURTHER WORK

Although we have focused on single and complete dis-
tinguishability, as shown in Sec. III B the formalism admits
arbitrary states. Consider, for example, Fock arrays with a
single excitation in each system mode and an arbitrary label
occupation; call it nL. By applying the Schur-Weyl transform
and focusing on the symmetric irrep (N ), where the support
is one dimensional, we see that the reduced system state will
be of the form

nL!

N !
|(N ), 1〉〈(N ), 1| +

(
1 − nL!

N !

)
ρi, (83)

where n! = n1!n2! · · · . This gives a bound of 1 − nL!/N ! on
the probability for successfully discriminating such a state
from the completely indistinguishable one and includes the
singly and completely distinguishable cases above. The ex-
act form of such states could be found by reasoning as in
Sec. III C.

We can use the formalism to compute the number of
parameters that describe an arbitrary partially distinguishable
collection of N particles in N (or more generally d) modes.
Because of the maximal entanglement over p in Eq. (37),
when we trace out the label of an arbitrary totally symmetric
state in Eq. (36), the resulting mixed state has identical blocks

TABLE II. Measurement occupations corresponding to the ambiguous POVM element E? that do not discriminate the two states of interest
for the numerically optimized interferometers in Table I (N = 2, 3, 4, 5)—these are, in general, far fewer than the number of successful
discriminating occupations and so easier to list. Recall that for ρs, the optimal choice of QFTN does not depend on the mode in which
the single distinguishable photon is present, and neither do the occupations. Note that although all of the occupations not listed here satisfy
Eq. (59), some might have zero probability of occurring and therefore not contribute to discrimination.

N ρs ρd

2 20,02 20,02
3 300,030,003 300,030,003

111 111
4 4000,0400,0040,0004 4000,0400,0040,0004

3100,1300,1030,1003,0130,0103

2020,0202
2101,1210,1012,0121 2011,0211

5 50000,05000,00500,00050,00005 50000,05000,00500,00050,00005
40010,40001,10040,10004,04010,04001,01040,01004

31001,30110,13100,11030,10301,10013,03011,01310,01103,00131 31010,31001,13010,13001,10310,10301,10031,10013,01310,01301,01031,01013
22010,21200,20102,20021,12002,10220,02201,02120,01022,00212 20120,20102,02120,02102

11111
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for each copy of λ (the number of identical blocks being equal
to the outer multiplicity). Thus, the most general mixed state
is described by a single (Hermitian) block for each irrep. Re-
calling that the number of real parameters in a d-dimensional
Hermitian matrix is d2, we have for an arbitrary partially
distinguishable mixed state of N bosons in N modes (sub-

tracting one for normalization)
∑

λ d{λ}2 − 1 = (
N2+N−1

N

) − 1

real parameters. If we restrict to coincident input, the number
of states is given by the number of standard Young tableaux,
d(λ). This is because coincidence implies each single parti-
cle state is different, and so semistandard tableau become
standard; in this case, we have

∑
λ d(λ)

2 − 1 = N ! − 1 real
parameters. This number decreases significantly if pure label
states are assumed. A pure state in d dimensions has 2(d − 1)
real parameters, and every pure state added to a set can add
at most one parameter beyond those required to describe its
projection onto the up to d − 1 dimensional space spanned
by the states that came before it (namely the angle it makes
with this subspace). Thus, there are

∑N
d=2(2(d − 2) + 1) =

(N − 1)2 real parameters in this case, which agrees with
previous analyses [16,62] but is far fewer than the general
case. Note that all of these quantities are of course larger
than

(
N

2

)
, the number of pairwise distinguishabilities clas-

sical intuition might lead one to believe are necessary to
measure [25].

There are many other state discrimination scenarios we
could consider. For example, we could try to unambiguously
discriminate ρd from ρs, or two entirely different states, or
more than two states. Note that due to the nested structure
of our three states of interest [cf. Eq. (57)], attempting to
find a UD POVM {Ei, Ed, Es, E?} reduces to only being able
discriminate ρd from the rest. Another version of discrimina-
tion to consider is using bucket (yes-no) instead of number-
resolving detectors, which are simpler to engineer. While our
focus has been on optimizing over all the possible measure-
ment patterns to obtain the highest possible success probabil-
ity, as mentioned in Sec. III E another type of optimization
that can be carried out is choosing a fixed set of patterns and
optimizing the interferometer U only. The difference would be
that in Eqs. (58) and (59) D would now be fixed, simplifying
the problem. As an example, during the preparation of this
paper, a closely related paper was released [40], where the
authors study a single reference photon input into a QFTN−1,
followed by QFT2 HOM tests on the N − 1 outputs with
the rest of the N − 1 photons (for a total of N photons in

2N − 2 modes). This is equivalent to a UD procedure where
D is fixed as the set of N -fold coincidences. The approach
is different and so it is not surprising that it is suboptimal
for discrimination; however, this interferometer’s behavior is
clear for all N .

We can also link the idea of unambiguous discrimination
of distinguishable states with prior work done on suppression
or zero-transmission laws [36,63]. Suppression laws for an
interferometer U identify output occupations whose prob-
abilities are zero for states that are quantum (completely
indistinguishable), when compared to states that are classical
(completely distinguishable). The focus has been on finding
formulas that predict suppression of events for either specific
unitaries or families of unitaries. The UD procedure stud-
ied here can be viewed as a search over the space of all
interferometers, where the optimality of U is measured by
the total probability of completely suppressed occupations.
Although none of the suppression results so far offer higher
total suppression probability than that of the QFT for the
choices of N given in Table I, our work shows that the QFT

is not the optimal choice of interferometer when it comes to
total suppression probability. Furthermore, we have checked
the success probabilities of the QFT up to N = 12, and
only the cases N = 6, 10, and 12 have higher success prob-
abilities than 1 − 1/N ; these non-power-of-a-prime cases are
exactly those for which it is known that the suppression law
does not account for all the suppressed patterns.

Finally, we have no doubt that proofs for many of the re-
sults here, such as the optimality of QFTN for discriminating
singly distinguishable states, should be possible, but they are
left as further work.

The data associated with this paper are available for down-
load at the University of Bristol data repository, data.bris [64].
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