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The nonlinear Schrödinger equation (NSE) provides a powerful tool for the analysis of ultrafast nonlinear-
optical dynamics, including a vast class of optical solitons. Here, we show, however, that the photon-number
integral of the NSE differs from the physical number of photons, conserved by more general field evolution
equations. This difficulty is traced to the optical shock term, which is dropped in the NSE, making nonlinear
coupling in NSE-based models frequency independent and leading to unphysical predictions for ultrabroadband,
octave-spanning field waveforms.
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I. INTRODUCTION

The photon number is one of the key parameters in
the quantum treatment of optical fields. In quantum optics,
photon-number analysis is central to the understanding and
characterization of a vast class of quantum states of light [1,2].
In nonlinear optics, such analysis helps identify fundamental
conservation laws [3,4], providing important physical insights
into the limitations on frequency conversion efficiency in
optical parametric amplification, as well as in sum- and
difference-frequency generation processes [5].

Although the number operator is consistently defined for a
broad class of quantizable fields [6], the photon number in its
most physically transparent form is defined as a product of op-
erators creating and annihilating photons of well-defined fre-
quency [1,2]. This definition of the photon number is broadly
accepted for the analysis of a vast variety of quantum-optic
phenomena, including squeezed light and quantum entangle-
ment, as well as quantum information processing, storage, and
communication schemes [7–9].

Ultrafast optical physics, however, operates with broad-
band photon packets [10,11]. Nonlinear-optical interactions of
ultrashort laser pulses often involve multiple energy-exchange
pathways coupling photon packets that belong to fundamen-
tally inseparable spectral-temporal modes of the optical field
[12,13]. Spectral and temporal transformation of optical field
waveforms with octave- and multioctave-spanning spectra,
referred to as supercontinuum radiation [14–17], is one of
the most prominent examples of nonlinear dynamics of this
type. With energy exchange occurring in unresolved spectral-
temporal modes of the classical field, standard photon-number
conservation laws become inapplicable. This leaves a discon-
certing no man’s land in the realm of quantum nonlinear optics
where the concepts and machinery of quantum physics would
be needed most to help extend concepts and methods of ultra-
fast lightwave technologies to the rapidly growing and highly
promising area of single-photon nonlinear optics [18–21].

Here, we focus on photon-number conservation in the
nonlinear wave dynamics of broadband optical field wave-

forms and their quantum-field counterparts—broadband pho-
ton packets. Within a vast parameter space, the classical-field
evolution of such waveforms is described by the nonlinear
Schrödinger equation (NSE). The quantized version of the
NSE provides a powerful tool for the description of a broad
variety of quantum nonlinear-optical processes. A vast class of
physically significant and practically important phenomena in
ultrafast nonlinear optics, including a broad variety of soliton
regimes and elementary self-phase modulation (SPM) scenar-
ios, is adequately described in terms of NSE field waveform
solutions with symmetrically broadened spectra and symmet-
ric pulse shapes. Here, we show, however, that the spectral
and temporal symmetry of NSE solutions is inconsistent with
simultaneous energy and photon-number conservation. We
will also demonstrate that the photon-number integral of the
NSE differs from the physical number of photons, conserved
by more general field evolution equations. This difficulty is
traced to the optical shock term, which is dropped in the NSE,
making nonlinear coupling in NSE-based models frequency
independent and leading to unphysical predictions in the case
of ultrabroadband, octave-spanning field waveforms.

II. FIELD EVOLUTION EQUATIONS

For the sake of definiteness, we focus here on the nonlinear
dynamics of broadband field waveforms in optical fibers. With
the guided-wave geometry in mind, we represent the Fourier
transform of the field as [3,22]

E(ω, x, y, z) = F (ω, x, y )A(ω, z), (1)

where x and y are the transverse coordinates, z is the longi-
tudinal coordinate, ω is the frequency, and F (ω, x, y ) is the
dimensionless function describing the transverse field profile
found by solving the transverse part of the wave equation.

A generic frequency-domain equation for the unidirec-
tional evolution of an ultrashort optical pulse in a medium
with a third-order optical nonlinearity is then written
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as [22,23]

i
∂

∂z
A(ω, z) = [β(ω) − β(ω0)]A(ω, z) + �P (ω). (2)

Here, β(ω) is the propagation constant, ω0 is the central
frequency of the input laser field, � = 2πσχ (3)ω2/[c2β(ω)],
P (ω) = F̂ {A(t, z)

∫
f (t − θ )|A(θ, z)|2dθ}, A(θ, z) is the

time-domain field amplitude found as a Fourier transform of
A(ω, z), χ (3) is the pertinent third-order susceptibility, F̂ {•}
is the Fourier-transform operator, c is the speed of light in
vacuum, σ = ∫

[F (x, y)]4dxdy/
∫

[F (x, y )]2dxdy, f (θ ) =
εδ(θ ) + (1 − ε)R(θ ), R(θ ) is the Raman response function,
and ε and 1 − ε are the fractions of the instantaneous (Kerr)
and delayed (Raman) nonlinearity in the overall nonlinear
response. The Raman effect involves inelastic scattering of
light, which does not conserve energy, as some energy of
the optical field is spent on the excitation of a Raman-active
vibration.

When transformed to the time domain, Eq. (2) leads to the
generalized nonlinear Schrödinger equation (GNSE) [22,23]

i
∂

∂z
A(η, z) +

∑
k=2

(i)k

k!
βk

∂k

∂ηk
A(η, z)

= κ0σ (1 − Ŝ )A(η, z)
∫

f (η − θ )|A(θ, z)|2dθ, (3)

where η is the time in the retarded frame of reference, κ0 =
n2ω0/c, n2 = 2πχ (3)/neff , neff = cβ/ω, βk = ∂kβ/∂ωk|ω0 ,
and

Ŝ = i

ω0

∂

∂η
+ i

∂

∂ω
ln

(
σ

neff

)
∂

∂η
. (4)

To reduce the full field evolution equation (3) to the NSE
[22],

i
∂

∂z
A(η, z) − β2

2

∂2

∂η2
A(η, z) = κ0σA(η, z)|A(η, z)|2, (5)

one needs to truncate the sum in k on the left-hand side of
Eq. (3) to the k = 2 term, require the nonlinearity to be purely
instantaneous, ε = 1, and set Ŝ = 0. The truncation of the sum
in k in Eq. (3) is equivalent to neglecting high-order dispersion
effects. The ε = 1 condition implies that the Raman effect
is ignored and the entire nonlinear response is assumed to
be instantaneous, which is not always justified [24]. Finally,
setting Ŝ = 0, we ignore the frequency dependence of the
nonlinear coupling constant and neglect shock-wave effects.

Spectrally symmetric broadening is an important feature
that is common of a broad class of well-known solutions of
Eq. (5), including a family of celebrated soliton solutions
[22,25,26]. Specifically, for the fundamental soliton solution,
a hyperbolic secant pulse shape translates into a symmetric
spectrum of the same hyperbolic secant shape [22,27]. In soli-
ton breathing scenarios [22,25,26], optical waveforms display
signature cycles in both the time and frequency domain. As a
part of this oscillatory dynamics, the stage of pulse compres-
sion and spectral broadening is followed by pulse stretching
and spectral compression, in which the pulse exhibits its
multisoliton structure.

III. PHOTON-NUMBER CONSERVATION

When the dispersion term is dropped in Eq. (5), the NSE is
reduced to a canonical SPM equation. This equation dictates
a signature symmetric spectral broadening of a laser pulse
[3,4,22], the bandwidth of which undergoes an unbounded
growth as a function of the laser peak power, optical nonlin-
earity, and the propagation distance with no limits from above
or below. Quite disconcerting, there is nothing in this theory
that would prevent the low-frequency wing of the spectrum
from reaching the zero frequency—a big electrodynamic no-
no. Notably, when applied to single-cycle field waveforms, the
NSE (5) also predicts symmetric spectra that extend all the
way down—and even beyond—the zero frequency.

Spectral blueshifting related to pulse self-steepening has
long been identified as a key effect that prevents this long-
wavelength catastrophe in SPM-induced spectral broadening.
Helpful approximate analytical expressions have been derived
for the bandwidths of SPM-broadened spectra [28], offer-
ing important physical insights into SPM regimes that yield
octave-spanning spectra and showing that the zero frequency
is happily avoided.

Here, we focus on the fundamental, conservation-law as-
pects behind this blueshifting effect whereby low frequencies
in nonlinearity-broadened octave-spanning spectra are sup-
pressed and the zero frequency is avoided. To this end, we
examine the classical photon-number constant of motion of
the field evolution equation (2), as identified by Blow and
Wood [23]:

∂

∂z

[∫
neff

σ

|A(ω0 + �, z)|2
ω0 + �

d�

]
= 0. (6)

To relate Eq. (6) to photon-number conservation, we follow
a standard field-quantization procedure, treating the spectral
field amplitude A(ω, z) in a waveguide mode with an effective
refractive index neff as an operator [7,9]:

Â(ω, z) =
(

h̄ω

neffc

)1/2

â(ω, z), (7)

where â(ω, z) is the annihilation operator such that

[â(ω, z), â†(ω′, z)] = δ(ω − ω′). (8)

The time-domain annihilation operator is defined through
a Fourier transform:

â(t, z) = 1

(2π )1/2

∫
â(ω, z) exp (−iωt )dω. (9)

We also introduce the time- and frequency-domain photon
density operators:

n̂(ω, z) = â†(ω, z)â(ω, z) (10)

and

n̂(t, z) = â†(t, z)â(t, z). (11)

Photon density operators defined by Eqs. (10) and (11)
have the units of time and frequency, respectively. We can now
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combine Eqs. (6), (7), and (10) to find

∂

∂z

[∫
n̂(ω0 + �, z)

σ
d�

]
= 0. (12)

We have kept the 1/σ factor in Eq. (12) for the sake of
accuracy. However, in most cases, this factor can be safely
dropped from the constant of motion of Eqs. (6) and (12), as σ

is usually a very weak function of the frequency. For a generic
Gaussian waveguide mode, σ is plain constant.

Provided that the frequency dependence of σ is negligible,
Eq. (12) reduces to

∂N̂

∂z
= ∂

∂z

[∫
n̂(ω0 + �, z)d�

]
= 0. (13)

We can see now that, while the single-frequency photon
density operator n̂(ω, z) is not a constant of motion of Eq. (2),
the integral of this operator over the entire spectrum is.

It is instructive to compare this result with photon-number
conservation in NSE-based models. The NSE Hamiltonian Ĥ0

is known to commute with the photon-number operator N̂0

[29]. As a consequence, N̂0 is a constant of motion of the
input-output Heisenberg evolution equation:

dN̂0

dz
= i

h̄
[Ĥ0, N̂0]. (14)

We are going to show now that the photon-number op-
erator N̂0 that the NSE Hamiltonian Ĥ0 commutes with is
different from the photon-number operator N̂ conserved by
the full field evolution equation (2). Unlike Eq. (2), the
NSE [Eq. (5)] sets Ŝ = 0. In the spectral representation, this
implies that the frequency variable ω in the expression for
� in the field evolution equation is replaced by the central
frequency of the laser pulse ω0. With such a replacement,
the factor � = 2πσχ (3)ω/(cneff ) in Eq. (2) becomes �0 =
2πσχ (3)ω0/(cneff ). We multiply Eq. (2) with � replaced with
�0 by β(ω)A∗(ω, z)/(σω2

0 ), subtract this product from its
complex conjugate, and integrate the resulting equation over
the entire bandwidth of the laser pulse to find

1

ω0

∂

∂z

[∫
neff

σ
|A(ω0 + �, z)|2d�

]
= 0. (15)

When σ can be considered frequency independent, Eq. (15)
becomes

1

ω0

∂

∂z

[∫
neff |A(ω0 + �, z)|2d�

]
= 0. (16)

In quantum terms, Eq. (16) translates into

∂N̂0

∂z
= ∂

∂z

∫
n̂0(ω0 + �, z)d� = 0, (17)

where

n̂0(ω, z) = â
†
0(ω, z)â0(ω, z) (18)

is the photon density and the field is quantized such that

Â(t, z) =
(

2πh̄ω0

neffc

)1/2 ∫
â0(ω, z) exp (−iωt )dω. (19)

Unlike the field-quantization procedure defined by
Eqs. (7)–(9), field quantization (19) isolates the central fre-
quency ω0 as a constant preintegral factor. With such a quan-
tization, the pulse-energy operator is expressed as

Ê0(z) = h̄ω0

∫
n̂(ω, z)dω = h̄ω0

∫
n̂(t, z)dt = h̄ω0N̂0(z).

(20)

We see that, nominally, the NSE conserves both energy
and the number of photons. However, the photon number N̂0

conserved by the NSE is different from the photon number N̂

corresponding, in the classical domain, to the physical number
of photons

N (z) =
∫

neff
|A(ω0 + �, z)|2

ω0 + �
d�, (21)

conserved by the full field evolution equation (2). Instead,
as can be seen from Eq. (20), the NSE conserves the ratio
of the pulse-energy integral of motion over h̄ω0, with the
photon-number conservation equation in NSE-based models,
∂N̂0/∂z = 0, being a trivial consequence of energy conserva-
tion, ∂Ê0/∂z = 0. In other words, photon-number conserva-
tion in NSE-based models operates on an assumption that all
the photons have the same frequency ω0.

IV. MANLEY-ROWE RELATIONS

In this section, we will discuss photon-number conserva-
tion in NSE- and GNSE-based models from the viewpoint
of Manley-Rowe relations [30,31] and show that, while the
photon-number conservation equation (13) is consistent with
these relations, its simplified NSE counterpart, expressed by
Eq. (17), is not. As a simple yet physically instructive argu-
ment, we consider a four-wave mixing (FWM) ω1 + ω2 →
ω3 + ω4 of spectrally nonoverlapping optical fields with band-
widths �q , such that �q < |ωq − ωp|, p, q = 1, 2, 3, 4.
When applied to such a process, Eq. (6) yields

∂

∂z

4∑
q=1

[∫ ωq+�q

/
2

ωq−�q

/
2

neff
|A(�, z)|2

�
d�

]
= 0. (22)

When the fields are narrowband enough so that 1/� and
neff vary slowly within each bandwidth �q compared to the
spectral intensity |A(�, z)|2, Eq. (21) gives

∂

∂z

4∑
q=1

Pq (z)

ω̄q

= 0, (23)

where ω̄q ≈ ωq is a median frequency within the bandwidth
�q and Pq (z) = ∫ ωq+�q/2

ωq−�q/2 |A(�, z)|2d�.
With Eq. (23) rewritten as

4∑
q=1

δPq (z)

ω̄q

= 0, (24)

where δPq (z) = Pq (z) − Pq (0), we arrive at a Manley-Rowe-
type relation for the power flows δPq in individual FWM-
coupled fields, valid for any z. When all the four fields
are monochromatic, ω̄q = ωq , Eq. (24) becomes a standard
Manley-Rowe relation.
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Although written for a special case of spectrally isolated
narrowband fields, Eq. (24) offers an important insight into
Eq. (6) for a classical field and Eq. (13) for a quantized field
as Manley-Rowe-type relations. As one of the key results of
this analysis, Eq. (6) generalizes the Manley-Rowe relations,
formulated in their canonical form for monochromatic fields,
to intrapulse nonlinear-optical processes in which an optical
nonlinearity couples spectrally unresolved, often overlapping
components of an ultrashort laser pulse.

We have also seen that, unlike the full field evolution
equation, its simplified NSE counterpart [Eq. (5)] fails to
fulfill the Manley-Rowe-type relations of the form of Eq. (6).
Connection to the Manley-Rowe relations is lost in NSE-
based models at the point where the frequency-dependent
coupling factor—� in Eq. (2)—is replaced by a frequency-
independent constant. In the time domain, this replacement
translates into an Ŝ = 0 simplification. With the Ŝ term
dropped and high-order dispersion [terms with k � 3 in
Eq. (3)] neglected, NSE-type field evolution equations yield
spectrally and temporally symmetric solutions. The spectral
symmetry implies that sidebands ω0 ± � have equal spec-
tral intensity, S(ω0 + �) = S(ω0 − �). On the other hand,
with the FWM ω0 + ω0 → (ω0 + �) + (ω0 − �) being the
process behind ω0 ± � sideband generation, the number of
ω0 + � photons has to be equal to the number of ω0 − �

photons, N (ω0 + �) = N (ω0 − �). Since S(ω) = h̄ωN (ω),
the spectral symmetry, S(ω0 + �) = S(ω0 − �), is incompat-
ible with N (ω0 + �) = N (ω0 − �) unless � = 0. Remark-
ably, it is precisely the � = 0 approximation that enables
the NSE-based models. Indeed, the coefficient in front of
the nonlinear term in the full pulse evolution equation (2)
reads κ = n2ω/c = n2(ω0 + �)/c. The NSE of Eq. (5), on the
other hand, operates with the nonlinear coupling coefficient
κ0 = n2ω0/c, which is treated as a frequency-independent
constant with � = 0. Thus, although the NSE is certainly
applicable to ultrashort pulses and, moreover, provides a pow-
erful tool for the description of soliton dynamics, it reconciles
S(ω0 + �) = S(ω0 − �) with N (ω0 + �) = N (ω0 − �) by
assigning the same frequency ω0 to all the frequency compo-
nents that constitute the spectrum of the pulse. In quantum
terms, this allows the pulse energy to be calculated, as sug-
gested by Eq. (20), simply as the number of photons times the
photon energy at the central frequency h̄ω0.

V. SPECTRAL SYMMETRY AND PHOTON-NUMBER
CONSERVATION

Analysis of the Manley-Rowe relations presented in the
previous section offers important insights into why NSE-
based models fail to simultaneously satisfy energy and
photon-number conservation. This analysis is especially in-
structive when spectral broadening can be traced back to
elementary FWM processes, where Stokes and anti-Stokes
photons at frequencies ω0 ± � are generated in pairs as a
result of annihilation of two pump-field photons at frequency
ω0. However, supercontinuum generation scenarios in optical
fibers and laser filaments are often much more complicated.

In this section, we focus on the spectral and temporal
symmetry of NSE solutions and show that this symmetry
is inconsistent with simultaneous energy and photon-number

conservation. To this end, we represent the energy and the
photon number as

E(z) =
∫ ∞

0
S(ω0 + �, z)d� +

∫ ∞

0
S(ω0 − �, z)d�,

(25)

N (z) =
∫ ∞

0

S(ω0 + �, z)

h̄(ω0 + �)
d� +

∫ ∞

0

S(ω0 − �, z)

h̄(ω0 − �)
d�,

(26)

where S(ω, z) is the spectral density, which changes as a
function of z due to optical nonlinearity as prescribed by the
appropriate field evolution equation.

The energy and photon-number conservation equations can
then be written as

E(z)=
∫ ∞

0
S(ω0 + �, 0)d�+

∫ ∞

0
S(ω0 − �, 0)d� = E0,

(27)

N (z)=
∫ ∞

0

S(ω0 + �, 0)

h̄(ω0 + �)
d�+

∫ ∞

0

S(ω0 − �, 0)

h̄(ω0 − �)
d� = N0.

(28)

If the field evolution equation yields a solution with
symmetric spectrum, so that for any z S(ω0 + �, z) =
S(ω0 − �, z), the energy conservation equation (27) gives

E(z) = 2
∫ ∞

0
S(ω0 + �, z)d�

= 2
∫ ∞

0
S(ω0 + �, 0)d� = E0. (29)

The number of photons as a function of z is then given by

N (z) = 2

h̄ω0

∫ ∞

0

S(ω0 + �, z)

1 − �2

ω2
0

d�. (30)

We first consider the FWM process ω0 + ω0 →
(ω0 + �0) + (ω0 − �0), in which two pump-field photons
at frequency ω0 are converted to Stokes and anti-Stokes
photons at frequencies ω0 ± �0. To model this process,
we take S(ω0 + �, 0) = s0δ(ω0) and S±(ω0 ± �0, z) =
s±δ(ω0 ± �0).

When applied to a pulse with such a spectrum and
combined with the requirement of spectral symmetry,
S(ω0 + �, z) = S(ω0 − �, z), the energy conservation equa-
tion (29) gives s+ = s− = s0 = E0/2. Equation (30) for the
number of photons, on the other hand, leads to N0 = N (0) =
2s0/(h̄ω0) = E0/(h̄ω0). Taking the integral in Eq. (30), we
find

N (z) = E0

h̄ω0

1

1 − �2
0

ω2
0

= N0

1 − �2
0

ω2
0

. (31)

As can be seen from Eq. (31), N (z) > N0 for any nonzero
�0, showing that the condition of photon-number conserva-
tion [Eq. (28)] is not satisfied.

Next, we consider a laser pulse with a flat spectrum the
bandwidth �(z) of which is a growing function of z, reflecting
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the spectral broadening of the pulse. When applied to a pulse
with such a spectrum, the energy conservation equation (27)
gives 2

∫ �(z)
0 S(ω0 + �, z)d� = 2S(z)�(z) = E0. Equation

(30) for the number of photons then leads to

N (z) = E0

h̄ω0

ω2
0

�(z)

∫ �(z)

0

d�

ω2
0 − �2

. (32)

Taking the integral in Eq. (32), we find

N (z) = E0

h̄ω0

ω0

�(z)
ln

∣∣∣∣�(z) + ω0

�(z) − ω0

∣∣∣∣
1/2

. (33)

In the limiting case of �(z) � ω0, ζ (z) =
ln |[�(z) + ω0]/[�(z) − ω0]|1/2 ≈ �(z)/ω0, and Eq. (33)
reduces to N (z) ≈ E0/(h̄ω0) ≈ N0. Thus, in this
approximation, the photon number is an integral of motion.
However, in a more general case, when the spectral
broadening can no longer be included by keeping only
the first term in the Taylor-series expansion of the natural
logarithm in Eq. (33), the photon number, as can be seen from
this equation, becomes a function of the propagation path
z and is no longer a constant of motion. In a particular
case of broader but still small bandwidths, such that
ζ (z) ≈ �(z)/ω0 + (1/3)[�(z)/ω0]3, Eq. (33) yields

N (z) ≈ E0

h̄ω0

{
1 + 1

3

[
�(z)

ω0

]2
}

. (34)

In this regime, the photon number does not remain con-
stant, but grows quadratically with �(z)/ω0.

We consider now a more general case when the pulse
bandwidth is small enough so that the Taylor-series expansion
(1 − �2/ω2

0 )−1 ≈ 1 + �2/ω2
0 can be used in the integrand in

Eq. (30). Integration in Eq. (30) then yields

N (z) ≈ 2

h̄ω0

∫ ∞

0
S(ω0 + �, z)

(
1 + �2

ω2
0

)
d�. (35)

With Eq. (29) taken into account,

N (z) ≈ E0

h̄ω0
+ 2

h̄ω0

∫ ∞

0
S(ω0 + �, z)

�2

ω2
0

d�. (36)

In the particular case of a flat spectrum with a bandwidth
�(z), Eq. (36) recovers Eq. (34). In its general form, Eq. (36)
is, of course, much more general as it is applicable within
a much broader class of spectral profiles. As an important
result, since the second term in Eq. (36) is positive definite,
we find that N (z) � E0/(h̄ω0) and the photon number is a
growing function of z within the entire range of applicability
of Eqs. (35) and (36). This result, obtained here analytically, is
confirmed by numerical simulations, presented below in this
paper.

VI. OPTICAL SHOCK AND ASYMMETRY OF
SPECTRAL-TEMPORAL MODES

To show how frequency-dependent nonlinear wave cou-
pling, translating into the shock term in the time-domain
field evolution equation [Eq. (3)], suppresses low-frequency
generation as a part of spectral broadening, eventually limiting
the spectral bandwidth from below, we use the following

elementary SPM-theory estimate on the nonlinearity-induced
spectral broadening [3,22]:

�ω0 ≈ κ0
I

τ0
z, (37)

where I is the field intensity and τ0 is the pulse width.
Equation (37) predicts an unbounded growth of the spectral
bandwidth as a function of the propagation length z, field
intensity I , and nonlinearity n2.

We now replace κ0 in Eq. (37) by the frequency-dependent
coupling coefficient κ = n2ω/c to find for the Stokes and anti-
Stokes parts of SPM broadening

|�ω±| ≈ 1

2

ω0 ± |�ω±|
cτ0

n2Iz. (38)

Solving this equation for |�ω±|, we find

|�ω±| ≈ |Q|/2

1 ∓ |Q|/2
ω0, (39)

where Q = n2Iz/(cτ0).
An estimate of Eq. (39) is valid only for |Q| < 1. For

|Q| � 1, Eq. (39) gives

�ω± ≈ ±|Q|
2

ω0

(
1 ± |Q|

2

)
. (40)

It is remarkable and encouraging that this elementary
qualitative treatment reproduces the key results of a much
more rigorous analysis of extreme regime of SPM-induced
broadening [28]. Indeed, when applied to a field A(t, z) =
|A(t, z)| exp[iϕ(t, z)], Eq. (3) with βk = 0 for k � 2 and ε =
1 yields the following set of coupled equations for the field
amplitude |A(t, z)| and phase ϕ(t, z):[

∂

∂z
+ neff

c

(
1 + n2

neff
|A|2

)
∂

∂t

]
|A| = 0 (41)

and [
∂

∂z
+ neff

c

(
1 + n2

neff
|A|2

)
∂

∂t

]
ϕ = n2ω0

c
|A|2. (42)

We solve Eqs. (41) and (42) iteratively, neglecting pulse-
shape changes in the first-order approximation. With the
boundary conditions set as |A(t, 0)|2 = A2

0/cosh(t/τ0) and
ϕ(t, 0) = 0, the solution of Eq. (42) for the phase is then
written as [28]

ϕ(η, z) = ω0η − ω0τ0sinh−1

[
sinh(η/τ0) − n2

cτ0
A2

0z

]
. (43)

The resulting spectral broadening is

�ω(η, z)

ω0
=− 1

ω0

∂ϕ(η, z)

∂t
= 1[

1 + (
Q2−2Q sinh(η/τ0 )

cosh2(η/τ0 )

)]1/2 −1.

(44)

Equation (44) leads to the following expressions for the
maximum Stokes and anti-Stokes shifts [28]:

�ω±
ω0

= 1

2
[(Q2 + 4)

1/2 ± |Q|] − 1. (45)
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For |Q| � 1, Eq. (45) yields

�ω± ≈ ±|Q|
2

ω0

(
1 ± |Q|

4

)
. (46)

It is instructive to compare Eq. (46), which has been
derived through the analysis of the first-order solution to
Eq. (42) for the phase ϕ(t, z), with Eq. (40), obtained by using
much simpler qualitative arguments. Remarkably, Eqs. (40)
and (46) differ only by a numerical factor of 1/2 in front of
the small, ∼ |Q|2 correction. When only the leading term is
kept in Eqs. (40) and (46), both equations recover the standard
result of the elementary SPM theory, �ω± ≈ ±|Q|ω0/2. As
|Q| increases, due to a growth in the propagation length,
input field intensity, or nonlinearity n2, the Stokes part of
SPM-induced broadening becomes suppressed, while its anti-
Stokes counterpart is enhanced, giving rise to an asymmetry
in SPM-broadened spectra. In contrast to the elementary SPM
theory, which, as can be seen from Eq. (37), does not set
any upper bound on �ω or, hence, on |�ω−|, Eqs. (40) and
(46) prohibit spectral broadening down to the zero frequency.
Indeed, reaching this frequency would require |�ω−| = ω0.
This condition, however, can never be fulfilled, according to
Eqs. (40) and (46), due to the growing ∼|Q|2 correction,
which makes sure that spectral broadening is asymmetric so
that |�ω−| is always smaller than ω0.

As another important insight, our qualitative treatment
of spectral broadening based on Eqs. (38)–(40) provides a
reasonably accurate estimate on the propagation length within
which spectral broadening ceases to be symmetric. To esti-
mate this spatial scale, we observe that Q = 1 is achieved at

l0 ≈ cτ0/(n2I ) = 2π (τ0/T0)lNL, (47)

where T0 is the field cycle and lNL = c/(ω0n2I ) is the nonlin-
ear length.

Equation (47) exactly recovers the spatial scale [22] within
which a shock wave tends to build up at one of the pulse
edges (the trailing edge of the pulse for n2 > 0), leading
to pulse self-steepening. Importantly, neither our qualitative
treatment [with Eqs. (38)–(40)] nor the first-order solution
of the coupled equations (41) and (42) implies or assumes
any pulse distortion. On the contrary, when searching for the
first-order solution to Eq. (42) for the phase, we explicitly
assume that the pulse shape remains unchanged. Still, our
result for l0 [Eq. (47)] is identical to the expression for the
length of pulse self-steepening [22].

To gain physical insights into this finding, we consider an
implicit solution to Eq. (41) [22,28]:

|A(η, z)| = ρ0

(
η

τ0
− Q

|A(η, z)|2
I

)
, (48)

where ρ0(η) = |A(η, 0)|.
Equation (48) is instructive in showing that the peak of the

pulse propagates slower (for n2 > 0) or faster (for n2 < 0)
than the pulse edges, leading to pulse self-steepening and
eventually giving rise to a shock wave in the trailing (for
n2 > 0) or leading (for n2 < 0) edge of the pulse. As is also
readily seen from Eq. (48), corrections to the pulse shape due
to self-steepening are of the same order of smallness in |Q| as
the asymmetry of the spectral broadening. As a consequence,

the delay (advancement in materials with negative n2) of the
peak of the pulse relative to its edges, τs ≈ (n2/c)Iz, becomes
equal to the pulse width τ0 on a typical scale, ls ≈ cτ0/(n2I ),
equal to l0 as defined by Eq. (47).

This is, of course, much more than a mere coincidence.
That the spectral asymmetry builds up simultaneously with
the pulse-shape asymmetry is a manifestation of the insep-
arability of the spectral-temporal mode of the field. This
inseparability is lost in an iterative treatment of Eqs. (41)
and (42), which searches for spectral corrections assuming
no changes in the pulse shape as its first-order iteration.
This hits us back in the next iteration, as we realize that the
leading corrections to the pulse shape are of the same order
in |Q| as the corrections giving rise to spectral asymmetry.
With these arguments in mind, we conclude that simultaneous
conservation of energy and the photon number in nonlinear-
optical processes leads to an asymmetry of spectral-temporal
modes of broadband field waveforms.

VII. QUANTITATIVE ANALYSIS

As a specific example, Figs. 1–3 display the results
of numerical simulations performed for ultrashort laser
pulses with an initial pulse width of 180 fs, central wave-
length λ0 = 3.2 μm, and pulse energy E0 = 45 μJ—a typ-
ical short-pulse output of multicascade optical paramet-
ric amplifiers [32]—undergoing soliton transformations in
a gas-filled antiresonance-guiding single-ring hollow-core
photonic-crystal fiber (PCF) [33,34]. Fibers of this class have

FIG. 1. Spectral (a, b) and temporal (c, d) evolution, as well
as normalized photon-number δN (z)/N0 (purple line) and energy
δE(z)/E0 (blue line) variations along z (e, f) for a laser pulse with
an initial pulse width of 180 fs, central wavelength λ0 = 3.2 μm, and
pulse energy E0 = 45 μJ in a hollow fiber with β2 = −55 fs2/cm
and ε = 1 (corresponding to a pure Kerr nonlinearity, with no Raman
effect) simulated by solving (a, c, e) the NSE [Eq. (5)] and (b, d, f)
the GNSE [Eq. (3)] without high-order (k > 2) dispersion terms.
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FIG. 2. The spectral intensity (blue line) and the photon number
(green line) as a function of the frequency at the point of maximum
pulse compression for a laser pulse with an initial pulse width of 180
fs, central wavelength λ0 = 3.2 μm, and pulse energy E0 = 45 μJ in
a hollow fiber filled with argon (ε = 1) at p = 5.0 bars. Simulations
are performed by solving (a) the NSE [Eq. (5)] and (b) the GNSE
[Eq. (3)] without high-order (k > 2) dispersion terms. The spectrum
of the input field is shown by gray shading.

been shown to provide a powerful resource for multioctave
supercontinuum generation in the near- and mid-infrared
[35,36]. Transmission bands and dispersion of these fibers are
controlled by the size of the fiber core and the geometry of the
antiresonance ring structure.

Simulations presented in Figs. 1–3 were performed for
an antiresonance-guiding PCF where a hollow core with a
diameter Dc ≈ 70 μm is bounded by an array of six identical
silica rings, each having a diameter d ≈ 37 μm and a wall
with a thickness of t ≈ 0.59 μm. A fiber with such a design
provides a high transmission and anomalous dispersion
within the entire spectrum of 3.2-µm 180-fs pulses, allowing
these pulses to be coupled into solitons inside the fiber.
The fiber is filled with argon at a pressure p = 5.0 bars.
Optical nonlinearity of argon is entirely due to the Kerr
effect, i.e., ε = 1. The Kerr-effect nonlinear refractive index
for argon is estimated as n2 ≈ 1.35 × 10−19 (p/pa ) cm2/W,
where pa is the atmospheric pressure. Keeping our focus on
photon-number conservation, we neglect in our simulations
ionization effects, which can be easily included in the GNSE
[37–40]. Such effects can play a moderate role within the
studied parameter space, slightly enhancing the blueshift
and finely tuning phase-matching features, but do not lead
to dramatic changes in field waveform dynamics [26].
Parameters of the input laser pulse, the fiber design, and the
gas pressure are chosen in our simulations in such a way as
to examine photon-number conservation in multioctave field
waveforms. To isolate the role of the frequency dependence
of nonlinear wave coupling and pulse self-steepening, the
waveguide loss has been neglected in our simulations. This
is a clear idealization, especially for NSE calculations, where
the long-wavelength part of the spectrum is allowed to reach
the far-infrared range [Fig. 1(a)] due to no low-frequency
bound on spectral broadening in NSE-based models.

Numerical simulations performed with the use of the NSE,
shown in Figs. 1(a) and 1(c), reveal a typical breathing soliton
dynamics, as expected for pulses with a soliton number N ≈
6. As a part of this breathing dynamics, the stage of pulse com-
pression and spectral broadening [z < 26 cm in Figs. 1(a) and
1(c)] is followed by pulse stretching and spectral compression,
in which the pulse exhibits its multisoliton structure. As a typ-
ical property of NSE solutions, field waveforms with a sym-

FIG. 3. Spectral (a, b) and temporal (c, d) evolution, as well
as normalized photon-number δN (z)/N0 (purple line) and energy
δE(z)/E0 (blue line) variations along z (e, f) for a laser pulse with
an initial pulse width of 180 fs, central wavelength λ0 = 3.2 μm, and
pulse energy E0 = 45 μJ in a hollow fiber filled with argon (ε = 1) at
p = 5.0 bars simulated by solving (a, c, e) the GNSE [Eq. (5)] with
high-order (k > 2) dispersion terms, but with Ŝ = 0 and (b, d, f) the
full GNSE [Eq. (3)].

metric input pulse shape experience perfectly spectral broad-
ening [Fig. 1(a)]. The broadest spectral bandwidth is achieved
at the point of maximum pulse compression (z ≈ 26 cm).

As the soliton pulse evolution shown in Figs. 1–3 is
accompanied by pulse self-compression to pulse widths on
the order of the field cycle, the applicability of pulse evo-
lution equations (2) and (3) needs to be reexamined. These
equations remain applicable even in the case of subcycle
pulse widths [26,37–39] as long as ionization effects are
negligible (which is the case in the considered parameter
space) and the characteristic spatial scales, such as the dis-
persion length ld = τ 2/ max{|β2(ω)|}, the nonlinear length
lNL = c(ω0n2Imax)−1, and the self-steepening length lSS =
0.4τω0c(ω0n2I )−1, meet the conditions βld , βlNL, βlss 
 1
within the entire frequency interval centered at ω0 and the
relative mismatch of the phase and group and velocities is
small, |β(ω0) − ω0β1(ω0)|/β(ω0) � 1. For the shortest pulse
width in our simulations, t ≈ 3 fs, and the maximum field
intensity, Imax ≈ 95 TW/cm2, we find for the typical parame-
ters of our pulse compression scenario βld ≈ 2 × 103, βlNL ≈
2 × 104, βlss ≈ 104, and |β(ω0) − ω0β1(ω0)|/β(ω0) ≈ 10−3.
This confirms that all the applicability criteria for pulse evo-
lution equations (2) and (3) are fulfilled.

With the NSE setting a no low-frequency bound on spec-
tral broadening, the long-wavelength wing of the spectrum
stretches at the point of maximum pulse compression all the
way down to the far infrared [Figs. 1(a) and 2(a)]. Obviously,
NSE predictions become unphysical in this regime. As high-
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lighted in Sec. III, there is nothing in NSE-based models that
would prevent the low-frequency wing of the spectrum from
reaching the zero frequency—a result that is clearly at odds
with the fundamental principles of electrodynamics. Although
these stages of spectral broadening do not represent the actual
evolution of a laser pulse, they are still shown in Figs. 1(a)
and 2(a) to facilitate comparison with the predictions of
the GNSE, where the unphysical low-frequency wing of the
spectrum is suppressed by the optical shock wave.

Since the spectrum in NSE-based models is symmetric, the
energy of the high-frequency wing of the spectrum has to be
equal to the energy of the low-frequency wing [Fig. 2(a)].
With a typical energy of a photon in the far infrared being
much less than the energy of a photon in the visible, this can
only be achieved at a cost of extra photons [Fig. 2(a)]. To
quantify this effect, we examine the behavior of the photon-
number integral (21) as a function of the propagation path
of the pulse. In [Fig. 1(e)], we plot the normalized photon-
number variation δN (z)/N0 = [N (z) − N0]/N0, where N0 =
N (0), as a function of z. The deviation of N (z) from N0 is
seen to exhibit a well-resolved peak centered at the point of
maximum pulse compression and, hence, maximum spectral
broadening. On a larger scale, δN (z) displays oscillations, fol-
lowing pulse-compression—pulse stretching cycles in soliton
breathing dynamics.

Importantly, while the photon number is not conserved by
NSE dynamics, the energy has to remain constant as a funda-
mental constant of motion of the NSE. To check the invariance
of energy, the normalized energy deviation [E(z) − E0]/E0,
where E(z) = ∫ |A(ω0 + �, z)|2d� and E0 = E(0), is also
plotted in Fig. 1(e) as a function of z. As is readily seen from
this plot, the energy remains constant with a very high accu-
racy throughout the entire NSE soliton breathing dynamics.

Figures 1(b), 1(d), 1(f), and 2(b) present simulations per-
formed with the use of the GNSE [Eq. (3)] without high-
order (k > 2) dispersion terms and with ε = 1 (the nonlinear
response of argon has no Raman component anyway). This
version of the GNSE is equivalent to the NSE with added
Ŝ term. In this model of pulse evolution, the asymmetry of
spectral broadening is lost [Figs. 1(b) and 2(b)]. Remarkably,
this loss of spectral asymmetry and, hence, temporal pulse
profile [Fig. 1(d)] is needed to restore the photon number N (z)
to its status as a constant of motion without letting the energy
E(z) lose this status. With the asymmetry brought into the
spectral broadening by the Ŝ operator, both the photon number
and the energy are conserved, as can be seen in Fig. 1(f), with
a high accuracy through all the phases of the NSE soliton
breathing dynamics.

Figure 3 presents the results of GNSE simulations per-
formed with and without the Ŝ term. As a general tendency
[Figs. 3(a) and 3(c)], high-order dispersion distorts the wave-
form and induces soliton instabilities via a resonant energy
exchange between solitons and dispersive waves. Coupling
between ideal NSE solitons and dispersive waves is prohib-
ited by momentum conservation. Higher-order dispersion can,
however, phase match solitons and dispersive waves, inducing
intense dispersive-wave radiation. Even though these effects
give rise to a spectral asymmetry and suppress the long-
wavelength wing of the spectrum [cf. Figs. 1(a) and 3(a)],
without the Ŝ term, they do not help conserve the number

FIG. 4. The same as in Fig. 1, but with β2 = 55 fs2/cm.

of photons [Fig. 3(e)]. Although predictions of the GNSE
without the Ŝ term do not represent the actual evolution of
a laser pulse near the point of maximum pulse compression,
we still show these stages of spectral broadening in [Fig. 3(a)]
to facilitate comparison with the predictions of the full GNSE,
where the unphysical low-frequency wing of the spectrum is
suppressed by the optical shock wave. Even though soliton
instabilities induced by high-order dispersion open a channel
whereby solitons can lose both energy and photons, these
effects do not change the total energy and the total photon
number of the overall field, consisting of the solitonic part
and nonsoliton dispersive-wave radiation, since the energy
and the photon number lost by the solitonic part of the field
are transferred to the dispersive wave.

Similar to NSE modeling, deviations of N (z) from
N0 become dramatic near the point of maximum pulse
compression, where the maximum spectral bandwidth is
achieved [Figs. 3(a), 3(c), and 3(e)]. With the Ŝ term added,
the short-wavelength wing of the spectrum is radically
enhanced, while the low-frequency part of the spectrum is
further suppressed [Fig. 3(b)], yielding a spectral-temporal
mode that simultaneously conserves both the energy and the
number of photons [Fig. 3(f)].

Figure 4 illustrates a typical dynamics of a laser pulse in the
regime of normal dispersion. Except for the sign of β2, which
is now taken positive, β2 = 55 fs2/cm, all the parameters in
these simulations are taken the same as in Fig. 1. Instead of
the signature soliton breathing, observed in Fig. 1, the laser
pulse in Fig. 4 undergoes temporal stretching [Figs. 4(c) and
4(d)], due to the normal dispersion, and spectral broadening
[Figs. 4(c) and 4(d)], which is mainly due to SPM. At large
z [z > 30 cm in Figs. 4(b) and 4(d)], the laser pulse shape
becomes asymmetric [Fig. 4(d)], while its spectrum displays a
signature blueshift [Fig. 4(b)] due to the shock term in Eq. (3).
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As the most important finding, we see that, similar to the
case of anomalous dispersion [Figs. 3(e) and 3(f)], the NSE
does not conserve the photon number [Figs. 4(e) and 4(f)].
Since the spectral bandwidth is now a monotonic function
of z [Fig. 4(a)], the δN (z)/N0 ratio calculated with the NSE
also grows with z monotonically [purple line in Fig. 4(e)],
while [E(z) − E0]/E0 remains constant at any z [blue line in
Fig. 4(e)]. This result agrees well with Eq. (36). Similar to the
regime of anomalous dispersion, with the Ŝ term added to the
field evolution equation, the photon number N (z) is restored
in its status as a constant of motion [purple line in Fig. 4(f)]
without letting the energy E(z) lose this status [blue line in
Fig. 4(f)].

VIII. CONCLUSION

To summarize, we have shown that the spectral and tem-
poral symmetry of NSE solutions is inconsistent with simul-
taneous energy and photon-number conservation. We have

demonstrated that the photon-number integral of the NSE
differs from the physical number of photons, conserved by
more general field evolution equations. This difficulty is
traced to the optical shock term, which is dropped in the NSE,
making nonlinear coupling in NSE-based models frequency
independent and leading to unphysical predictions in the case
of ultrabroadband, octave-spanning field waveforms.
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