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PT -symmetric Talbot effect in a temporal mesh lattice
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We investigate the PT -symmetric Talbot effect in a temporal mesh lattice constructed by two coupled fiber
loops, in which the PT symmetry is introduced through temporally controlling the gain and loss of the loops.
The Talbot self-imaging exists only if the period of input pulse train is chosen as two- or fourfold compared to
the time interval caused by the length difference between the two loops. Through varying the gain and loss, we
can tailor the lattice band structure and thus flexibly manipulate the Talbot distance, which can further be tuned
by imposing a linear phase distribution on the input pulse train. In addition, the power oscillations are found in
the Talbot imaging process, and the oscillation amplitude is associated with the gain and loss and the gradient
of the linear phase modulation. Especially, the power oscillations possess significant amplitude as the modes
near the exceptional points are excited. The study may find potential applications in pulse repetition rate
multiplication, temporal cloaking, and tunable intensity amplifiers.
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I. INTRODUCTION

The non-Hermitian Hamiltonians possess entirely real
spectra as they respect parity-time (PT ) symmetry, which
was demonstrated by Bender and co-workers in 1998 [1,2].
The PT symmetry demands that the complex potential has a
symmetric distribution of the real part and an antisymmetric
distribution of the imaginary part. Optical systems have been
considered as ideal platforms to realize PT symmetry, where
the gain and loss play the role of the imaginary part of the
potential [3–14]. Compared to the passive systems, the optical
structures with PT symmetry have some extraordinary char-
acteristics, such as power oscillations [3,6,8], the breaking
of refraction symmetry [3,15], and unidirectional invisibility
[11,12]. The PT symmetry in optics is firstly observed in
two coupled waveguides [5,7], but it is practically difficult
to fabricate a large-scale optical lattice with PT symmetry.
Recently, the concept of the lattice has been generalized from
real space to synthetic dimensions [16–29], such as temporal
and spectral lattices. These synthetic lattices provide feasible
platforms to study PT symmetry in practice [18,19,22,29].
The temporal mesh lattice, as a representative, is proposed
by drawing an analogy between the pulse evolution in two
coupled fiber loops and the beam dynamics in spatial mesh
lattice. Through the temporal control of the gain and loss in
the loops, the PT symmetry in a large-scale lattice is firstly
carried out in experiment [19].

On the other hand, the Talbot effect is a traditional op-
tical phenomenon of self-imaging, which can be explained
satisfactorily by the Fresnel theory [30–34]. The revival dis-
tance, termed the Talbot distance, is related to the input
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wavelength and period. Considering the space-time duality
between diffraction and dispersion, the temporal Talbot effect
is proposed to achieve the reconstruction of the periodic
pulse train or increase the repetition rate of the incident
pulse train [35,36]. The temporal Talbot recurrence has found
many applications in optical communication, such as pulse
repetition rate multiplication [37–40], temporal cloaking [41–
43], and noiseless amplification [44]. Apart from a continu-
ous medium, Talbot self-imaging has also been extended to
discrete systems [45–53], such as waveguide arrays [46–53].
Differing from the continuous Talbot effect which is period
independent, the Talbot revival in waveguide arrays exists
only for input periods of 1, 2, 3, 4, or 6 [46,47,49,51]. In ad-
dition, the PT -symmetric Talbot effect is firstly proposed by
introducing balanced gain and loss to these arrays. The input
periods allowing Talbot effect are 1, 2, and 3; meanwhile, the
gain and loss parameter provides a new degree of freedom to
manipulate the Talbot distance [54]. Considering the fabrica-
tion difficulties, the temporal mesh lattice may be a more ac-
cessible platform to realize the PT -symmetric Talbot effect.

In this work, we shall investigate the PT -symmetric Talbot
effect in the temporal mesh lattice constructed by two coupled
fiber loops. The Talbot self-imaging can be supported below,
at, and even above the PT transition threshold. Unlike the
continuous Talbot effect, the Talbot recurrence in such dis-
crete lattice exists only if the period of incident pulse train is
chosen from certain specific values. The enumeration method
is employed to find the input periods allowing the Talbot
effect. Moreover, the lattice band structure can be tailored
by controlling the gain and loss, providing possibilities to
manipulate the Talbot distance. The Talbot distance could
further be tuned by imposing a linear phase modulation on the
input pulse train, which is also discussed in detail. Differing
from the temporal Talbot effect in the passive systems, the
pulse train manifests power oscillations in the Talbot process
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FIG. 1. (a) Schematic of two coupled fiber loops. The red (pur-
ple) loop has a gain factor of eγ/2(e−γ /2), and both loops change
between gain and loss alternately after every round trip. OS1 and
OS2 are optical switches, through which we inject the periodic
pulse train to the long loop and couple out the pulse sequences
from the loops. PD denotes photodiode. (b) Schematic of temporal
mesh lattice with PT symmetry. The pulse train is amplified in
the red path and attenuated in the purple path, which mimics the
antisymmetric distribution of the imaginary part of the complex
potential. (c) Distribution of the phase modulation ϕn.

due to the mode nonorthogonality. Moreover, the oscillation
amplitude is associated with both the gain and loss and the
gradient of the linear phase modulation.

II. STRUCTURE AND MODEL

Figure 1(a) shows the coupled fiber-loop circuit that con-
structs the temporal mesh lattice with PT symmetry. Two
fiber loops with a length difference �L are connected by a
50:50 directional coupler. The time interval caused by the
length difference is 2�T = �L/cF , where cF is the light
speed in the fiber. A periodic pulse train is injected into
the long loop. After passing through the coupler, two new
pulse sequences are generated and flow into two loops. A
round trip later, the pulse train in the short loop is advanced
compared to the one in the long loop, and then two pulse
trains will interfere at the coupler. The pulse sequences evolve
in stepwise manner with the increase of round-trip number,
which is an analogy of the beam dynamics in the spatial mesh
lattice [19,45]. The equivalent mesh lattice in the time domain
is illustrated in Fig. 1(b), where m is the times the pulse
trains enter the coupler, and n is the relative position of the
pulse in the train. To ensure the complex potential have an
antisymmetric distribution of the imaginary part, the gain and
loss are under the temporal control, and the gain factor of each

loop changes between eγ/2 and e−γ /2 alternately, where γ is
the gain and loss factor. The symmetric distribution of the real
part is accomplished by applying a phase modulation in the
short loop. We denote the complex amplitudes of pulses in the
short and long loops as um

n and vm
n , respectively. The pulse

dynamics reads

um
n = 1√

2
e(−1)mγ/2

(
um−1

n+1 + ivm−1
n+1

)
,

vm
n = 1√

2
e(−1)m+1γ /2

(
ium−1

n−1 + vm−1
n−1

)
eiϕn ,

(1)

in which ϕn is the function of the phase modulation [18,19].
ϕn could be denoted as

ϕn =
{
ϕ(n = 4K, 4K + 3)
−ϕ(n = 4K + 1, 4K + 2) , (2)

where ϕ is the amplitude of the phase modulation, and K ∈
Z. The distribution of ϕn is depicted in Fig. 1(c). The Bloch
mode in such lattice is(

um
n

vm
n

)
=

(
U0

V0

)
eiQn/4eiθm/2, (3)

where (U0, V0)T is the eigenvector; Q and θ are the transverse
Bloch momentum and longitudinal propagation constant, re-
spectively [18,19]. By inserting Eqs. (2) and (3) into Eq. (1),
the band structure is obtained and reads

cos Q = 8 cos2θ − 8 cosh γ cos ϕ cos θ

+ 4 cos2ϕ − 4 + cosh(2γ ). (4)

The PT transition threshold [18,19] is given by

γPT = min{cosh−1[2 cos ϕ −
√

cos(2ϕ)]; cosh−1(
√

2)}. (5)

As ϕ = π/2, the band structure is simplified greatly, which
can be expressed as

cos Q = 8 cos2θ − 4 + cosh(2γ ). (6)

The PT transition threshold is γPT = 0.88 according to
Eq. (5). The band structures with various gain and loss factors
are depicted in Fig. 2. As γ < γPT , the band structures shown
in Figs. 2(a) and 2(b) are completely real. For γ = γPT , the
exceptional points (EPs) arise at the edges of the Brillouin
zone [19,55,56], as shown in Fig. 2(c). As γPT < γ < γIM,
the band structure is partially complex [Fig. 2(d)], where
γIM = 1.15. As γ > γIM, the imaginary part becomes nonzero
at whole band structure, as shown in Figs. 2(e) and 2(f).
In addition, the band structures are symmetric in θ , and
the symmetric axis is the Q axis. The two bands are also
symmetric, and the symmetric axes are θ = ±π/2.

We consider the necessary condition that guarantees the
existence of the Talbot effect in such lattice. As shown in
Fig. 1(b), the input field has a period of N in the temporal mesh
lattice. Due to the discreteness in the transverse direction, N
is an integer. Accordingly, the incident pulse sequence has
a period of N�T in the coupled loops. To meet the periodic
boundary condition, the Bloch momentum should be in the
form of Ql = 2πl/N , where N = N/4, and l = 0, 1, …,
N − 1. For modes with Ql , the corresponding propagation

043832-2



PT -SYMMETRIC TALBOT EFFECT IN A TEMPORAL … PHYSICAL REVIEW A 98, 043832 (2018)

(a) =0

1

/

1
(b) =0.63 (c) = =0.88PT

(d) =1.06

Q/
1

/

1

1 1
Q/

1 1

(e) = =1.15IM

Q/
1 1

(f) =1.2

1st band

2nd band

3rd band
4th band

FIG. 2. (a)–(f) Band structures for γ = 0, 0.63, 0.88, 1.06, 1.15,
and 1.2, respectively. The blue and red lines represent the real and
imaginary parts of the propagation constant, respectively.

constants could be denoted as θj,l , where j is the band index
and is equal to 1, 2, 3, and 4. The propagation constant at the
third band is

θ3,l = arccos [
√

8 + 2 cos Ql − 2 cos(2γ )/4]. (7)

Due to the symmetric properties of the band structure, the
propagation constants at the first, second, and fourth bands
are θ1,l = −π + θ3,l , θ2,l = −θ3,l , and θ4,l = π − θ3,l , respec-
tively. The field evolution can be expressed as a superposition
of Bloch modes,(

um
n

vm
n

)
=

4∑
j=1

N−1∑
l=0

cj,l

(
Uj,l

Vj,l

)
exp (iQln/4) exp(iθj,lm/2),

(8)

where (Uj,l Vj,l )T and cj,l are the eigenvector and coefficient,
respectively. All modes contained in the field evolution should
be able to exhibit a revival to realize the Talbot effect. For a
component with θj,l , the revival exists only if θj,l satisfies

λj,lθj,l/2 = 2μj,lπ, (9)

where λj,l is the revival distance or the effective wavelength;
μj,l is a nonzero integer. λj,l is also an integer because the
temporal mesh lattice is discrete in the propagation direction.
As a result, θj,l should be a rational multiple of π . The Talbot
distance is

zT = LCM(λ1,0, λ1,1, . . . , λ1,N , λ2,0, . . . , λ4,N ), (10)

where LCM is the least common multiple.

III. RESULTS AND DISCUSSIONS

A. Talbot effect below PT transition threshold

We now focus on the Talbot effect below the PT transition
threshold. For N = 4, the Bloch momentum takes a value
of Q0 = 0 considering the periodic boundary condition. The
propagation constant at the third band is

θ3,0 = arccos [
√

10 − 2 cos(2γ )/4]. (11)

The corresponding propagation constants at the other
bands are θ1,0=−π+θ3,0, θ2,0=−θ3,0, and θ4,0 = π − θ3,0.

The Talbot effect will be supported as the mode with θ3,0

could exhibit recurrence during propagation. To illustrate the
above statement, we firstly assume that the revival of the mode
with θ3,0 is valid. θ3,0 has to satisfy Eq. (10) and thus be a
rational multiple of π . We denote θ3,0 as pπ/q, in which p

and q are the relative prime positive integers. Considering the
symmetric properties of the band structure, the propagation
constants at the other bands are θ1,0 = −π + pπ/q, θ2,0 =
−pπ/q, and θ4,0 = π − pπ/q. θ1,0, θ2,0, and θ4,0 are all
rational multiples of π , which enables the existence of the
Talbot effect. For odd p and odd q, the revival distances of the
modes with θ1,0, θ2,0, θ3,0, and θ4,0 are λ1,0 = 2q, λ2,0 = 4q,
λ3,0 = 4q, and λ4,0 = 2q, respectively. The Talbot distance is
thus zT = 4q which is the LCM of 2q and 4q. For odd p and
odd q or even p and odd q, the Talbot distance is still zT = 4q.
The gain and loss parameter γ could be derived from Eq. (11),
which can be expressed as

γ = arccosh
√

3 − 4cos2θ3,0. (12)

Due to 0 � γ < 0.88, θ3,0 belongs to [π/4, π/3). q is thus
4 at least, corresponding to the Talbot distance of zT = 16.
Considering the existence of noises, the longest valid prop-
agation distance is about ML = 400 steps according to the
experimental works reported in [20,26]. The set of available
Talbot distances is {16, 20, 24, …, 4q, …, ML}. We show
the Talbot distance zT varying with γ in Fig. 3(a). For γ = 0,
the propagation constant at the third band is θ3,0 = π/4, and
the Talbot distance is zT = 16. The pulse intensity evolution
or the Talbot carpet is shown in Fig. 3(b) where the incident
pulse train exhibits revival after every 16 steps. Note that the
pulse train at m = 8 has the same intensity distribution with
the initial one, but it accumulates a phase delay of π from
m = 0 to m = 8. For γ = 0.63, the Talbot distance is zT = 28
as θ3,0 = 2π/7, and the Talbot carpet shown in Fig. 3(c)
coincides well with the theoretical analysis.

For N = 8, the modes with Q0 = 0 and Q1 = π are con-
tained in the field evolution. The propagation constants at the
third band are

θ3,0 = arccos[
√

10 − 2 cosh(2γ )/4],

θ3,1 = arccos[
√

6 − 2 cosh(2γ )/4].
(13)

We use the enumeration method to study the existence
of the Talbot effect. To support the revivals, θ3,0 and θ3,1

should both be in the form of pπ/q, corresponding to the
revival distance 2q (even p) or 4q (odd p). Considering the
longest valid distance ML, q is no more than ML/2. Due to
4 � q � ML/2 and q/4 � p < q/3, θ3,0 and θ3,1 are from
a finite set, which enables the enumeration method [45]. It
turns out that the Talbot effect occurs only if γ is chosen as 0.
The corresponding Talbot distance is zT = 48, as illustrated in
Fig. 3(d). As N > 8, we also employ the enumeration method
to find the allowed values of N and γ . Considering the longest
valid propagation distance ML, N is no more than 2ML.
Otherwise, the adjacent pulses will exhibit ballistic spreading
separately within ML [19]. Due to the periodic incidence
condition and the discreteness in the transverse direction, the
set of N should be {4, 8, 12, …, 2ML}. After enumerating the
set of N, it turns out that the Talbot effect is not preserved as
N > 8. For N = 12, the pulse intensity evolution is shown in
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FIG. 3. (a) Talbot distance zT versus γ below the PT transition
threshold. (b), (c) Pulse intensity evolutions in the long loop for γ =
0 and γ = 0.63, respectively. The input period is chosen as N = 4.
(d), (e) Pulse intensity evolutions in the long loop for N = 8 and
N = 12. γ is chosen as 0. The green dotted lines denote the locations
of the Talbot images.

Fig. 3(e) where the spreading pattern is not periodic along the
propagation direction.

The fractional temporal Talbot effect also exists in the PT -
symmetric mesh lattice [45]. The repetition rate of the pulse
train could be increased two- or fourfold compared to the ini-
tial one in the Talbot process, as shown in Figs. 2(b)–2(d). The
fractional Talbot effect here could find applications in pulse
repetition rate multiplication and temporal cloaking [40,43].
Specifically, as the pulse sequence propagates from the integer
to the fractional Talbot distance, the pulse repetition rate is
scaled up by two or four times, which can be applied to the
pulse repetition rate multiplication [40]. From the fractional
to the integer Talbot distance, the pulse repetition rate is
scaled down by two or four times with the time gap between
adjacent pulses increased. The enlarged time gap will be more
beneficial to the realization of temporal cloaking within which
an event could be hidden from being detected [43].

The Talbot distance can also be manipulated by imposing
a linear phase modulation on the incident pulse train. We
denote the interval between the phase shifts on the adjacent
pulses as φ0. Accordingly, the input field of the temporal
mesh lattice has an initial momentum φ0 [Fig. 4(a)], which
leads to the Bloch momentum taking the value from a set of
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FIG. 4. (a) Schematic of the linear phase modulation imposed
on the input field. (b), (c) Talbot distance zT versus |φ0| for γ = 0
and 0.63, respectively. The incident period is N = 4. (d), (e) Talbot
carpets for φ0 = 0.36π and φ0 = 0.46π , respectively. γ is set as 0.
(f), (g) Talbot carpets for φ0 = 0.27π and φ0 = 0.54π , respectively.
γ is chosen as 0.63.

Ql = 2πl/N + φ0. For N = 4, the corresponding propaga-
tion constant at the third band is

θ3,0 = arccos[
√

2 cos φ0 + 8 − 2 cosh(2γ )/4]. (14)

The Talbot effect exists only if θ3,0 is a rational multiple
of π . We denote θ3,0 as θ3,0 = aπ/b, where a and b are the
relative prime positive integers. The Talbot distance is zT =
4b. Due to −π � φ0 � π and 0 � γ < 0.88, θ3,0 should
belong to [π/4, π/2). b is thus 3 at least, corresponding to
the Talbot distance of zT = 12. The set of available Talbot
distances is {12, 16, 20, . . . , 4b, . . . ,ML}. φ0 can be derived
from Eq. (14), which is expressed as

φ0 = arccos[8 cos2 θ3,0 − 4 + cosh(2γ )]. (15)

We show the Talbot distance zT varying with φ0 in
Figs. 4(b) and 4(c). For γ = 0, the Talbot distances are
zT = 44 and zT = 28 as φ0 = 0.36π and φ0 = 0.46π . For
γ = 0.63, the corresponding Talbot distances are zT = 40
and zT = 12 for φ0 = 0.27π and φ0 = 0.54π . The Talbot
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FIG. 5. (a), (b) Pulse intensity evolutions (after log transforma-
tion) for N = 4 and 8 at the PT transition threshold.

carpets shown in Figs. 4(d)–4(g) agree well with the above
theoretical analysis. For N = 8, the modes with Q0 = φ0

and Q1 = π + φ0 are contained in the field evolution. The
propagation constants at the third band are{

θ3,0 = arccos[
√

2 cos φ0 + 8 − 2 cosh(2γ )/4],

θ3,1 = arccos[
√−2 cos φ0 + 8 − 2 cosh(2γ )/4].

(16)

The Talbot self-imaging is not preserved in the presence
of the nonzero phase modulation, which is obtained from the
enumeration method. In addition, we consider the influences
of dispersion. At arbitrary step m, all pulses almost propagate
the same distances in the fiber loops. They are influenced
by the dispersion equally. As a result, the repetition rate of
the pulse train does not change while the pulse width is
broadened.

B. Talbot effect at PT transition threshold

The Talbot effect also occurs at the PT transition thresh-
old. For N = 4, the propagation constant at the third band
is θ3,0 = π/3, and thus the Talbot distance is zT = 12. The
Talbot carpet is illustrated in Fig. 5(a). For N = 8, the modes
with Q0 = 0 and Q1 = π are included in the field evolution.
The propagation constants at the third band are θ3,0 = π/3
and θ3,1 = π/2. It is supposed that the Talbot revivals should
exist because θ3,0 and θ3,1 are both rational multiples of
π . Contrary to expectation, the Talbot recurrence fails, and
the total energy of the pulse train increases almost linearly
along the propagation direction [Fig. 5(b)]. The reason is that
the modes with Q1 = π are excited at the EPs, where the
mode degeneracy occurs [3,8]. For N > 8, we investigate the
existence of the Talbot effect by the enumeration method. It
turns out that the Talbot effect is not supported in such cases.

The Talbot distance can also be manipulated by applying
a linear phase modulation to the incident pulse sequence. For
N = 4, the Bloch momentum is Q0 = φ0, and the propagation
constant at the third band is

θ3,0 = arccos[
√

2 cos φ0 + 2/4]. (17)

The Talbot effect exists only if θ3,0 is a rational multiple
of π except the case where the modes at EPs are excited.
θ3,0 should also be in the form of θ3,0 = aπ/b, and the Talbot
distance is zT = 4b. Considering π/3 � θ3,0 < π/2, b is 3 at
least. The set of available Talbot distances is {12, 16, 20, …,
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FIG. 6. (a) Talbot distance zT and oscillation amplitude EPO

(after log transformation) varying with |φ0|. (b), (c) Pulse intensity
evolutions (after log transformation) with φ0 being 0.45π and 0.87π ,
respectively. The incident period is N = 4.

4b, …, ML}, as illustrated in Fig. 6(a). Meanwhile, significant
power oscillations occur as the modes included are excited
near the EPs due to the nonorthogonality of modes [3,8].
The oscillation amplitude EPO is obtained by calculating
the difference between the maximum and minimum values
of total energy in the process of Talbot self-imaging. Note
that the total energy is normalized by the total energy of
the incident pulses. We illustrate the oscillation amplitude
EPO varying with |φ0| in Fig. 6(a). The oscillation amplitude
increases almost exponentially with |φ0| as the degree of
nonorthogonality is enlarged. For φ0 = 0.45π , the Talbot dis-
tance is tuned to zT = 32, as shown in Fig. 6(b) where slight
power oscillations occur. For φ0 = 0.87π , the Talbot distance
is zT = 60, as illustrated in Fig. 6(c) where the oscillations
are stronger than that in Fig. 6(b). The power oscillations,
as unique features of the PT -symmetric Talbot effect, could
find applications in tunable intensity amplifiers. Compared to
the fractional Talbot images in the passive systems, the pulse
trains experience various degrees of amplification at different
distances, through which the tunability of the amplification
factor could be carried out. Moreover, the amplification factor
can further be manipulated by controlling the gradient of the
linear phase modulation.

C. Talbot effect above PT transition threshold

The Talbot self-imaging even exists above the PT transi-
tion threshold accompanied with dramatic power oscillations.
For N = 4, the modes contained in the field evolution are
excited at the center of the Brillouin zone. The propagation
constant at the third band could also be denoted as Eq. (11).
For γ < γIM, θ3,0 is a real number. Considering the symmetric
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log transformation) for γ = 1.09 and 1.12, respectively.

properties of band structure, θ1,0, θ2,0, and θ4,0 are all real
numbers. The Talbot effect exists only if θ3,0 is a rational
multiple of π . We denote θ3,0 as pπ/q, and the Talbot distance
is zT = 4q. Due to π/3 < θ3,0 < π/2, q is 4 at least. The
set of available Talbot distances should thus be {16, 20, 24,
…, 4q, …, ML}. The power oscillations also exist in the
Talbot process. As shown in Fig. 2(d), two EPs appear at
the band structure, and they are approaching the center of
the Brillouin zone with the increase of γ . Because the modes
contained in the field evolution are excited at the center of
the Brillouin zone, the degree of nonorthogonality is enlarged
with the increase of γ . The oscillation amplitude is thus
enlarged. We depict the Talbot distance zT and oscillation
amplitude EPO varying with γ in Fig. 7(a). As γ = 1.09,
the Talbot distance is tuned to zT = 48 and the amplitude
of the power oscillations is EPO = 10.37. For γ = 1.12,
the Talbot distance becomes zT = 36, and the oscillation
amplitude is EPO = 23.6. We show the corresponding Talbot
carpets in Figs. 7(b) and 7(c), which agree well with the above
theoretic analysis. For γ = γIM, the EP lies at the center of
the Brillouin zone. The total energy increases almost linearly
along the propagation direction, leading to the failure of the
Talbot effect. As γ > γIM, the band structure is completely
complex. As shown in Fig. 2(f), the modes contained have
the propagation constants with different imaginary parts. The
input field distribution is impossible to recover as these modes
experience various degrees of amplification or attenuation.
Therefore, the Talbot effect will not be preserved as the
modes contained are excited at the complex zone of the band
structure. For N > 4, we also employ the enumeration method
to discuss the existence of the Talbot effect. As a result, the
Talbot recurrence disappears.
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FIG. 8. (a) Band structures for ϕ = 0 and γ = 0.5. (b) Band
structure for ϕ = π/4 and γ = 0. The modes contained in the field
evolution for N = 4 and 8 are represented as the cyan triangles and
black diamonds, respectively. (c), (d) Talbot carpets for N = 4 and
8, respectively. ϕ and γ are chosen as π/4 and 0, respectively.

D. Other modulation phase ϕ

We now provide a brief discussion of the Talbot effect with
other modulation phase ϕ. For ϕ = 0 or π , the band structure
becomes

cos Q = 8 cos2θ − 8 cosh γ cos θ + cosh(2γ ). (18)

As γ = 0, the Talbot effect only exists for N = 2, 4, or 8,
which has been studied in the previous work [45]. The corre-
sponding Talbot distances are zT = 8, 8, and 24, respectively.
Note that both the phase modulation and the gain and loss
vanish in such cases. As γ > 0, the imaginary part of the
propagation constant is nonzero at the center of the Brillouin
zone [Fig. 8(a)]. For arbitrary choice of N, the modes with
Q = 0 are contained in the field evolution necessarily. As a
result, the Talbot effect will not be supported. For ϕ = ±π/4,
the band structure reads

cos Q = 8 cos2θ − 4
√

2 cosh γ cos θ − 2 + cosh(2γ ). (19)

The Talbot effect occurs only if γ = 0, which is obtained
through the enumeration method. For N = 4, the propagation
constants are θ1,0 = −7π/12, θ2,0 = −π/12, θ3,0 = −π/12,
and θ4,0 = 7π/12, as illustrated in Fig. 8(b). The correspond-
ing revival distances are all 48, leading to the Talbot distance
of zT = 48. For N = 8, the Talbot distance is also zT = 48
as the set of propagation constants is {±π/12, ±π/4, ±π/2,
±7π/12} [Fig. 8(b)]. The Talbot effect is not supported for
other input periods. The Talbot carpets shown in Figs. 8(c)
and 8(d) agree well with the above theoretical analysis. As
ϕ = 3π/4 or −3π/4, the Talbot self-imaging also only ex-
ists under the same conditions, and the Talbot distance is
zT = 48.
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Finally, an experimental proposal is suggested. The input
pulse sequence comes from a mode-locked laser and pos-
sesses a repetition rate of 5 GHz. Through an optical switch
driven by an arbitrary waveform generator (AWG), the pulse
train is injected to the fiber loop. The time delays of the fiber
loops are about tens of nanoseconds. By inserting an optical
delay line in the long loop, the time interval between two
fiber loops could be adjusted precisely. The gain, which is the
requirement of PT symmetry, is provided by erbium-doped
optical fibers (EDFs). By employing a Mach-Zehnder inten-
sity modulator (MZM) driven by AWG, the temporal control
of the gain and loss is realized in each loop. Considering the
time delays of the fiber loops, the switch between gain and
loss should have a speed of dozens of MHz. Moreover, it does
not require a very sharp change between gain and loss. The
switch begins after the pulse train quits the MZM. Before the
sequence enters the MZM again, the MZM could have enough
time to accomplish the switch between gain and loss, i.e., at
the nanosecond level. The phase modulation is accomplished
by a phase modulator (PM), which is also driven by the AWG.
All of the modulators and AWGs should possess a bandwidth
of ∼10 GHz. The pulse trains can be coupled out from the
coupled loops through optical switches and detected by the
photodiodes (PDs). In addition, the insertion loss caused by
these devices can be compensated by the EDFs.

IV. CONCLUSIONS

In conclusion, we investigate the PT -symmetric Talbot
effect in the temporal mesh lattice constructed by the two
coupled fiber loops. We expand on the Talbot recurrence
below, at, and above the PT transition threshold. The Talbot
self-imaging exists only for an incident period of N = 4
or 8. The Talbot distance could be flexibly manipulated by
controlling the gain and loss or imposing a linear phase
modulation on the input pulse train. The set of available
Talbot distances is {12, 16, 20, …, 4q, …, ML}, where q

is a positive integer, and ML is the longest valid propagation
distance. Additionally, significant power oscillations exist in
the Talbot process as the modes are excited near the EPs, and
the oscillation amplitude could be controlled through varying
the gain and loss and the gradient of the linear phase modula-
tion. The study may find great applications in pulse repetition
rate multiplication, temporal cloaking, and tunable intensity
amplifiers.
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