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Clauser-Horne-Shimony-Holt Bell inequality test in an optomechanical device
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We propose here a scheme based on the measurement of quadrature phase coherence that is aimed at testing
the Clauser-Horne-Shimony-Holt Bell inequality in an optomechanical setting. Our setup is constituted by two
optical cavities dispersively coupled to a common mechanical resonator. We show that it is possible to generate
Einstein-Podolsky-Rosen–like correlations between the quadratures of the output fields of the two cavities and,
depending on the system parameters, to observe the violation of the Clauser-Horne-Shimony-Holt inequality.
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I. INTRODUCTION

In his seminal work, motivated by the work by Einstein,
Podolsky, and Rosen [1], Bell showed that theories relying on
local (possibly hidden) variables, which are bound to satisfy
certain inequalities, cannot describe all quantum-mechanical
predictions [2]. From the point of view of quantum theory,
a violation of these Bell inequalities (BIs) necessarily im-
plies entanglement between spatially separated subsystems
[3]. Beyond their intrinsic conceptual relevance, BI tests have
potentially important technological repercussions, allowing
one to certify the security of quantum cryptographic schemes
[4], making it relevant to explore the possibility of performing
such tests in different setups and for different physical sys-
tems.

Since the work of Bell, multiple experimental realizations
of BI tests have been conducted [5–18], the first one being
performed by Freedman and Clauser [5]. However, the confir-
mation that, without any additional assumptions, i.e., closing
all loopholes, predictions offered by locally realistic theories
cannot reproduce the experimental results has been obtained
only in the last few years [15–17]. Even more recently, based
on an early theoretical proposal [19] and resorting to an
experimental setup similar to that employed in the Bell test
performed by Ou and Mandel [20], a BI test relying on
continuous variable measurement has been performed [18].

Owing to the recent progresses in the concomitant manip-
ulation of mechanical and optical degrees of freedom at the
quantum level [21,22], cavity optomechanical systems repre-
sent one of the cornerstones for future quantum information
and communication technologies. On a more fundamental
level, these systems represent one of the most promising
platforms for experimental verification of physical theories,
with applications ranging from gravitational wave detection
[23] to the potential observation of quantum gravitational
effects [24] and entanglement between nearly macroscopic
mechanical objects [25–29].
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In this spirit, in this article, we investigate the test of the
Clauser-Horne-Shimony-Holt (CHSH) [30] BI in an optome-
chanical system. Our main focus is a two-cavity optome-
chanical setup, either in the microwave or in the visible-light
regime, allowing for unrivaled flexibility in the choice of
detectors and transmission lines for loophole-free tests. In
addition, the nature of the optomechanical interaction char-
acterizing our proposal opens up the possibility for BI tests in
mixed microwave and optical settings [31]. The two-cavities–
one-mechanics setup, which we consider here for the BI test
was discussed in the past in connection with the entanglement
properties of optomechanical systems [25,31,32] and was
experimentally realized in the context of multimode quantum
signal amplification of microwaves [33]. While other ideas
for testing BIs in an optomechanical setting have recently
been proposed [34,35], they are based on a rather different
setup than the one discussed here, for which, due to the
sequential nature of the pulsing scheme, closing all loopholes,
in particular the locality loophole, requires addressing extra
technical difficulties, as discussed in the supplementary mate-
rial of Ref. [34] which are not present in the setup discussed
here. On more general grounds, it is worth mentioning that
closing the locality loophole in a microwave setting represents
a formidable challenge due to the necessity of the noiseless
distribution of microwave signals. In this sense an all-optical
realization of our proposal would thus seem favorable. In the
following, however, in order to underline the relation to the
present state-of-the-art experimental capabilities, we mainly
focus on the experimental parameters of the microwave setup
discussed in Ref. [33].

While the previous BI tests mentioned above rely either
on the polarization degree of freedom of optical photons
[5–9,13,14,16,17], or on different realizations of two-level
systems in a condensed-matter context [10–12,15], our pro-
posal follows the ideas suggested by Tan et al. [36,37] and
considers the possibility of a CHSH BI violation through
the detection of the quadrature phases; in our case, in an
optomechanical setting.

The paper is organized as follows: In Sec. II we introduce
the model and discuss the conditions for the violation of the
CHSH BI. In Sec. III we describe the numerical results for the
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violation of the BI and we show its sensitivity to variations
of other system parameters. Lastly, we discuss the effect of
various noise sources on the violation of the inequality in our
setup.

II. MODEL AND EQUATION OF MOTION

The setup considered here is constituted by two electro-
magnetic resonant cavities (A and C)—either in the optical
or microwave regime—dispersively coupled to a mechanical
resonator. Following the standard description of optomechan-
ical systems [22,38–41], the Hamiltonian for the system can
be written as

H = ωaa
†a + ωcc

†c + ωmb†b

+ (gaa
†a + gcc

†c)(b† + b), (1)

where a, c, and b represent the lowering operators associated
with cavity A and C and the mechanical modes, respectively;
ωa, ωc, ωm are their resonant frequencies and ga and gc are the
single-photon radiation-pressure couplings for modes a and c
with the mechanical mode.

Along the lines of the experiment discussed in Ref. [33],
we assume that each cavity is driven by a strong coherent
tone αin,a and αin,c (for cavity A and C, respectively). We
consider that the driving of each cavity is detuned from the
cavity resonance: we assume cavity A to be driven with a
frequency ωd,a = ωa + ωm (blue mechanical sideband) and
cavity C with a frequency ωd,c = ωc − ωm (red mechanical
sideband). In our analysis, we employ the usual description of
the system in terms of quantum Langevin equations [42] for
the fluctuations around the cavity fields induced by the drives.
In this scenario, we consider the linearized dynamics of the
fluctuations around the pump tones and replace a → a + αA

and c → c + αC (see Appendix A).
Moving to a frame rotating at ωd,a and ωd,c for modes a and

c respectively and, defining �x = ωd,x − ωx (x = a, c), we
obtain the following equations of motion for the fluctuations:

ȧ =
(
−i�a − κa

2

)
a − iG+(b† + b) + √

κe,aai + √
κi,aaI,

(2a)

ċ =
(
−i�c − κc

2

)
c − iG−(b† + b) + √

κe,cci + √
κi,ccI,

(2b)

ḃ =
(
−ωm − γ

2

)
b − iG+(a† + a) − iG−(c† + c) + √

γ bi,

(2c)

where G+ = gaαA and G− = gcαC are the linearized optome-
chanical couplings, and κa, κc, and γ are the linewidths of cav-
ities A, C, and the mechanical resonator. Moreover, we have
defined ai, aI, ci, cI, bi to be the input operators associated
with the external input and internal fields, respectively (i and
I ), for cavities A and C and the mechanics, respectively.

It is possible to obtain the expression of the cavity fields in
frequency space by Fourier transforming Eqs. (2a)–(2c). The
transformation leads to the following set of linear algebraic

equations:

−iωa =
(
−i�a − κa

2

)
a − iG+(b† + b)

+√
κe,aai + √

κi,aaI, (3a)

−iωc =
(
−i�c − κc

2

)
c − iG−(b† + b)

+√
κe,cci + √

κi,ccI, (3b)

−iωb = −γ

2
b − iG+(a† + a)

− iG−(c† + c) + √
γ bi, (3c)

which can be solved through standard techniques. Further-
more, according to the input-output theory [42], the operators
for the output fields of cavity A are related to the cavity
operators and to the input noise operators by the relation
ao = √

κe,aa − ai, where κe,a is the external coupling rate for
cavity A—and analogously for cavity C.

These relations, combined with the solution of Eqs. (3a)–
(3c), allow us to map the input cavity modes to the output
fields ao, co in the frequency domain as

ao = Adai + Axc
†
i + Na, (4a)

co = Cdci + Cxa
†
i + Nc, (4b)

where the operators Na (Nc) account for the noise associated
with the mechanical resonator and the internal losses of the
cavity. In addition to these noise sources, we consider that
the external ports of the device represent potential further
noise sources (see Appendix B). While the direct solution
of Eqs. (3a)–(3c) outlined above is sufficient to determine
the value of the coefficients in Eq. (4a), a deeper physical
intuition into the mechanism leading to the quantum cor-
relations among the modes—required for the violation of
the BI—can be obtained by resorting to the rotating-wave
approximation (RWA): the full derivation of the expressions
for the coefficients given in Eq. (4a) within the RWA is given
in Appendix B, where we also compare RWA results with
the full solution of Eqs. (3a)–(3c), which shows that, as it
is usually the case, RWA and full results coincide in the
so-called sideband resolved regime(ωm/κ � 1). We outline
here the key points of such derivation. To do this, we write
the equations of motion (EOMs) in a frame rotating at the
resonant frequency of each mode

ȧ = −κa

2
a − iG+(b† + b exp[−2iωmt])

+√
κe,aai + √

κi,aaI, (5a)

ċ = −κc

2
c − iG−(b† exp[2iωmt] + b)

+√
κe,cci + √

κi,ccI, (5b)

ḃ = −γ

2
b − iG+(a† + a exp[−2iωmt])

− iG−(c + c† exp[2iωmt]) + √
γ bi, (5c)

the RWA approximation consists of neglecting the (fast-
rotating) time-dependent terms in Eqs. (5a)–(5c), leading to
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the following simplified EOMs:

ȧ = −κa

2
a − iG+b† + √

κe,aai + √
κi,aaI, (6a)

ċ = −κc

2
c − iG−b + √

κe,cci + √
κi,ccI, (6b)

ḃ = −γ

2
b − iG+a† − iG−c + √

γ bi. (6c)

We rewrite Eqs. (6a)–(6c) in terms of two Bogoliubov
operators

ηa = cosh ξc + sinh ξa†, (7a)

ηc = cosh ξa + sinh ξc†, (7b)

where cosh ξ = G−/G, sinh ξ = G+/G, with G =
(G2

− − G2
+)1/2 and rewrite Eqs. (6a)–(6c) in terms of the

Bogoliubov modes ηa and ηc as

η̇a = −κ

2
ηa − iGb + √

κeηa,i + √
κiηa,I, (8a)

η̇c = −κ

2
ηc + √

κeηc,i + √
κiηc,I, (8b)

ḃ = −γ

2
b − iGηa + √

γ bi, (8c)

where ηa,i = cosh ξci + sinh ξa
†
i , ηc,i = cosh ξai + sinh ξc

†
i .

Equations (8a)–(8c) thus show that it is possible to recast the
problem in terms of the dynamics of two operators (ηa and ηc)
resulting from the action of a two-mode squeezing operator
on the original field operators, suggesting that the output
modes of the field are entangled and therefore that, potentially,
nonlocal correlations are present. For an incoming signal at
the resonance frequency of either cavity, the RWA analysis
of the problem allows us to establish that, in the limit of
large cooperativity (C− = 4G2

−/κγ � 1), we have that Ad =
2re/(1 − r2) − 1, Cd = −2rer

2/(1 − r2) − 1, Ax = −Cx =
2rer/(1 − r2), where r = G+/G− and re = κe/κ is the ratio
of the external coupling rate to the total losses of the cavities.

Nevertheless, in our analysis, unless explicitly stated, we
show the results for the full solution of Eqs. (3a)–(3c) (i.e.,
without resorting to the RWA) and we assume that both
cavities have the same environment coupling properties.

In our discussion, we consider that, in addition to the strong
coherent tone αA and αC, cavity A and cavity C are also driven
by small coherent input fields αi and χi, respectively. In this
scenario, the relation between input and output fields given by
Eq. (4a) allows us to evaluate the response at the output of
each cavity to the fields αi and χi. The correlations between
ao and co introduced by the combined dynamics of the two
cavities and of the mechanical resonator represent the key
ingredient for the generation of the correlations required to
violate the CHSH BI.

As anticipated, the protocol that we have in mind is based
on the measurement of the field intensity at two pairs of
detectors D1, E1 and D2, E2 corresponding to the photode-
tection scheme of the Ref. [36] after mixing the signals ao and
co emerging from the optomechanical device with two local
oscillators (LOs). This detection scheme is closely related to
a balanced homodyne detection setup; in the case discussed
here, however, both signals originating from the beam splitters

FIG. 1. Schematic of the detection scheme. Outputs of the cav-
ities are directed to different beam splitters, where they are mixed
with local oscillator (LO) fields. The mixed signals are sent to
photodetectors D1, E1, D2, and E2, characterized by fields d1, e1, d2,
e2, respectively. Unlike the case of (balanced) homodyne detection
schemes, where the signals emerging from the two branches of each
beam splitter—in our case directed towards detectors (i) D1 and E1
and (ii) D2 and E2—are combined, we keep track of all four signals
and their intensity correlations described by Eqs. (9a)–(9d).

are recorded in order to measure the required correlations.
More specifically, the outputs ao and co of the cavities are
directed to two detectors, constituted by a beam splitter and
two photodetectors each (see Fig. 1). At each detector the
signal field is mixed with a coherent field of a LO β1,2

by a 50:50 beam splitter. The signals originating from the
beam splitters are then measured at the photodetectors D1,
E1, D2, and E2. To evaluate the correlations needed for the
verification of the violation of the CHSH inequality, we define
the correlation pairs D1, E1 and D2, E2 for different phases
of the LOs as

R++(θ, φ) = 〈d†
1d

†
2d2d1〉, (9a)

R+−(θ, φ) = 〈d†
1e

†
2e2d1〉, (9b)

R−+(θ, φ) = 〈e†1d†
2d2e1〉, (9c)

R−−(θ, φ) = 〈e†1e†2e2e1〉, (9d)

where d1, e1 and d2, e2 are the fields associated with each
of pair of photodetectors, and θ and φ represent the coherent
field phases of each LO. In the language of quantum optics,
Rij (i, j = ±) represent the intensity correlations among pho-
tocurrents in the four detectors, e.g., R+− measures corre-
lations between the photocurrent in D1 and that in E2. The
setup we are discussing here is analogous to the more con-
ventional polarization experiments [5–9,13,14,16,17]: in these
experiments each channel (D1, E1 and D2, E2) is selected by
adjusting the angle of a polarizer at each detection branch. The
parallel with the polarization experiments is represented by
the fact that, by changing the phase of the LO, we are selecting
the detection channel. We are thus essentially performing a
quadrature measurement of the output fields originating from
of the optomechanical system, since it is possible to relate
Rij in Eqs. (9a)–(9d) to the quadratures Xa (θ ) = (a†

oe
iθ +

aoe
−iθ )/

√
2 and Xc(φ) = (c†oeiφ + coe

−iφ )/
√

2 of the out-
put fields given in Eqs. (4a) and (4b). More specifically,—
focusing, for instance, on the left-hand detector in Fig. 1—we
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can write the fields d1 and e1 as the result of the mixing
between the LO field bLO1 and ao, the output field of cavity
A, as

d1 = √
η1ao + i

√
1 − η1bLO1, (10a)

e1 = √
η1bLO1 + i

√
1 − η1ao, (10b)

where η1 is the transmissivity of the beam splitter associated
with the left-hand detector of Fig. 1. Therefore, as discussed
more in detail in Appendix C, we can express the correlators
in Eqs. (9a)–(9d) in terms of ao and co.

Regardless of the physical implementation, either in the
optical or the microwave frequency range, the original for-
mulation of the CHSH inequality is given by the following
relation:

|S| = |E(θ1, φ1) + E(θ2, φ2) + E(θ1, φ2) − E(θ2, φ1)| � 2,

(11)

where, in our case, we have

E(θ, φ) = R++ + R−− − R−+ − R+−
R++ + R−− + R−+ + R+−

. (12)

In terms of correlations of the original optomechanical fields
ao and co, Eq. (12) can be written as

E = C cos[θ̄ − φ̄] + D cos[θ̄ + φ̄], (13)

where

C = 2|〈a†
oco〉|/Z,

D = 2|〈aoco〉|/Z,

with Z = 2〈a†
oc

†
ocoao〉1/2 + 〈a†

oao + c
†
oco〉 and we have ab-

sorbed the phases of 〈aoco〉 and 〈a†
oco〉 into the definitions

of θ̄ and φ̄, and |β1| = |β2| = |β| = 〈a†
oc

†
ocoao〉1/4

. It can be
shown that the latter condition maximizes the violation of the
inequality given in Eq. (11)—see Appendix C.

The maxima of S occur when θ̄ = 0, φ̄ = −ζ , θ̄ ′ = −π/2,
and φ̄′ = ζ and with a maximum value is given by

S = 2
√

2
√

C2 + D2 sin (ζ − ζ0), (14)

where tan(ζ0) = (C + D)/(C − D). It is clear that the CHSH
inequality given in Eq. (11), can be translated into the condi-
tion [36]

F = C2 + D2 < 1
2 . (15)

The BI test in the optomechanical setting described by
Eq. (15) can be straightforwardly evaluated by considering the
definitions of C and D, and the input-output relations given by
Eqs. (2a)–(2c).

III. RESULTS AND DISCUSSION

In Fig. 2 we plot the value of F as a function of the ratio
between the linearized pump strengths r = G+/G− and the
coherent inputs αi and χi in the absence of noise sources for
parameters compatible with present-day experimental capa-
bilities. From this figure one can see that there is a finite
parameter region for which the inequality is violated. In the
limit of large cooperativity (C− � 1), the maximum value of

(b)

(a)
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FIG. 2. (a) Value of F as a function of αi and r = G+/G−. Pa-
rameters: κa = κc = κ = 0.1, κe = 0.9κ , γ = 1×10−5—all energies
are expressed in units of ωm (h̄ = 1) throughout the manuscript. The
dashed curve corresponds to the exact boundary region F = 1/2, as
determined from the solution of Eqs. (2a)–(2c) (b) Boundary F =
1/2 for different values of re = κe/κ . Smaller regions are associated
with smaller values of re. For αi � 0.2 it is possible to observe a
crossing between boundary regions for different values of re, hinting
at a nontrivial relation between entanglement and violation of the
CHSH BI (see text). The solid line corresponds to the exact boundary
as in panel (a), and the dashed line corresponds to the expression
given in Eq. (16).

r leading to a violation of the BI is obtained for αi, χi → 0 and
is given by r̄ = (15 + 4

√
14)−1/2. Furthermore, the maximum

violation of the BI F = 1 is attained for αi, χi → 0 and
r → 0+. More specifically, for large cooperativity (C− � 1),
the value of F exhibits a discontinuity at αin(= χin ) = 0,
r = 0. As expected, for G+ = 0 (r = 0) modes ao and co are
not entangled and F = 0.

We note here that the r dependence of the function F is
contrasted by the r dependence of entanglement. From the
definition of the parameters Ad and Ax, following Eq. (4a),
it is possible to see that, since the squeezing parameter z =
arctanh[Ax/Ad] → ∞ for r → 1−, one obtains an infinitely
squeezed state in this regime. This seemingly contradictory
conclusion, analogous to the one derived in Refs. [36,37], is,
however, corroborated by observing that, for mixed states,
the relation between entanglement and nonlocality exhibits
aspects that are still not fully understood [3]: In particular it
can be shown that maximally entangled states (r → 1−, in our
case) do not necessarily violate locality constraints, which,
conversely, can be violated by less entangled states [43–45].
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In our setup, this complex interplay between entanglement
and nonlocality is further exemplified by the crossing between
the F = 1/2 boundary regions for different values of re: as
can be seen in Fig. 2 for intermediate values of the coherent
drive (αi � 0.1–0.2 in this case), larger values of re lead to a
reduction of the value of r for which the violation is observed.

It is clear that a violation of the CHSH inequality is
possible only for small values of the input fields αi and
χi, and for small values of r , implying |Ad| = |Cd| ≈ 1 and
|Ax| = |Cx| � 1. Therefore, in spite of the fact that the setup
proposed here has been used for nearly-quantum-limited am-
plification [33], the requirements for the observation of the
violation of the BI dictate that 〈a†

oao〉 � |Ad|2 〈a†
i ai〉 ≈ 0.1

and 〈c†oco〉 � |Cd|2 〈c†i ci〉 ≈ 0.1. This condition combines the
concomitant requirements that the value of F and the output
signals have to be maximized. To gain better insight into the
range of physical parameters for which the BI inequality is vi-
olated, we can establish an approximate analytical expression
for the maximum value of αi violating the inequality as

αi =
√

rer̄ (1 − 4r̄ − 6r̄2 − 12r̄3)/(K0r̄2 +K1r̄ +K2), (16)

where K0 = 28r2
e , K1 = 2(1 − 2re + 4r2

e ), and K2 = 2(1 −
re)2. Equation (16) is obtained as a second-order expansion of
F in the input field intensity α2

i evaluated here for the RWA
solution of the problem.

So far, the discussion has focused on the ideal situation
for which the effect of noise is negligible. In the following,
we address the role played by the different environmental
noise sources. In particular, we take into account the presence
of a thermal environment for the mechanical resonator (n̄m,
“mechanical noise”), for the two resonant cavities (n̄i, “inter-
nal noise”) and to the noise associated with the coupling of
the two resonant cavities to the input and output ports (n̄e,
“external noise”). Without loss of generality, in Eq. (17) we
have assumed that the noise temperature for the two cavities
is equal and that all noise sources are independent. If we
consider the effect of the noise on F to first order, we can
write

F = F0 − Fmn̄m − Fen̄e − Fin̄i, (17)

where F0 is the quantity previously considered for the viola-
tion of the BI, the second term represents the contribution as-
sociated with the mechanical noise, and the third (fourth) term
describes the external (internal) noise contribution due to the
thermal environment associated with the cavity modes. The
sensitivity of the BI violation to the noise terms is encoded in
the coefficients Fe, Fi, and Fm: the larger the coefficients, the
more each noise term contributes to the reduction of the value
of F and, therefore, to the reduction of the region for which
the BI is violated. An approximate expression for the factors
appearing in Eq. (17) can be obtained by expanding the RWA
approximation for F0, Fm, Fe, Fi, to lowest order in 1/C−:

F0 = (2r − 1)2 + 4r2, (18a)

Fm = −2
(2r − 1)2 + 2r2(10r − 1)

C−
, (18b)

(a)

(b)
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FIG. 3. Dependence of the value of F (for r → ropt and αi,
χi → 0) on the thermal population baths associated with the me-
chanical noise (n̄m, blue—flattest—curve), internal noise (n̄i, red—
intermediate—curve), and external noise (n̄e, black—steepest—
curve). Solid lines correspond to the exact solution from the
equations of motion with each noise source considered indepen-
dently. Dashed lines are the approximations given in Eq. (7a) and
Eqs. (18a)–(18d). Values of F above the horizontal dashed line
at F = 1/2 correspond to the violation of the BI. Parameters: (a)
κ = 0.01, κe = 0.9κ , G− = 0.2, γ = 1×10−5; (b) κe = 0.99κ , all
other parameters are the same as in panel (a).

Fe = − (2r − 1)2 + r2(16r − 1)

r

r2
e + r2

i

re
, (18c)

Fi = − (2r − 1)2 + r2(16r − 1)

r
ri. (18d)

The portion of the noise associated with the mechanics and
described in the linear approximation byFm—see Eq. (18b)—
can be modified by tuning the parameter C−. This dependence
can be understood as the result of a sideband cooling process
operated by the drive of cavity C, which is driven on the
red sideband. In addition, Fi can be reduced by minimizing
the contribution of internal losses—see Fig. 3—, whereas Fe

cannot be altered significantly and thus represents the most
critical parameter.

This conclusion is corroborated by Fig. 4, where we have
depicted the separate effects of different noise sources on
the value of F. It is clear that the input noise n̄e represents
the most sensitive parameter in the violation of the CHSH
inequality. In this perspective, we thus select a value of r

that, while representing a suboptimal choice (i.e., F < 1) for
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FIG. 4. Noise dependence of the F = 1/2 boundary in the pres-
ence of a finite coherent input. Smaller regions correspond to a large
value of the noise. All parameters are the same as in Fig. 2(b).

the noiseless case, allows for the largest possible value of
ne and ni compatible with the violation of the BI given in
Eq. (15). In the linearized regime described by Eq. (17), and
in the presence of cavity (external and internal) noise only, the
relation describing the boundary for the violation of the BI can
be expressed as

F0(r ) + Fe(r )ne + Fi(r )ni = 1
2 , (19)

where we have supposed that re is held fixed. From
Eqs. (18a)–(18d) we can write Eq. (19) as

F0(r ) − 1
2 + FT(r )nT = 0, (20)

where Fi/ri = Fire/(r2
e + r2

i ) = FT and nT = (r2
e +

r2
i )/rene + rini. From Eq. (20) nT = [1/2 − F0(r )]/FT (r )

can be straightforwardly maximized, yielding the optimal
value for r = ropt.

We would like to stress, however, that the contribution
associated with ne assumes that the baths for the cavities are
uncorrelated with each other, which represents a somewhat-
worst-case scenario. The potential presence of correlated
noise can be considered, from the perspective of the BI
violation, as a contribution to the input signals αi and χi.

For a microwave setting, we can assume that the cav-
ity internal and external thermal populations are set by the
base temperature of the dilution fridge (T = 7 mK, ωc =
2π×10 GHz) corresponding to ni = ne � 0.015, whereas for
an optical setting at room temperature (T = 300 K, ωc =
2π×500 THz) we have ni = ne � 0.02. While in both cases
the deviation from ideality is significant, the BI is still clearly
violated both for the microwave setting (F � 0.56 for re =
0.9, F � 0.58 for re = 0.99) and for the optical case (F �
0.59 for re = 0.9, F � 0.60 for re = 0.99). In Fig. 3, it is pos-
sible to note that, for parameters compatible with microwave
realizations of the setup discussed in this article, the mechan-
ical noise does not contribute to the reduction of F. This
effect is closely related to the physics of the quantum-limited
amplifier discussed in Ref. [33]: in both cases the mechanics,
while mediating the interaction required to generate the output
fields, is concomitantly cooled by the pumping tones.

IV. CONCLUSION

We have discussed here a potential CHSH Bell inequality
test based on a quadrature phase coherence measurement in
an optomechanical setting. We have shown that it is possible
to violate the CHSH Bell inequality in an optomechanical
setting by weakly driving a two-cavity, one-mechanics device.
Furthermore, we have demonstrated that, while the thermal
noise associated with cavities and mechanical degrees of free-
dom degrades the performances of the device proposed here,
the latter is naturally suppressed by the working principle
of our device. We hypothesize that our proposal could be
implemented either in an optical or in a circuit QED setting.
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APPENDIX A: EQUATIONS OF MOTION

We derive here the equations of motion for the two cavities,
one mechanical resonator system given in Eqs. (2a) and (2c)
of the main text. In the presence of a strong coherent tones at
blue (red) sideband for cavity A (C), the quantum Langevin
equations associated with the Hamiltonian given in Eq. (1) of
the main text can be written as

ȧ = −
(
iωa + κa

2

)
a − igaa(b + b†)

+√
κe,aai + √

κi,aaI, (A1a)
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ċ = −
(
iωc + κc

2

)
c − igcc(b + b†)

+√
κe,cci + √

κi,ccI, (A1b)

ḃ = −
(
iωm + γ

2

)
b − igaa

†a − igcc
†c + √

γ bi, (A1c)

where κa = κe,a + κi,a is the total cavity decay rate, with κi,a

and κe,a being the internal and external cavity decay rates
(analogous relations hold for cavity C). The fields ai, ci,
and bi, represent the input fields driving the cavities and
the mechanical resonator, whereas aI and cI describe the
contributions from the internal noise for cavity A and cavity
C, respectively. In the main text we consider the case of a
strong drive for both cavities (with amplitudes αin,A and αin,C

at frequencies ωd,A and ωd,C, respectively). In this case, the
quantum Langevin equations given in Eqs. (A1a)–(A1c) can
be linearized around the cavity fields induced by the pump
tones, leading to the following expression for the steady state
for the cavity fields:

ᾱA = αin,A
κa
2 + i[ωa − gaαA(bs + b∗

s )]
e−iωd,At = αAe−iωd,At ,

(A2a)

ᾱC = αin,C
κc
2 + i[ωc − gcαC(bs + b∗

s )]
e−iωd,Ct = αCe−iωd,Ct ,

(A2b)

while the equations for the fluctuations around the steady-state
values are given by

ȧ = −
(
iωa + κa

2

)
a − igaᾱA(b + b†) + √

κe,aai + √
κi,aaI,

(A3a)

ċ = −
(
iωc + κc

2

)
c − igcᾱC(b + b†) + √

κe,cci + √
κi,ccI,

(A3b)

ḃ = −
(
iωm + γ

2

)
b − igaᾱA(a + a†)

− igcᾱC(c + c†) + √
γ bi. (A3c)

Moving to a frame rotating at ωd,a, ωd,c, and ωm for cavity
A, cavity C, and mechanics respectively, by substituting the
values of ᾱA and ᾱC in Eqs. (A3a)–(A3c), the corresponding
linearized quantum Langevin equations for the fluctuations
around the stationary values induced by the pumps [Eqs. (2a)
and (2c) of the main text] are

ȧ =
(
−i�a − κa

2

)
a − iG+(b† + b) + √

κe,aai + √
κi,aaI,

(A4a)

ċ =
(
−i�c − κc

2

)
c − iG−(b† + b) + √

κe,cci + √
κi,ccI,

(A4b)

ḃ =
(
−iωm − γ

2

)
b − iG+(a† + a)

− iG−(c† + c) + √
γ bi, (A4c)
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FIG. 5. Comparison between the value of F calculated from the
full solution of the equations of motion (full lines, κ = 0.01, 0.02,
0.1; larger values correspond to smaller regions for which F >

1/2), with the solution obtained in the rotating-wave approximation
(dashed line).

where G+ = gaαA and G− = gcαC are the effective linearized
couplings (without loss of generality, we assume hereafter that
κa = κc = κ).

APPENDIX B: INPUT-OUTPUT EQUATIONS
IN THE ROTATING-WAVE APPROXIMATION

While the coefficients Ad, Ax, Cd, Cx—and therefore
the condition expressing the violation of the BI—given in
Eqs. (4a) and (4b) of the main text can be obtained without
resorting to the RWA, in order to outline the essential physical
process behind our proposal, we determine here the explicit
analytical expression for these coefficients within the RWA.

In Fig. 5, it is possible to see how the validity of the RWA
in the determination of the BI violation relies on the condition
ωm � 1 (good-cavity limit) as it is usually the case in the
description of sideband pumping setups in optomechanics.
To derive the expression of the input-output coefficients Ad,
Ax, Cd, Cx within the RWA, we define a Bogoliubov unitary
transformation of the optical-mode operator as

ηa = cosh ξc + sinh ξa†, (B1a)

ηc = cosh ξa + sinh ξc†, (B1b)

where cosh ξ = G−/G, sinh ξ = G+/G with G =
(G2

− − G2
+)1/2 and rewrite Eqs. (A4a)–(A4c) in terms of

the Bogoliubov modes ηa and ηc as

η̇a = −κ

2
ηa − iGb + √

κeηa,i + √
κiηa,I, (B2a)

η̇c = −κ

2
ηc + √

κeηc,i + √
κiηc,I, (B2b)

ḃ = −γ

2
b − iGηa + √

γ bi, (B2c)

where ηa,i = cosh ξci + sinh ξa
†
i , ηc,i = cosh ξai + sinh ξc

†
i .

We then transform the quantum Langevin equations of the two
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Bogoliubov modes ηa and ηc to the Fourier domain:

ηa = χa

1 + χmχaG2
(
√

κeηa,i + √
κiηa,I )

− i
χmχaG

1 + χmχaG2

√
γ bi, (B3a)

ηc = χa(
√

κeηc,i + √
κiηc,I ), (B3b)

where χm = ( γ

2 − iω)−1 and χa = ( κ
2 − iω)−1. Since, ac-

cording to the input-output theory [42], the operator for the
output field is related to the cavity and to the input noise
operator by the relation ao = √

κea − ai and co = √
κec − ci

by using the transformation a = cosh ξηc − sinh ξη
†
a and c =

cosh ξηa − sinh ξη
†
c, the outputs of the two cavity modes can

be written as

ao = (κeAaa − 1)ai + κeAacc
†
i + √

κiκeAaaaI + √
κiκeAacc

†
I + i

√
γ κe

G+
(χaχm )−1 + G2

b
†
i , (B4)

co = (κeAcc − 1)ci + κeAcaa
†
i + √

κiκeAcccI + √
κiκeAcaa

†
I − i

√
γ κe

G−
(χaχm )−1 + G2

bi, (B5)

where

Aaa = χa cosh2 ξ − χ e
a sinh2 ξ, Acc = χe

a cosh2 ξ − χa sinh2 ξ, (B6a)

Aac = (
χa − χe

a

)
cosh ξ sinh ξ, Aca = (

χ e
a − χa

)
cosh ξ sinh ξ, (B6b)

and χ e
a = χa(1 + G2χaχm )−1 represents the effective cavity response in the presence of the two-tone optomechanical drive. It is

possible to write Eq. (B4) and (B5) in a more compact form as given in Eqs. (4a) and (4b) of the main text as

ao = Adai + Axc
†
i + Na, (B7a)

co = Cdci + Cxa
†
i + Nc, (B7b)

where

Na = Ad,IaI + Ax,Ic
†
I + Amb

†
i , Nc = Cd,IcI + Cx,Ia

†
I + Cmbi

represent the operators associated with the mechanical and cavity internal noise. Furthermore, the coefficients relating input and
noise operators to the output are given by

Ad = κeAaa − 1, Cd = κeAcc − 1, Am = +i
√

γ κeG+χ e
a /χa,

Ax = κeAac, Cx = κeAca, Cm = −i
√

γ κeG−χ e
a /χa,

Ad,I = √
κiκeAaa, Cd,I = √

κiκeAcc,

Ax,I = √
κiκeAac, Cx,I = √

κiκeAca.

In the limit of large cooperativity C− = 4G2/κγ � 1 and at the cavity resonance, the coefficients can be written as

Ad = 2re

1 − r2
− 1, Cd = − 2rer

2

1 − r2
− 1, Ax = 2rre

1 − r2
= −Cx, Am = −i

2r
√

re√
C−(1 − r2)

= rCm,

Ad,I = 2
√

reri

1 − r2
, Cd,I = −r2Ad,I, Ax,I = 2r

√
reri

1 − r2
= −Cx,I,

where r = G+/G−, re = κe/κ and ri = κi/κ .

APPENDIX C: CLAUSER-HORNE-SHIMONY-HOLT VIOLATION

We derive here the relation between the usual condition for the violation of CHSH inequality expressed by Eqs. (11) and (15)
of the main text. To this end, we evaluate the quantity defined in Eqs. (9a)–(9d) of the main text in terms of the output correlators
of the optomechanical system. For beam splitters of transmissivity given by η1 and η2, the detected fields are given by

d1 = √
η1ao + i

√
1 − η1bLO1, (C1a)

d2 = √
η2co + i

√
1 − η2bLO2, (C1b)

e1 = √
η1bLO1 + i

√
1 − η1ao, (C1c)

e2 = √
η2bLO2 + i

√
1 − η2co, (C1d)
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where b1 and b2 are the fields of the local oscillators. With the definitions given by Eqs. (C1a)–(C1d) and assuming that the LO
state is described by a coherent state 〈bLO1〉 = β1 exp[iθ ], we can calculate

〈d†
1d1〉 = (1 − η1)〈b†LO1bLO1〉 + η1〈a†

oao〉 − i
√

η1(1 − η1)[〈b†LO1ao〉 − 〈a†
obLO1〉]

= (1 − η1)|β1|2 + η1〈a†
oao〉 +

√
η1(1 − η1)|β1|

〈
Xθ

a

〉
, (C2)

where

Xθ
a = Xa(θ + π/2) = −i(ao exp[−iθ ] − a†

o exp[iθ ]).

Similarly, one obtains

〈e†1e1〉 = η1|β1|2 + (1 − η1)〈a†
oao〉 −

√
η1(1 − η1)|β1|

〈
Xθ

a

〉
, (C3)

and analogously for detector 2.
In addition to the intensities at the detectors D1, D2, E1, E2 we have to evaluate the correlations among them. To this end we

evaluate the full expression for 〈d†
1d

†
2d2d1〉, which is given by

R++(θ, φ) = 〈d†
1d

†
2d2d1〉 = (1 − η1)(1 − η2)〈b†LO1b

†
LO2bLO2bLO1〉

+ i
√

η1(1 − η1)(1 − η2)(〈a†
ob

†
LO2bLO2bLO1〉 − 〈b†LO1b

†
LO2bLO2ao〉)

+ i
√

η2(1 − η2)(1 − η1)(〈b†LO1c
†
obLO2bLO1〉 − 〈b†LO1b

†
LO2cobLO1〉)

+ η1(1 − η2)〈a†
ob

†
LO2bLO2ao〉 + η2(1 − η1)〈b†LO1c

†
ocobLO1〉

−√
η1η2

√
(1 − η1)(1 − η2)(〈b†LO1b

†
LO2coao〉 + 〈a†

oc
†
obLO2bLO1〉

− 〈b†LO1c
†
obLO2ao〉 − 〈a†

ob
†
LO2cobLO1〉) + i

√
η1(1 − η1)η2(〈a†

oc
†
ocobLO1〉 − 〈b†LO1c

†
ocoao〉)

+ i
√

η2(1 − η2)η1(〈a†
oc

†
obLO2ao〉 − 〈a†

ob
†
LO2coao〉) + η1η2〈a†

oc
†
ocoao〉 (C4)

and, since we assume the LO to be in a coherent state, we have that bLO1 → |β1| exp[iθ ], bLO2 → |β2| exp[iφ], we get

R++(θ, φ) = 〈d†
1d

†
2d2d1〉

= (1 − η1)(1 − η2)|β1β2|2

+ (1 − η2)
√

η1(1 − η1)|β2|2|β1|
〈
Xθ

a

〉 + (1 − η1)
√

η2(1 − η2)|β1|2|β2|
〈
Xφ

c

〉

+ √
η1η2

√
(1 − η1)(1 − η2)|β1β2|

〈
: Xθ

a X
φ
c :

〉 + η1(1 − η2)|β2|2〈a†
oao〉 + η2(1 − η1)|β1|2〈c†oco〉

+ η2

√
η1(1 − η1)|β1|

〈
: Xθ

a c
†
oco :

〉 + η1

√
η2(1 − η2)|β2|

〈
: Xφ

c a†
oao :

〉 + η1η2〈a†
oc

†
ocoao〉, (C5)

where with 〈::〉 we denote normal ordering, i.e.
〈
: Xθ

a X
φ
c :

〉 = −〈a†
oc

†
o exp[i(θ + φ)] + coao exp[−i(θ + φ)] − c†oao exp[−i(θ − φ)] − a†

oco exp[i(θ − φ)]〉. (C6)

The other terms are obtained replacing (where appropriate)
√

η1 → i
√

1 − ηi and
√

1 − ηi → −i
√

η1 in Eqs. (C4) and (C5).
Using the expression of R±±(θ, φ) given by Eq. (C5) and assuming 50 : 50 beam splitters, i.e., η1 = η2 = 1/2, the correlation
coefficient E(θ, φ) in Eq. (12) of the main text can be written as

E(θ, φ) = |β1β2|
〈
: Xθ

a X
φ
c :

〉

|β1|2|β2|2 + |β1|2〈c†oco〉 + |β2|2〈a†
oao〉 + 〈a†

oc
†
ocoao〉

. (C7)

In addition, it is possible to show [36] that the optimal value of the local oscillators for the violation of the Bell inequality is
given by β1 = β2 = 〈a†

oc
†
ocoao〉1/4. At this point, with the expression of the correlators given in Eqs. (C2)–(C6), we are in the

position to express the correlation function E(θ, φ) as

E(θ, φ) = C cos(θ̄ − φ̄) + D cos(θ̄ + φ̄), (C8)

where θ̄ − φ̄ = θ − φ − arg〈a†
oco〉, θ̄ + φ̄ = θ + φ − arg〈a†

oc
†
o〉.

The maxima of S occur when θ̄ = 0, φ̄ = −ζ , θ̄ ′ = −π/2 and φ̄′ = ζ and with a maximum value given by

S = 2
√

2
√

C2 + D2 sin(ζ − ζ0), (C9)

where tan(ζ0) = (C + D)/(C − D). The CHSH inequality, as expressed in Eq. (11), can be written as

F = C2 + D2 < 1
2 , (C10)

as given in Eq. (15) of the main text.
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APPENDIX D: OUTPUT FIELD CORRELATORS

To verify the violation of the CHSH inequality in the setup described in the text, we evaluate

C = 2|〈a†
oco〉|

2
√

〈a†
oc

†
ocoao〉 + 〈c†oco〉 + 〈a†

oao〉
, (D1)

D = 2|〈aoco〉|
2
√

〈a†
oc

†
ocoao〉 + 〈c†oco〉 + 〈a†

oao〉
, (D2)

in the presence of two weak coherent drives for each cavity. In addition we consider the possibility of the presence of thermal
noise for the mechanics and both cavities. The latter can be divided into external, i.e., incoming through the driving ports, or
internal. In this case, we can write the input fields as ai = αi + aE and ci = χi + cE, where χ i and αi represent the weak coherent
drives, while aE and cE are the operators associated with the external thermal noise.

In this framework, the correlations required to evaluate the CHSH inequality are given by

〈a†
oao〉 = |Ad|2(|αi|2 + n̄e,a ) + |Ax|2(|χi|2 + n̄e,c + 1) + A∗

dAxα
∗
i χ

∗
i + A∗

xAdαiχi

+ |Ad,I|2n̄i,a + |Ax,I|2(n̄i,c + 1) + |Am|2(n̄m + 1), (D3)

〈c†oco〉 = |Cd|2(|χi|2 + n̄e,c) + |Cx|2(|αi|2 + n̄e,a + 1) + C∗
dCxα

∗
i χ

∗
i + C∗

xCdαiχi

+ |Cd,I|2n̄i,c + |Cx,I|2(n̄i,a + 1) + |Cm|2n̄m, (D4)

〈a†
oco〉 = A∗

dCxα
∗2
i + (A∗

dCd + A∗
xCx)α∗

i χi + A∗
xCdχ

2
i , (D5)

〈aoco〉 = AdCx(|αi|2 + n̄e,a + 1) + AxCd(|χi|2 + n̄e,c) + AdCdαiχi + AxCxα
∗
i χ

∗
i

+Ad,ICx,I(n̄i,a + 1) + Ax,ICd,In̄i,c + AmCmn̄m. (D6)

Additionally, the fourth-order correlator is

〈a†
oc

†
oaoco〉 =|AdCx|2

(|αi|4 + |αi|2 + 4|αi|2n̄e,a + n2
e,a

)

+ |AxCd|2
(|χi|4 + 3|χi|2 + 4|χi|2n̄e,c + n2

e,c + 2n̄e,c + 1
)

+ |Ad|2(|αi| + n̄e,a )[|Cd|2(|χi|2 + n̄e,c) + |Cd,I|2n̄i,c + |Cx,I|2(n̄i,a + 1) + |Cm|2n̄m]

+ |Ax|2(|χi| + n̄e,c + 1)[|Cx|2(|αi|2 + n̄e,a + 1) + |Cd,I|2n̄i,c + |Cx,I|2(n̄i,a + 1) + |Cm|2n̄m]

+ |Ad,I|2n̄i,a[|Cd|2(|χi|2 + n̄e,c) + |Cx|2(|αi|2 + n̄e,a + 1) + |Cd,I|2n̄i,c + |Cm|2n̄m]

+ |Ax,I|2(n̄i,c + 1)[|Cd|2(|χi|2 + n̄e,c) + |Cx|2(|αi|2 + n̄e,a + 1) + |Cx,I|2(n̄i,a + 1) + |Cm|2n̄m]

+ |Am|2(n̄m + 1)[|Cd|2(|χi|2 + n̄e,c) + |Cx|2(|αi|2 + n̄e,a + 1) + |Cd,I|2n̄i,c + |Cx,I|2(n̄i,a + 1)]

+ |Ad,ICx,I|2nI2
a + |Ax,ICd,I|2

(
nI2

c + 1
) + |AmCm|2(n̄2

m + 2n̄m + 1)

+ A∗
dC

∗
dα∗

i χ
∗
i [AxCxα

∗
i χ

∗
i + Ad,ICx,In̄i,a + Ax,ICd,I(n̄i,c + 1) + AmCm(n̄m + 1)]

+ A∗
dC

∗
x (|αi|2 + n̄e,a )[AxCd(|χi|2 + n̄e,c + 1) + Ad,ICx,In̄i,a + Ax,ICd,I(n̄i,c + 1) + AmCm(n̄m + 1)]

+ A∗
xC

∗
d (|χi|2 + n̄e,c + 1)[AdCx(|αi|2 + n̄e,a ) + Ad,ICx,In̄i,a + Ax,ICd,I(n̄i,c + 1) + AmCm(n̄m + 1)]

+ A∗
xC

∗
xαiχi[AdCdαiχi + Ad,ICx,In̄i,a + Ax,ICd,I(n̄i,c + 1) + AmCm(n̄m + 1)]

+ A∗
d,IC

∗
x,In̄i,a[AdCdαiχi + AdCx(|αi|2 + n̄e,a ) + AxCd(|χi|2 + n̄e,c + 1) + AxCxα

∗
i χ

∗
i

+ Ax,ICd,I(n̄i,c + 1) + AmCm(n̄m + 1)]

+ A∗
x,IC

∗
d,I(n̄i,c + 1)[AdCdαiχi + AdCx(|αi|2 + n̄e,a ) + AxCd(|χi|2 + n̄e,c + 1) + AxCxα

∗
i χ

∗
i

+ Ad,ICx,In̄i,a + AmCm(n̄m + 1)]

+ A∗
mC∗

m(n̄m + 1)[AdCdαiχi + AdCx(|αi|2 + n̄e,a ) + AxCd(|χi|2 + n̄e,c + 1) + AxCxα
∗
i χ

∗
i

+ Ad,ICx,In̄i,a + Ax,ICd,I(n̄i,c + 1)]

+ |Ad|2C∗
dCxχ

∗
i (α∗

i |αi|2 + 2α∗
i n̄e,a ) + |Ad|2CdC

∗
xχi(αi|αi|2 + 2αin̄e,a )

+ |Ax|2C∗
dCxα

∗
i (χ∗

i |χi|2 + 2χ∗
i n̄e,c + 2χ∗

i ) + |Ax|2CdC
∗
xαi(χi|χi|2 + 2χin̄e,c + 2χi )
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+ A∗
dAx|Cd|2α∗

i (χ∗
i |χi|2 + 2χ∗

i n̄e,c + χ∗
i ) + AdA

∗
x|Cd|2αi(χi|χi|2 + 2χin̄e,c + χi )

+ A∗
dAx|Cx|2χ∗

i (α∗
i |αi|2 + 2α∗

i n̄e,a + α∗
i ) + AdA

∗
x|Cx|2χi(αi|αi|2 + 2αin̄e,a + αi ). (D7)
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