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Frequency-resolved correlation (FRC) is investigated in fluorescent emission radiated from a �-type atomic
system by employing weak coupling regime between quantum emitter and cavities, in which each cavity
substituting a Lorentzian filter is assumed to pass through only one fluorescent photon at a time so that the
analytical discussions for time orderings can be carried out in a truncated Hilbert space with single-excitation
state for each cavity mode. In the limit of bad cavity (large passband width of filter) and short delay, the
conditional time ordering amplitudes are introduced with the help of conditioned dressed atom-photon states
prepared by preselection to probe into the effect of preferential screening for time orderings of filter-detector
systems. Meanwhile, the past quantum state formalism is also applied in FRC to further excavate their
collective monitoring effect. Based on the obtained two-mode correlation signals, it is found that, in nonresonant
two-photon cascaded processes, bunching and antibunching can appear in two opposite detection orderings,
respectively, and can be switched. The physical origin is explored that the two different transition amplitudes
of emitted photons from a common spectral band of resonance fluorescence are responsible for opposite time
orderings, thus, the imbalance between two complementary time orderings can be enhanced, which is impossible
to achieve in resonance fluorescence of two-level atoms. This mechanism is embodied in the conditional time
ordering amplitudes produced by this detection theory of cavity modes.
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I. INTRODUCTION

The generation of entangled photon pairs runs through
the whole developments of quantum optics [1–4] and quan-
tum communication [5–9]. Being the popular entanglement
source, strong correlated photon pairs can be produced from
the fluorescent emission via frequency engineering with the
help of frequency filtering techniques [10], and can violate
the Cauchy-Schwarz inequality and Bell’s inequality [11–13].
Meanwhile, the application of frequency resolution in driven
quantum emitters opens up a new landscape in photon cor-
relation and statistics [14–18], and indicates that multiphoton
successive emission can also display strong high-order corre-
lation, which is attributed to the leapfrog transitions involving
virtual states [19,20]. Actually, the cascaded photon source
has been chosen to be the valuable ingredient to produce en-
tangled photon pairs in biexciton-exciton cascaded emission
of semiconductor quantum dot [21–30], in which strongly
correlated paired photons possess definite time orderings
embodied by the asymmetry of a second-order correlation
signal [31,32]. For a two-level atom, the correlation between
two opposite spectral lines is related to the ratio of the two
dressed populations [33,34], which seems to be possible to
manipulate temporal correlations if two dressed populations
are distributed unevenly. Lately, this analogous mechanism
is used to actualize the preparation of time orderings via
coherent control in a quantum dot modeled by a three-level
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ladder system, which is forced to emit two photons with
preferential time ordering without unitary operating for time
orderings [35].

Interference of time orderings has been ulteriorly explored
theoretically in Mollow triplet and observed experimentally
for the first time in a barium atomic beam [36], which emerges
in such situation in which two complementary (opposite)
two-photon cascaded emissions are required to initiate from
a common state and terminate to a common state that is not
necessarily the same as the initial state. In a Mollow triplet,
it is well known that the resonance fluorescence from lower
and higher sidebands are triggered by two different dressed
levels [36–39], interference can not be displayed, but rather is
seen between the Rayleigh line and one of the sidebands [36].
However, the second-order correlation of latter is symmetric
for alternating detection orderings [33], even if each filter
is detuned from the central frequency of its target spectral
line [34], because in a two-photon cascaded emission of
Rayleigh photon followed by a lower sideband photon, for
example, the dressed state transition amplitudes of Rayleigh
photon and lower sideband photon are cs and c2, respectively.
In the corresponding opposite two-photon channel, it is still
c2 for sideband photon but −cs for Rayleigh photon, where
c, s =

√
(�̄ ± �)/2�̄ with � and �̄ being the laser detuning

from the two-level atomic resonance frequency and general
Rabi frequency [36,39]. This implies that photons in each
spectral line participate in two opposite time orderings with
equal transition rates, thus, the two opposite time orderings
always keep balance. In this paper, the dressed �-type system
is selected as our model to discuss the feasibility of breaking
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this balance to highlight or hide a certain time ordering. As we
expect, it is found that the temporal second-order correlation
of a pair of photons can be enhanced and suppressed for two
opposite detection orderings by tuning driving frequency. This
means that the symmetry of time orderings can be broken
efficiently in a three-level system and realize which-path
information erasure. Compared with previous schemes of time
reordering [35,40], we hope that our proposal may provide
some elicitations for the manipulation of time orderings to
generate polarization entangled photon pairs in semiconductor
quantum dot.

Thanks to the spirit of the pioneering sensors method
for FRC established by del Valle et al. [41], we adopt the
weakly coupled regime between quantum emitter and cavities
to illustrate the above scheme and reveal the dynamical picture
of time orderings, which is obscured by the ultimate filtered
correlation signals. Recently, following this method, some
new algebraical techniques have also been put forward to ad-
dress FRC, such as the eigenvalue decomposition method [42]
and signal-processing approach [43]. In the spectral filtering
process, although photons emitted at different times can be
differentiated by the filter, because the passband width of the
filter characterizes its average resolution ability that all the
detected photons can be treated as such that they possess
the same lifetimes specified as the reciprocal of the passband
width [44], therefore, each Lorentzian filter can be replaced
by a single-mode Fabry-Perot empty cavity activated by the
fluorescent photons with frequency of corresponding cavity
mode and gives rise to the Lorentzian cavity spectrum without
arranging time orderings for original filed operators. On the
other hand, we tend to track time orderings after preselection,
but its information before two-photon emission is also mani-
fested by the conditional time ordering amplitudes defined in
our paper from the conditioned states [45–48], which makes it
clear that, in our system, two different transition amplitudes of
a common spectral line contribute to two opposite conditional
time ordering amplitudes, respectively. Thus, the feasibility of
enhancing the asymmetry of time orderings can be discovered
analytically by this approach. In addition, we combine the past
quantum state formalism [49] with conditioned state to jointly
explore how two-photon time orderings are selected by two
collective filter-detector monitoring systems.

The outline of this paper is as follows: In Sec. II, the
quantum system under our consideration is introduced by
reviewing the standard theory of FRC. In Sec. III, in the limit
of large filter widths and short delay, conditioned state, and
past quantum state are found with the aim of analytically cal-
culating two-mode spectral correlation signals of resonance
fluorescence with physically perspicuous forms, making it
possible to get insight into the dynamical mechanism of time
orderings. Then, in Sec. IV, the features of correlation signals,
especially the time symmetry and asymmetry, are discussed
in the case of resonant and nonresonant two-photon cascaded
processes, respectively, with the comparison of the spectral
correlations in Mollow triplet. In addition, the feasibility of
converting time orderings and statistical properties of photon
pairs by enhancing the asymmetry of two-photon paths with
opposite time orderings are also investigated by comparing
our results with those in a driven four-level quantum dot.
Section V is devoted to supplement the case of narrow filters

for completeness, and the results can be understood by the
good cavities. Finally, a conclusion is presented in Sec. VI.

II. DESCRIPTION OF QUANTUM SYSTEM

We start our work by reviewing the standard detection
theory of FRC, in which the setup mainly consists of a pair
of ideal photon detectors with two inserted frequency filters
in front of them to extract the fluorescent photons with setting
frequencies from quantum emitter, and the correlation signal
is read out from the correlator [12,50] or recorded by a streak
camera [51]. If the earlier filtered fluorescent photon labeled
by a is counted at time t followed by the successive detection
for filtered photon b delayed for τ , mathematically, the steady
two-photon spectral correlation should be evaluated by the
filtered Heisenberg atomic transition operators as [34,52–54]

g(2)(a, b, τ ) = 〈σ̄ †
a (t )σ̄ †

b (t + τ )σ̄b(t + τ )σ̄a (t )〉
〈(σ̄ †

a σ̄a )(t )〉〈(σ̄ †
b σ̄b )(t + τ )〉

, (1)

where the filtered atomic transition operators of quantum
emitter accounting for the corresponding resolved fields are
related to their original atomic transition operators through the
filter response functions as [37,55,56]

σ̄i (t ) =
∫ ∞

0
fi (τ )σi (t − τ )dτ, (i = a, b). (2)

However, what is hidden behind Eq. (1) is the extensive
computational complexity involving time-dependent atomic
operators with various possible permutations. Until the sensor
method was proposed by del Valle et al. [41], the mathemat-
ical treatment for time orderings was successfully avoided.
Here, based on the sensor method, we adopt the detection
theory of cavity mode to investigate polychromatic photon
correlations of resonance fluorescence in our quantum system,
in which each Lorentzian filter is regarded as a single-mode
Fabry-Perot empty cavity, thus, our consideration will es-
sentially just be mapping the frequency resolution in reso-
nance fluorescence onto the event that each optical empty
cavity is weakly pumped by the fluorescent photons with a
small coupling constant between quantum emitter and cavity.
Throughout this paper, we are interested in the Lorentzian
filters, i.e., fi (τ ) = θ (τ )λie

−(λi+iωi )τ [55,56], where θ (τ ) is
the Heaviside step function for the causality of the filtering
event in time domain. The filter half passband width λi and
setting frequency ωi correspond to the half of the decay rate
κi/2 and frequency of the ith cavity, respectively. With these
correspondences at hand, the steady two-mode correlation of
spectrally resolved fluorescence fields for arbitrary time delay
are expressed by the creation and annihilation operators of
corresponding quantized cavity modes

g(2)(a, b, τ ) = 〈a†(t )b†(t + τ )b(t + τ )a(t )〉
〈(a†a)(t )〉〈(b†b)(t + τ )〉

= G (2)(a, b, τ )

G (1)(a)G (1)(b)
, (3)

where the numerator, G (2)(a, b, τ ), is the unnormalized
second-order (cross) correlation function between modes a

and b, and G (1)(a) and G (1)(b) are the first-order correlation
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FIG. 1. (a) Equivalent system of atom-photon interactions. Res-
onance fluorescence is emitted from the excited atom to weakly
pump four cavities, and multimode second-order correlations can
be realized after four-mode cavity photons are outputted. (b) Level
diagram for a �-type three-level atom, in which the dipole-allowed
transitions |3〉 → |1〉 and |3〉 → |2〉 are driven by two strong applied
fields, respectively, and coupled to two-mode quantum fields (a1, a2),
(b1, b2).

functions in modes a and b, respectively, which are essentially
the steady intensities of filtered fields.

In our scheme, as illustrated in Fig. 1, the quantum emitter
is a �-type system consisting of an excited state denoted by
|3〉 coupled with lower nondegenerate states |1〉 and |2〉. Two
monochromatic lasers of frequencies ω1, ω2 are applied to
drive the electronic dipole-allowed transitions |3〉 → |1〉 and
|3〉 → |2〉, separated by the level splittings ω31 and ω32, with
Rabi frequencies �1, �2, respectively. At the same time, the
driven transition |3〉 → |1〉(|2〉) is also coupled to two cavity
modes with frequencies ωa1 , ωa2 (ωb1 , ωb2 ), labeled by their
annihilation operators a1, a2(b1, b2).

Working in the frame rotating with respect to the driving
laser frequencies ω1 and ω2, the time evolution of the hybrid
quantum system is governed by the master equation of density
operator ρ in the dipole approximation and rotating wave
approximation [57]

dρ

dt
= − i

h̄
[H, ρ] + Lρ, (4)

in which the total Hamiltonian of the hybrid quantum system
can be decomposed into three parts H = HAL + HC + HAC ,
where

HAL = h̄
∑
l=1,2

[−�lσll + �l (σ3l + σl3)],

HC = h̄
∑
l=1,2

�al
a
†
l al + h̄

∑
l=1,2

�bl
b
†
l bl, (5)

HAC = h̄
∑
l=1,2

(gal
a
†
l σ13 + gbl

b
†
l σ23) + H.c..

The first part, HAL, describes the unperturbed energy of the
atom and its dipolar interactions with two classical driving
fields. The operators σkk′ = |k〉〈k′|(k, k′ = 1, 2, 3) are the
population operators for k = k′ and atomic flip operators for
k �= k′. �l (l = 1, 2) are the detunings of the atomic transition
frequencies from the laser fields by which they are driven, i.e.,
�l = ω3l − ωl . The other two parts, HC and HAC , describe
the free Hamiltonian of four-mode quantized cavity fields and

the couplings between cavity modes and atomic transitions,
respectively. The parameters �al

= ωal
− ω1, �bl

= ωbl
− ω2

are the detunings between the cavity modes and correspond-
ing applied fields. gal

(gbl
) are the coupling constants between

the cavity modes al (bl ) and atomic transition |3〉 ↔ |1〉(|2〉).
The last term Lρ = LAρ + LCρ in Eq. (4) denotes the atomic
dissipation to the background environment besides the privi-
leged cavity modes, and the dissipation of the cavity modes,
which take the form

LAρ =
∑
l=1,2

γl

2
D[σl3]ρ,

(6)

LCρ =
∑
l=1,2

(
κal

2
D[al]ρ + κbl

2
D[bl]ρ

)
,

respectively, where D[O]ρ = [Oρ,O†] + [O, ρO†] is the
Lindblad-type superoperator. The parameters γl are the atomic
decay rates from |3〉 to |l〉, and κal

, κbl
are the decay rates of

the cavity modes al, bl , respectively. We assume that the Rabi
frequencies are equal for the sake of simplicity, and by work-
ing in the strong excitation regime, i.e., �l = � 	 (γl, κi )
(i = al, bl with l = 1, 2), that the fluorescent spectrum can be
decomposed into individual emission lines, it is enlightening
to introduce semiclassical dressed bases [58]⎛

⎝|1A〉
|2A〉
|3A〉

⎞
⎠ =

⎛
⎜⎝

1−sin θ
2

1+sin θ
2 − cos θ√

2
− cos θ√

2
cos θ√

2
sin θ

1+sin θ
2

1−sin θ
2

cos θ√
2

⎞
⎟⎠

⎛
⎝|1〉

|2〉
|3〉

⎞
⎠, (7)

where sin θ = �/�̄, cos θ = √
2�/�̄, and we have already

assumed �2 = −�1 = �. The parameter �̄ = √
�2 + 2�2

is the generalized Rabi frequency involving the separations
of two adjacent levels in each dressed triplet. In order to
choose spectral lines of interest, it is beneficial to divide the
atomic operators into several dressed components defined as
σ̃kk′ = |kA〉〈k′

A|(k, k′ = 1, 2, 3)

σl3 = σ
(l)
S2

+ σ
(l)
S1

+ σ
(l)
R + σ

(l)
A1

+ σ
(l)
A2

, (8)

in which σ
(1)
A1

= −Aσ̃23 + B−σ̃12 and σ
(1)
S1

= Aσ̃21 + B+σ̃32

dominate the fluorescent emissions of the higher-frequency
inner sideband with frequency ω1 + �̄ and lower-frequency
inner sideband with frequency ω1 − �̄, respectively, in a res-
onance fluorescence spectrum generated from emission |3〉 →
|1〉, where the parameters A = (cos2θ )/2, B± = sin θ (1 ±
sin θ )/2 are the transition amplitudes between the correspond-
ing dressed states. These two components of fluorescence are
selected to be injected into the target cavity 1 and cavity 2
to trigger quantum modes in a1 and a2. Similarly, σ

(2)
A1

=
Aσ̃23 + B+σ̃12 and σ

(2)
S1

= −Aσ̃21 + B−σ̃32 give rise to an-
other higher-frequency inner sideband and lower-frequency
inner sideband from |3〉 → |2〉, and pump cavity 3 with mode
b1 and cavity 4 with mode b2, respectively. The operators σ

(l)
R

describe the spontaneous emission of dressed atom between
two same dressed levels of two adjacent triplets and give rise
to the Rayleigh spectral lines located at driving frequencies
ωl . The remaining components σ

(l)
S2

and σ
(l)
A2

generate two
outer sidebands. It is worth noting that, under strong excitation
regime, each Lorentzian cavity can be activated only when
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its frequency is tuned near the center frequency of its target
spectral line, so the coupling far away from the resonance can
be ignored. In addition, the existence of each cavity merely
decorates the density of vacuum modes at which it is located
into the Lorenzian type, and almost do not impact the vacuum
environment that the driven atom feels, i.e., the standard dis-
sipations described by Eq. (6) are still valid [59]. Meanwhile,
with the help of secular approximation, the atomic dissipation
in Eq. (6) can be decomposed into the superposition of dis-
sipations in several dressed transition channels by dropping
other fast-rotating terms [34].

In this interaction system, as mentioned in the above,
each coupling constant is required to be small enough, i.e.,
gi � √

γlκi [41], so that the fluorescence filtering can be
felicitously equivalent to perturbation to the quantum emitter.
Ingeniously, all coupling constants disappear algebraically
from our final analytic results.

III. TEMPORAL INTENSITY CORRELATIONS
WITH LARGE FILTER WIDTHS

In this paper, we are mainly interested in the filtering
processes with large filter passband widths (bad cavity limit)
specified as κi 	 γl 	 gi , in which each target spectral line
can be covered completely by the sweep range of the cor-
responding filter in frequency domain, ensuring that all the
photons coming from the target spectral line can be captured
uniformly [34]. In the following discussion, we temporarily
assume κi = κ , gi = g, and γl = γ .

A. Conditional state and preferred selection for time orderings

We first correlate two filtered photons in mode a1 and
a2, respectively, which are radiated from a common dipole-
allowed transition |3〉 → |1〉. Considering the measurement
for a1 at time t in the stationary dynamics followed by
the second counting at later time t + τ (τ > 0) for a2, the
unnormalized two-photon correlation can be expressed as
G (2)(a1, a2, τ ) = Tr[a†

2a2ρ
r (τ )], where ρr (τ ) is the condi-

tioned (collapsed) state of the composite system prepared by
the preselection. According to the principle of photoelectric
counting, the intensity of incident field is very weak so that
each filter passes through only one photon at a time [60].
Therefore, we may consider the dynamics of quantum sys-
tem in a Hilbert space truncated at single-photon excitation
manifold for each cavity mode. This suggests that, after pres-
election, only cavity photon a2 may survive in the bad cavity.
In this case, the conditioned state ρr at time t can be factorized
as ρr = ρr

A,a2
⊗ ρr

a1
, in which ρr

a1
≡ |0a1〉〈0a1 |, and ρr

A,a2
, the

point of departure for our analysis, is the reduced density
operator of subsystem composed of dressed atom photons in
field a2, and turns out to be the incoherent superposition of
three orthogonal pure states as

ρr
A,a2

= 〈σ̃11〉s |C1,1|2
∣∣1A, 1a2

〉〈
1A, 1a2

∣∣
+ I (a1 )

2

(∣∣1A, 0a2

〉 + C2,1

∣∣2A, 1a2

〉)
× (〈

1A, 0a2

∣∣ + C∗
2,1

〈
2A, 1a2

∣∣)
+ I (a1 )

3

(∣∣2A, 0a2

〉 + C3,1

∣∣3A, 1a2

〉)
× (〈

2A, 0a2

∣∣ + C∗
3,1

〈
3A, 1a2

∣∣), (9)

where I (a1 )
2 and I (a1 )

3 are the two components of the aver-
age photon number for cavity mode a1 (filtered intensity of
the higher-frequency inner sideband of resonance fluorescent
field) contributed from two steady dressed populations 〈σ̃22〉s
and 〈σ̃33〉s , respectively, i.e., 〈a†

1a1〉s = I (a1 )
2 + I (a1 )

3 , with

I (a1 )
2 = g2B2

−〈σ̃22〉s(
κ
2

)2 + δ2
a1

, I (a1 )
3 = g2A2〈σ̃33〉s(

κ
2

)2 + δ2
a1

, (10)

where the parameters δal
and δbl

(which will be shown later)
are the filter detunings from the central frequencies of their
target spectral lines, i.e., δa1 = ωa1 − (ω1 + �̄), δa2 = ωa2 −
(ω1 − �̄), δb1 = ωb1 − (ω2 + �̄), and δb2 = ωb2 − (ω2 − �̄).
In the limit of short time difference τ � γ −1, Eq. (9) suggests
that, conditioned on the preselection for photon a1, the total
probability of capturing a photon a2 is the sum of the com-
ponents of probability |C1,1(τ )|2, |C2,1(τ )|2, and |C3,1(τ )|2.
Performing lengthy but straightforward calculations, the con-
ditional probability amplitudes can be expressed as

C2,1(τ ) = F (a2 ),+
22 (τ ) + F (a2 ),−

22 (τ ),

C3,1(τ ) = F (a2 ),+
33 (τ ), (11)

C1,1(τ ) = T (a1a2 ),−
11 (τ ).

Here, we introduce the general forms of conditional single-
photon emission amplitudes for positive time ordering and
reverse time ordering

F+(δ1, δ2, τ ) = 1
κ
2 + iδ2

[
1 −

(
κ
2 + iδ1

)
e−( κ

2 +iδ2 )τ

κ + i(δ1 + δ2)

]
, (12)

F−(δ1, δ2, τ ) =
(

κ
2 + iδ1

)
e−( κ

2 +iδ2 )τ(
κ
2 + iδ2

)
[κ + i(δ1 + δ2)]

, (13)

respectively, to describe the situation that the order of two-
photon emission is corresponding to the given order of detec-
tion, and the concomitant opposite situation. Meanwhile, the
two-photon joint emission amplitude for reverse time ordering

T −(δ1, δ2, τ ) = e−( κ
2 +iδ2 )τ(

κ
2 + iδ2

)
[κ + i(δ1 + δ2)]

(14)

is also introduced to describe the isolated reverse time or-
dering. Then, the detailed expressions of the time ordering
amplitudes in Eq. (11) can be given compactly as

F (a2 ),+
22 (τ ) = −igAF+(

δa1 , δa2 , τ
)
,

F (a2 ),−
22 (τ ) = ig

AB+
B−

F−(
δa1 , δa2 , τ

)
,

(15)
F (a2 ),+

33 (τ ) = −igB+F+(
δa1 , δa2 , τ

)
,

T (a1a2 ),−
11 (τ ) = gAB−T −(

δa1 , δa2 , τ
)
.

With these definitions, G (2)(a1, a2, τ ) is written compactly as

G (2)(a1, a2, τ ) = I (a1 )
2

∣∣F (a2 ),+
22 (τ ) + F (a2 ),−

22 (τ )
∣∣2

+ I (a1 )
3

∣∣F (a2 ),+
33 (τ )

∣∣2 + 〈σ̃11〉s
∣∣T (a1a2 ),−

11 (τ )
∣∣2

.

(16)
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FIG. 2. Transition paths and time orderings of two-photon reso-
nant cascaded emissions of photon pair (a1, a2), in which path 1 and
path 2 display interference involving a common initial dressed state
and a final dressed state |2A〉, and path 3 and path 4 are independent
time ordering channels. Red and pink arrows represent the photon
emissions in mode a1 and a2, respectively. The relative transition
amplitudes, A, B+, and B−, are labeled.

Physically, F (a2 ),+
ij (τ ) can be understood as the conditional

time ordering transition amplitude of photon a2 originating
from the two-photon cascaded emission with the order of
emission corresponding to the order of detection when the
dressed atom starts from the initial state |iA〉 to the target state
|jA〉. Whereas, F (a2 ),−

ij (τ ) accounts for the emission ampli-
tude that photon a2 emitted before a1, describing the reverse
process. The amplitude T (a1a2 ),−

ij (τ ) directly describes the
independent two-photon successive transition with ordering of
emission opposite to the orderings of detection. With the help
of the conditioned state in Eq. (9), we may grasp the physical
insight into the time orderings from the three parts of two-
mode correlation in Eq. (16), as shown in Fig. 2. In path 1, af-
ter emitting a photon a1 from the initial state |2A〉, the dressed
atom basically rests on the state |1A〉 after preselection. How-
ever, there is a small probability that two photons a1, a2 have
been prepared in cavities and photon a2 still survives after
a1 is annihilated. In addition, another alternative two-photon
path 2 also gives rise to the two-photon emission with the
reverse time ordering, thus the total probability amplitude of
finding photon a2 is the superposition of this two transition
paths. Correspondingly, if the dressed atom starts from the
initial state |3A〉, two photons are generated from the positive
time ordering described by C3,1(τ ) = F (a2 ),+

33 (τ ) accounting
for path 3. Whereas, the dressed state |1A〉 only gives rise to
the isolated reverse time ordering process in path 4, which
should be directly depicted by the two-photon joint emission
C1,1(τ ) = T (a1a2 ),−

11 (τ ). Interestingly, despite the fact that two
different successive emissions, sharing a common initial state
and a common final state |2A〉, display interference, it can be
noticed that the dressed atom is more likely to be selectively
trapped in the intermediate state belonging to positive time
ordering (path 1), which is preferentially selected by the filter-
detector system.

For another situation that cavity photon a1 is probed at
t followed by the counting of b1 at a later time t + τ , the

FIG. 3. Transition paths and time orderings of two-photon non-
resonant cascaded emissions of photon pair (a1, b1), which relate to
the pure interference of time orderings described by path 6 and path
7. Red and blue arrows represent the photon emissions in mode a1

and b1, respectively. The relative transition amplitudes, A, B+, and
B−, are also labeled.

unnormalized conditioned state for dressed atom-photon b1

prepared by the first detection is also found as

ρr
A,b1

= I (a1 )
3

(∣∣2A, 0b1

〉 + C ′
1,1

∣∣1A, 1b1

〉)
× (〈

2A, 0b1

∣∣ + C ′∗
1,1

〈
1A, 1b1

∣∣)+ I (a1 )
2

∣∣1A, 0b1

〉〈
1A, 0b1

∣∣.
(17)

Correspondingly, the unnormalized two-mode correlation
function for short delay can be expressed as

G (2)
s (a1, b1, τ ) = I (a1 )

3 |C ′
1,1(τ )|2

= I (a1 )
3

∣∣F (b1 ),+
31 (τ ) + F (b1 ),−

31 (τ )
∣∣2

, (18)

where the conditional emission amplitudes for positive time
ordering and reverse time ordering are given, respectively, by

F (b1 ),+
31 (τ ) = −igB+F+(

δa1 , δb1 , τ
)
,

(19)
F (b1 ),−

31 (τ ) = igB−F−(
δa1 , δb1 , τ

)
.

Obviously, the structures of conditioned state and two-
mode correlation function in this situation are different from
the former, which is the consequence of nonresonant two-
photon cascaded emissions (ωa1 + ωb1 �= 2ωL). As the path
5 in Fig. 3, starting from the dressed level |2A〉, the dressed
atom is prepared at |1A〉 by converting a pumping photon
with frequency ω1 into a cavity photon a1. In addition, this
conversion can also be realized alternatively from |3A〉 to |2A〉
in path 6. When a1 is detected, these two possible single-
photon paths give rise to the states |1A, 0b1〉 and |2A, 0b1〉.
Unfortunately, for generating photon b1, only the initial state
|3A〉 is able to complete two-photon preparation via the posi-
tive time ordering (path 6) or its adjoint reverse time ordering
(path 7).

For the third group of fluorescent photons, photon a1 and
b2 weakly driving cavity 1 and cavity 4, respectively, are also
correlated for completeness, in which a1 is detected at first
at time t . The unnormalized two-mode correlation signal can
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FIG. 4. Transition paths and time orderings of two-photon res-
onant cascaded emissions of photon pair (a1, b2), which are the
same as photon pair (a1, a2) except for one of the relative transition
amplitudes for field b2. Red and blue arrows represent the photon
emissions in mode a1 and b2, respectively. The relative transition
amplitudes, A and B−, are also labeled.

also be calculated based on the same process as before, and
then we arrive at

G (2)(a1, b2, τ ) = I (a1 )
2

∣∣F (b2 ),+
22 (τ ) + F (b2 ),−

22 (τ )
∣∣2

+ I (a1 )
3

∣∣F (b2 ),+
33 (τ )

∣∣2 + 〈σ̃11〉s
∣∣T (a1b2 ),−

11 (τ )
∣∣2

(20)

with the conditional emission amplitudes

F (b2 ),+
22 (τ ) = igAF+(

δa1 , δb2 , τ
)
,

F (b2 ),−
22 (τ ) = igAF−(

δa1 , δb2 , τ
)
,

(21)
F (b2 ),+

33 (τ ) = −igB−F+(
δa1 , δb2 , τ

)
,

T (a1b2 ),−
11 (τ ) = −gAB−T −(

δa1 , δb2 , τ
)
.

It is not difficult to observe that this group of photon pair
is consistent with the first one (a1, a2) in time orderings,
the only difference is that one of the transition amplitudes
of mode b2 is different from that of photon a2, as shown
in Fig. 4. Therefore, there is a simple correspondence and
substitution of transition amplitudes, leading to the similarity
of time orderings between (a1, a2) and (a1, b2).

So far, we have obtained the two-mode correlations with
perspicuity physically pictured in terms of conditional time
ordering amplitudes, which are the product of cavity mode
detection theory. In our approach, we inspect time order-
ings from the conditioned state prepared by the first photon
detection, instead of directly prejudging time orderings by
permuting original atomic dipole operators before detecting
first photon. However, the information of time orderings is
preserved effectively and expressed skillfully through the
time ordering amplitudes. As we expected, after straight-
forward algebraic arrangement, Eq. (16), (18), and (20) re-
produce the analytical forms given by the early fundamen-
tal method of two-photon detection operator established by
Nienhuis et al. [34].

B. Past quantum state and collective monitoring

In this section, we supplement the two-mode correlations
by the recent past quantum state formalism to trace back to the
conditioned dynamics involving time orderings conditioned
by the final detection [49].

Considering the photon pairs (a1, a2), if the later detec-
tor probes a filtered photon a1 at a given time t , one may
wonder what scenery the two filter-detector systems have
experienced at earlier times until the first detection for photon
a2 at t + τ (τ < 0)? Based on the spirit of past quantum
state formalism of positive operator valued measurement,
two-mode quantum correlation between different times can
be established from the given final time t backwards to
the past time t + τ through the reverse evolution operator
Ea1 (τ ) = U †(t, t + τ )a†

1a1U (t, t + τ ). It solves the reverse
evolution equation dEa1 (t ) = i

h̄
[H,Ea1 ]dt + κ

2 (D†[a1]Ea1 +
D†[a2]Ea1 )dt , where dt = (t + dt ) − t , whereas the anoma-
lous definition for dE = E(t − dt ) − E(t ) is introduced be-
cause of inverse evolution. The first term of Lindblad operator
for ρ(t ) should be restored to the pumping process for E(t ),
i.e., D†[al]E = 2a

†
l Eal − a

†
l alE − Ea

†
l al [61–63]. Until time

t + τ , the monitored subsystem has been prepared to ρr
A,a2

=
a2ρa

†
2 by the preselection, this leads to the unnormalized

cross-correlation G (2)(a1, a2, τ < 0) = Tr[ρr
A,a2

Ea1 (τ )]. After
entering the truncated Hilbert space, one yields the reverse
evolution operator Ea1 for short delay as follows:

Ea1 (τ ) = |E3,1(τ )|2∣∣3A, 1a1

〉〈
3A, 1a1

∣∣
+ (

E2,0(τ )
∣∣2A, 0a1

〉 + E1,1(τ )
∣∣1A, 1a1

〉)
× (

E∗
2,0(τ )

〈
2A, 0a1

∣∣ + E∗
1,1(τ )

〈
1A, 1a1

∣∣)
+ (

E3,0(τ )
∣∣3A, 0a1

〉 + E2,1(τ )
∣∣2A, 1a1

〉)
× (

E∗
3,0(τ )

〈
3A, 0a1

∣∣ + E∗
2,1(τ )

〈
2A, 1a1

∣∣), (22)

with the time-dependent coefficients

|E3,1(τ )|2 = eκτ ,

E1,1(τ ) = E2,1(τ ) = e( κ
2 −iδa1 )τ ,

E2,0(τ ) = igB−
κ
2 − iδa1

[
1 − e( κ

2 −iδa1 )τ
]
,

E3,0(τ ) = −igA
κ
2 − iδa1

[
1 − e( κ

2 −iδa1 )τ
]
.

(23)

It is straightforward to confirm that, after some algebraic pro-
cessing, the quantum past state approach reproduce the same
quantitative prediction for two-mode correlation in Eq. (16)
given by the conditional time ordering emission amplitudes.
Starting from Eq. (22) to trace back to the information of
past quantum state, the form of Ea1 indicates that although
the quantum system is prepared by the preselection, the effect
of postselection consummates the past knowledge that probed
quantum system evolves guided by the later monitoring sys-
tem, and collapse to the target state |1A, 1a1〉, |2A, 1a1〉, and
|3A, 1a1〉 expectably, regressing Ea1 to unit operator [49].
This historical dynamics may not be exhibited by the for-
ward evolution from preselection which displays the sponta-
neous evolution dominated by eL τ of unobserved quantum
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system ( dρ

dτ
= eL τ ρ) and waiting to be measured by the later

monitoring system. Moreover, we prefer to consider that it
is the later monitoring system that guides the evolution of
dressed atom-photon system with the ordering of emission
corresponding to the ordering of detection. In other words, it is
the collective effect of two monitoring systems that establish
the correlation between photon a2 in the past and a1 at present.
When the order of detection is given, the later monitoring
system induces the evolution of quantum system and shrinks
the wave packet into the final target states |1A, 1a1〉, |2A, 1a1〉,
and |3A, 1a1〉, in which the past initial state is prepared by the
preselection performed by the former one.

We would like to finish this section with a brief summary
of the effect of monitoring systems for quantum system in
FRC, preferred selection for time orderings and collective
monitoring. In detail, on the one hand, the former monitoring
system preferentially select positive time ordering channels
from quantum emitter and collapse it into the intermediate
states belonging to the paths with positive emission ordering,
regardless of the existence of interference between two op-
posite time orderings. On the other hand, conditioned on the
postselection, it is the later monitoring system that induces the
probed quantum system into the target state through its weak
coupling interaction with quantum emitter. It is also worth
emphasizing that the compact forms of the conditioned states
and correlation functions can only be maintained in the limit
of short delay, and the time orderings can only be identified
in this limit. This forms are subverted by the atomic spon-
taneous decay for long time difference. The explicit analytic
expression of two-mode correlation function for arbitrary time
delay are shown in Appendix B, which can return to the simple
result given by the color-blind filters (λ → ∞) [19,34,41].

IV. TIME ORDERING ROUTING AND CONTROLLING

In this section, we concentrate on the features of second-
order correlation signals, and discuss in detail the feasibility
of controlling the privileged temporal correlations with the
comparison of the obtained results in two-level atom and four-
level quantum dot modeled by a three-level ladder system.

A. Resonant two-photon cascaded emissions

We first investigate the paired photons (a1, a2) and (a1, b2),
whose frequencies obey the resonant cascaded two-photon
processes ωa1 + ωa2 = 2ω1 and ωa1 + ωb2 = ω1 + ω2, i.e.,
the filter detunings satisfy the relation δa1 = −δa2 = −δb2 =
δ. Figures 5(a) and 5(b) present the normalized second-order
correlation signals g(2)(a1, a2) and g(2)(a1, b2) for arbitrary
delay and laser detuning with the parameters � = 100γ ,
κ = 20γ , and δ = 0. From the result of (a1, a2), photon
pairs display bunching behavior for delay measurements,
and the symmetry of g(2)(a1, a2, τ ) is sensitive to the laser
detuning, which can be further noticed from Figs. 5(c) and
5(d). Whereas, the correlation of (a1, b2) is symmetric in
time domain, and robust to the laser detuning. The bunching
for both positive and negative delays in photon pair (a1, a2)
stems from the simultaneous appearance of two differentiable
dressed state transition amplitudes B+, B− in two different
two-photon resonant cascaded channels both with positive

FIG. 5. Normalized second-order correlation signals (a)
g(2)(a1, a2, τ ) and (b) g(2)(a1, b2, τ ), as functions of arbitrary delay
τ and laser detuning � for � = 100γ , κ = 20γ and δ = 0. (c) and
(d) are the intersecting surfaces of (a) at � = 100γ and � = 200γ ,
in which the red dashed thick lines and blue dashed thin lines
represent the analytical results and numerical results without large
width approximation, respectively.

time ordering and the other two different channels both
with reverse time ordering. It is easy to verify that 〈σ̃11〉s =
〈σ̃22〉s = 〈σ̃33〉s for � = ±�, but |B+| > |B−|, the contribu-
tion of two-photon path 3 in Fig. 2 is dominant in the value of
g(2)(a1, a2, τ > 0) [green dashed thin line in Fig. 6(b)].

If the detection orderings are exchanged, the transition am-
plitude B+ can still enhance its positive time ordering in path
2, giving rise to the large contribution of g(2)(a1, a2, τ < 0)
[red dot-dashed thick line in Fig. 6(b)]. As a consequence, two
opposite detection orderings both possess their correspond-
ing dominant positive time ordering and exhibit symmetric
correlation signal. However, this symmetry can be broken by
the maldistribution of dressed populations. For example, for
� = 30γ , 〈σ̃22〉s ≈ 20〈σ̃11〉s and |B+| ≈ 1.52|B−|, triggering
the projecting path 2 with large probability, so the correlation
for negative delay is stronger than positive, as shown in
Fig. 5(a). Similarly, if � > �, for example � = 200γ , it leads
to 〈σ̃11〉s = 〈σ̃33〉s ≈ 10〈σ̃22〉s and |B+| ≈ 10|B−|, then, path
3 being the positive time ordering of τ > 0 is significantly
protruded, as shown in Fig. 5(d).

On the other hand, for photon pairs (a1, b2), all the two-
photon cascaded paths are related to the dressed transition
amplitudes A and B−, consequently, all the possible two-
photon cascaded emissions without protruded time ordering
lead to the ambiguity of time orderings and give rise to the
identical results for two opposite detection orderings regard-
less of distribution of dressed populations, as long as the
delays are equal, as illustrated in Fig. 5(b). Interestingly, it
is enlightening to recall the situation of opposite sidebands
in Mollow triplet, in which the time-dependent two-photon
spectral correlation is also symmetric under resonant excita-
tion due to equal dressed populations.

In Figs. 5(c) and 5(d), apart from the obtained analytical
results depicted by the red dashed thick lines, the numerical

043828-7



PENG, YANG, WU, AND LI PHYSICAL REVIEW A 98, 043828 (2018)

FIG. 6. (a) Steady dressed populations 〈σ̃11〉s (red dotted line), 〈σ̃22〉s (green solid line), and 〈σ̃33〉s (blue dashed line). (b) The value of
g(2)(a1, a2, τ ) in Fig. 5 (c) is decomposed, in which the red dot-dashed thin line, green dashed thin line, and blue dotted thin line correspond
to the contributions from paths (1, 2), path 3, and path 4 for τ > 0, and the red dot-dashed thick line, green dotted thick line, and blue dashed
thick line represent the contributions from paths (1, 2), path 4, and path 3 for τ < 0, respectively. The total normalized correlation function
g(2)(a1, a2, τ ) is plotted by the black solid thin line (top), which is the sum of the above three parts. (c) Enlarged view of the contributions
from path 4 to g(2)(a1, a2, τ ) in (b). Its contributions for τ > 0 and τ < 0 are depicted by the blue dotted thin line and green dotted thick line,
respectively.

results of g(2)(a1, a2, τ ) and g(2)(a1, b2, τ ) without large filter
width approximation are also presented by the blue dashed
thin lines. In our numerical calculations, all the correlation
functions can be obtained from its equations of motion, which
are coupled to other related terms. In this series of equations
of motion, even in the case of large filter widths, all the linear
terms of atomic spontaneous emission rates are preserved,
making it difficult to solve steady-state correlation signals.
The detailed and further descriptions of numerical method
are demonstrated in Appendix A. However, fortunately, if
all the terms involving atomic spontaneous emission are ne-
glected, the steady-state solution of each coupled equation
and correlation signals can be obtained analytically and give
rise to the red dashed thick lines in Figs. 5(c) and 5(d) [and
Figs. 8(a)–8(h) in the following].

B. Nonresonant two-photon cascaded emissions

We now turn to other paired photons (a1, b1) whose fre-
quencies do not satisfy the energy conservation with two
pumping photons (ωa1 + ωb1 �= ω1 + ω2), because there ex-

ists only two possible two-photon cascaded paths |3A〉 �1,a1−→
|2A〉 �2,b1−→ |1A〉 and |3A〉 �2,b1−→ |2A〉 �1,a1−→ |1A〉. For the sake of
simplicity, the two filter detunings are still set to be each
other’s opposite, i.e., δa1 = −δb1 = δ. In Fig. 7, the second-
order correlation signals g(2)(a1, b1) are presented, as a func-
tion of arbitrary delay time τ and laser detuning � with
δ = 0 in Fig. 7(a), and filter detuning δ with � = 100γ in
Fig. 7(b). Other parameters are � = 100γ , κ = 20γ . One
can observe clearly from Fig. 7(a) that, for less laser de-
tuning, for example � = 30γ , the variation tendencies of
antibunching for τ > 0 and τ < 0 are almost identical with
a prominent decline for simultaneous counting. This groove
in Fig. 7(a) originates from the destructive interference be-
tween two time orderings (path 6 and path 7). In detail, for
g(2)(a1, b1, τ > 0), if filter detuning is set to be zero to facili-
tate analysis, the emission amplitudes of positive and negative
time orderings give the probability of event that photon b1

is detected at t + τ after photon a1 is detected at time t

as 4g2

κ2 |B+(1 − 1
2e− κ

2 τ ) − 1
2B−e− κ

2 τ |2. Obviously, destructive

interference occurs near τ = 0, and may become incomplete
for increasing filter detuning. Significantly, more instructive
results emerge when � increase. For large laser detuning,
the value of g(2)(a1, b1, τ < 0) can be greatly suppressed,
even close to zero near τ = 0, but g(2)(a1, b1, τ > 0) can
remain above unity with a remarkable peak in the vicinity
of simultaneous measurements. Moreover, the peak value in
positive delay can be more significant with the further increase
of filter detuning, as shown in Fig. 7(b).

This phenomenon can be understood as the physical distin-
guishability of two time orderings, leading to the definite time
ordering of nonresonant cascaded emissions. As a result of
sharing an initial state |3A〉 and a final state |1A〉, the dressed
populations are irrelevant to the competition of path 6 and path
7, thus, it is just dominated by the transition amplitudes B+
and B−.

As mentioned in the above, for example, � = 200γ pro-
vides B+ with larger value compared with B−, the process
of two-photon emission is mainly concentrated in path 6, as
a result, if the time ordering amplitude of path 6 is selected
as the positive time ordering, it dominates the detection
probability of photon b1 following the detection of a1, i.e.,
τ > 0. However, the amplitude of opposite time ordering

FIG. 7. Normalized second-order correlation signal
g(2)(a1, b1, τ ), as a function of arbitrary delay time τ and
laser detuning � in (a), and filter detuning δ in (b). The parameters
are � = 100γ , κ = 20γ , and δ = 0 in (a), and � = 100γ in (b).
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FIG. 8. Normalized second-order correlation signal g(2)(a1, b1, τ ) with � = 100γ , κ = 20γ . The laser detuning is tuned to � = 200γ in
frames (a) and (c), and � = −200γ in frames (b) and (d). The filter detuning is tuned, respectively, to δ = 0 in frames (a) and (b), and δ = 10γ

in frames (c) and (d). (e)–(h) are the enlarged views of the minimum values of (a)–(d), respectively. The red dashed thick lines and blue dashed
thin lines represent the analytical results and numerical results without large width approximation, respectively.

relating to B− only yields smaller probability with exponential
decay of delay time, therefore, if the detection of photon
a1 is lagged behind the detection of photon b1, i.e., τ < 0,
the result turns out to be antibunching. In addition, when
the sign of laser detuning is opposite, the situations for two
delays are just opposite, as illustrated in Figs. 8(a) and 8(b),
or 8(c) and 8(d). This means that it is possible to effectively
switch the information of emission channels with privileged
time orderings through adjusting the laser frequency from red
detuning to blue detuning.

In contrast, this feature can not be realized in a Mollow
triplet of two-level atom, in which the nonresonant two
cascaded fluorescent photons are involved to Rayleigh line
and either of the sidebands. In a pair of complementary
two-photon cascaded paths, not only two sideband photons
are given by the same dressed state transition amplitudes,
but also two Rayleigh photons (with opposite signs). This
ambiguity of time orderings leads to the symmetric two-mode
correlation signal.

C. Discussions and comparisons with a dressed
four-level quantum dot

Apart from the two-level atom, one may naturally perceive
that there is a high similarity of level structure between
the three-level system under our consideration and four-level
semiconductor quantum dot. The investigation of time order-
ings in this model was performed and many significant results
were presented in Ref. [35]. Before finishing this section,
let us compare our conclusions with the obtained results of
four-level semiconductor quantum dot in Ref. [35].

As shown in Fig. 9(a), the bare cascaded transitions |B〉 ↔
|V 〉 ↔ |G〉 are driven coherently by a single-mode laser
field with two-photon resonance, and the fluorescent fields
of interest are generated from |B〉 → |H 〉 and |H 〉 → |G〉
via spontaneous emissions with decay rates γB and γH , re-
spectively. In the structure of its dressed levels in Fig. 9(b),
the low-frequency fluorescent field labeled by L0 in Ref. [35]

corresponds to the transition |1D〉 → |3D〉 and is selected as
one of the target spectral lines to be correlated with high-
frequency spectral lines R0 from emission |3D〉 → |1D〉 and

FIG. 9. (a) Level diagram for the four-level quantum dot, in
which the bare transitions |B〉 ↔ |V 〉 ↔ |G〉 are driven by a single-
mode driving laser under the two-photon resonance condition ωBG =
2ωL. Two low-frequency spectral components labeled by L0 and
L+ are radiated from |B〉 → |H 〉 with spontaneous decay rate γB ,
and the high-frequency spectral components R0 and R+ are built
up from |H 〉 → |G〉 with decay rate γH . �EB is the biexciton
binding energy caused by Coulomb interactions. (b) Time orderings
of fluorescent emission in dressed levels, in which the fluorescent
spectral components L0, L+, and R+ are equivalent to the cavity
photons labeled by c1, c2, and d1 respectively. The time orderings
of photon pair (c1, c2) are depicted by path 12 and path 13, and
the another isolated path 14 represents the unique time ordering of
photon pair (c1, d1).
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R+ from emission |3D〉 → |2D〉, respectively. According to
the detection theory of cavity modes, the target spectral lines
L0, R0, and R+ are equivalent to the cavity photons, and will
be labeled by cavity mode operators c1, c2, and d1 respectively
in the following comparisons and discussions.

In order to probe into the physical mechanism of time or-
derings, the unnormalized correlations for photon pair (c1, c2)
(i.e., the spectral lines L0 and R0 in Ref. [35]) in the quantum
dot are derived under the conditions of large passband widths
and short delay, which can be expressed compactly as

G (2)(c1, c2, τ ) = I (c1 )
1

∣∣F (c2 ),+
11 (τ )

∣∣2 + 〈N33〉s
∣∣T (c1c2 ),−

33 (τ )
∣∣2

,

G (2)(c2, c1, τ ) = I (c2 )
3

∣∣F (c1 ),+
33 (τ )

∣∣2 + 〈N11〉s
∣∣T (c2c1 ),−

11 (τ )
∣∣2

,

(24)
with the conditional emission amplitudes

F (c2 ),+
11 (τ ) = −igμF+(

δc1 , δc2 , τ
)
,

F (c1 ),+
33 (τ ) = −igμF+(

δc2 , δc1 , τ
)
,

(25)
T (c1c2 ),−

33 (τ ) = gμ2T −(
δc1 , δc2 , τ

)
,

T (c2c1 ),−
11 (τ ) = gμ2T −(

δc2 , δc1 , τ
)
,

where 〈N11〉s and 〈N33〉s are the steady-state populations of
dressed states |1D〉 and |3D〉, and μ is the common dressed
state transition amplitude for photons c1 and c2. These involv-
ing parameters are all defined in Appendix C. From Eq. (24),
it is indicated that the time orderings of this photon pair are
composed of two independent cascaded transition paths [path
12 and path 13 in Fig. 9(b)] with opposite emission orderings
and without interference. Furthermore, two photons share a
common transition amplitude, which leads to the ambiguity
of two opposite time orderings. From here one may recall
that the time orderings of (c1, c2) are the same as that of two
opposite spectral sidebands of the Mollow triplet, thus, it may
help us to understand the results in Ref. [35] that bunching
effect is displayed from the correlated spectral lines (L0, R0)
for positive and negative delays. By comparing the results of
(a1, a2) and (a1, b2) under our consideration with this photon
pair, it can be seen that although the paths of photon pairs
(a1, a2) and (a1, b2) are more complicated, interference can
be established. In other words, in photon pair (a1, a2) and
(a1, b2), both incoherent and coherent superpositions of time
orderings exist. However, the contribution of time orderings
to the photon statistics of (a1, a2) and (a1, b2) are similar with
the case of (c1, c2), because of the incoherent superposition of
time orderings, the transition amplitudes can not play a great
role to distinguish different time orderings.

What is more interesting is to compare the correlated
photon pair (c1, d1) with the second group of photon pairs
(a1, b1) in three-level system. The correlations for (c1, d1) are

G (2)(c1, d1, τ ) = I (c1 )
1

∣∣F (d1 ),+
12 (τ )

∣∣2
,

(26)
G (2)(d1, c1, τ ) = 〈N11〉s

∣∣T (d1c1 ),−
12 (τ )

∣∣2
,

with the conditional emission amplitudes

F (d1 ),+
12 (τ ) = ig

1√
2
F+(

δc1 , δd1 , τ
)
,

(27)
T (c1c2 ),−

33 (τ ) = −g
μ√

2
T −(

δd1 , δc1 , τ
)
.

From these succinct forms, it is informative to note the differ-
ence of physical mechanism between (c1, d1) and (a1, b1). As
depicted in Fig. 9(b), only one two-photon cascaded emission
ordering is allowed for (c1, d1) without any other possible
orderings. This isolated time ordering results in the conser-
vation of the original time ordering in bare, as mentioned in
Ref. [35]. Obviously, compared with our proposed scheme in
(a1, b1) with a pair of complementary paths, the time ordering
of (c1, d1) is pure and complete. This means that, for a given
ordering of two-photon detection, this emission ordering is
either completely positive or reverse to correlation signal,
without extra paths such as those in photon pair (a1, b1) that
the path contributing target time ordering have to be enhanced
and another impedient path required to be suppressed by
adjusting the pump laser detuning. This is the physical origin
of bunching when the measurement of spectral line L0 is
ahead of the measurement of R+, and antibunching for the
opposite detections, i.e., the detection for L0 is lagged behind
the detection of R+, as was shown in Ref. [35]. However, due
to this conservation of time ordering in (c1, d1), the conversion
between two different statistical properties of a photon pair
under a given detection ordering may not be established, thus,
although it is necessary to regulate the laser frequency for
photon pair (a1, b1) to obtain the desired statistical property
under a given detection ordering, it is this tunability and con-
vertibility that makes the photon pairs in three-level system,
such as (a1, b1), possess more selectivity in control of time
orderings and conversion of statistical properties of photon
pairs.

V. TEMPORAL INTENSITY CORRELATIONS
WITH NARROW FILTER WIDTHS

So far we have systematically discussed the detection the-
ory of FRC in the case of large filter passband widths, which
provide adequate feasibility to get insight into the dressed
atom-photon interactions with the help of analytical results.
Finally, we supplement the case of narrow filtering (λ → 0)
for completeness with a brief discussion.

As an example, Fig. 10(a) exhibits the second-order corre-
lation for paired photons (a1, a2) in logarithmic scale varying
with the detunings of two filters, in which two photons are
outputted from two narrow filters with κ1 = κ2 = 0.002γ . We
find that the statistical characteristics of filtered fluorescent

FIG. 10. Logarithmic scaled second-order correlation signals
log10[g(2)(a1, a2, 0)] as functions of (δ1, δ2) in frame (a), and (κ2, δ) in
frame (b). The parameters are � = 100γ , � = 50γ , and κ1 = κ2 =
κ = 0.002γ in frame (a), and κ1 = 0.002γ with two-photon resonant
condition δa1 = −δa2 = δ in frame (b).
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photons are modified dramatically, as predicted in the Mollow
triplet [38]. Except for the diagonal line of plane (δ1, δ2),
which maintains distinct bunching, no correlation can be
observed. Figure 10(b) illustrates the situation in which the
linewidth of one narrow filter is fixed at κ1 = 0.002γ , while
the linewidth of another one is adjustable, and the detunings
of two filters are opposite to each other with δ1 = −δ2 = δ.
In this situation, the two-mode correlation signal vanishes for
larger passband, whereas it can emerge for comparable narrow
linewidth of another filter, and can be enhanced by increasing
filter detunings.

These statistical properties can be understood in the fol-
lowing physical picture. In order to select photons with high-
precision setting frequency at the cost of long resolving time,
i.e., λ−1 → ∞, the possible emission instants that the filter
can identify are distributed on the time axis taking λ−1 as
its average resolving ability [19,44]. Therefore, whether two
detectors can capture a pair of correlated photons depends on
the possibility of time matching of their respective scanning
ranges, which are of the order λ−1. In other words, it requires
the overlapping part of resolved regions on the time axis,
which describes the event that the emission instant of later
detected photon lies in the lifetime range of the former one,
which may be realized in two filters both with narrow pass-
bands. Therefore, two photons are generated from a common
series of successive processes and bunching characteristics
of two-photon cascade emission are still retained in average.
Because of this requirement, it is also readily comprehensible
for the case of narrow filter matched with a large passband
filter yielding uncorrelated photon pairs, because there is
almost no overlapping area for their lifespans on the time
axis. In addition, two photons are irrelevant for extremely
long delay, leading to g(2)(a1, a2, τ ) approaches to unity when
τ 	 λ−1.

VI. CONCLUSION

In summary, the detection theory of FRC in filtered reso-
nance fluorescence radiated from a �-type three-level atom
is studied by applying the weak coupling regime between
quantum emitter and cavities to probe into the interesting con-
cept of time orderings in terms of conditional time ordering
amplitudes and discussing the manipulation of time orderings.
On the one hand, we are mainly interested in the limit of large
filter widths and short delay region so that the mechanism
of time orderings can be obviously explored through the
conditioned state, which not only gives the compact analytical
results of two-mode correlations, but also answers an essen-
tial question of how the filter-detector systems select time
orderings—–preferentially selecting positive time ordering.
Meanwhile, with the help of past quantum state, the temporal
two-photon correlations can be understood as the collective
effect of cooperating monitoring systems. On the other hand,
the features of two-mode correlation signals of three groups
of photon pairs are analyzed compared with the results in the
Mollow triplet and a driven four-level quantum dot. It is found
that, in photon pairs with two-photon resonance, incoherent
superposition of time orderings results in its indistinguishabil-
ity. More interestingly, for nonresonant two-photon cascaded
processes, bunching and antibunching can be obtained in two

opposite detections, respectively, and the conversion of time
orderings and the statistical properties of photon pair can
be established in this photon pair under a given detection
ordering by adjusting the pump laser frequency. This strong
time asymmetry of quantum correlation originates from the
fact that two different dressed state transition amplitudes of
a common spectral sideband can participate in two opposite
time orderings, which may be applied to complete path engi-
neering in quantum erasure of which-path. We hope that our
results could be helpful for engineering time orderings and
statistical properties of resonance fluorescence in FRC.
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APPENDIX A: NUMERICAL METHOD OF CALCULATING
CORRELATION FUNCTIONS WITHOUT LARGE FILTER

WIDTH APPROXIMATION

In this Appendix, we take the photon pairs (a1, a2) as an
example to demonstrate the numerical method of calculating
second-order correlation signal G (2)(a1, a2, τ ) without large
filter width approximation. The other two groups of photon
pairs (a1, b1) and (a1, b2) can be also treated similarly.

On the one hand, according to the quantum regression
theorem [64,65], in order to calculate the delayed second-
order correlation signal directly in the stationary dynamics,
i.e., 〈a†

1(t )a†
2(t + τ )a2(t + τ )a1(t )〉 = 〈a†

1(0)(a†
2a2)(τ )a1(0)〉,

we need the time evolution of average photon num-
ber 〈(a†

2a2)(τ )〉 and the initial value of correlation signal
〈a†

1(0)a†
2(0)a2(0)a1(0)〉. On the other hand, it serves as the

steady-state solution of the equation of motion for the zero-
delay correlation signal, i.e., d

dτ
〈(a†

1a
†
2a2a1)(τ )〉. Therefore,

we start with this equation. Based on the master equation with
Hamiltonian in semiclassical dressed state representation, the
equation of motion for 〈(a†

1a
†
2a2a1)(τ )〉, which is labeled by

G, is derived as

dG
dτ

= − (κa1 + κa2 )G − iga1 [B−(u1 − u1
∗) − A−(u2 − u2

∗)]

− iga2 [A−(u3 − u3
∗) + B+(u4 − u4

∗)], (A1)

where the time-dependent variables ui (i = 1, 2, 3, 4) are in-
troduced to represent the average values of the coupled
operators for simplicity and clarity, i.e., we have defined
u1 = 〈a†

1a
†
2a2σ̃12〉, u2 = 〈a†

1a
†
2a2σ̃23〉, u3 = 〈a†

1a1a
†
2σ̃21〉, u4 =

〈a†
1a1a

†
2σ̃32〉. Under weak coupling condition gi � √

γlκi , we
have neglected the terms containing more cavity operators in
the derivation of Eq. (A1) and the time-dependent correlation
signal is coupled with the terms only one order lower than
it (i.e., containing three cavity operators) through coupling
constants ga1 and ga2 .

Obviously, the equations of motion for these introduced
terms ui containing three cavity operators are also required
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to be derived, which turn out to be

du1

dτ
= −

(
κa1

2
+ κa2 + �1 − iδa1

)
u1

+�4u2 + iga1B−v1 − iga2A−v2,

du2

dτ
= −

(
κa1

2
+ κa2 + �2 − iδa1

)
u2

+�3u1 + iga2 (Av3 − B+v4) − iga1A−v5,

du3

dτ
= −

(
κa2

2
+ κa1 + �1 − iδa2

)
u3

+�4u4 − iga1 (Av3
∗ + B−v4) + iga2A−v6,

du4

dτ
= −

(
κa2

2
+ κa1 + �2 − iδa2

)
u4

+�3u3 + iga2B+v7 + iga1A−v8, (A2)

where the variables vi (i = 1, 2, 3, 4, 5, 6, 7, 8) are defined
as v1 = 〈a†

2a2σ̃22〉, v2 = 〈a†
1a

†
2σ̃11〉, v3 = 〈a†

1a2σ̃13〉, v4 =
〈a†

1a
†
2σ̃22〉, v5 = 〈a†

2a2σ̃33〉, v6 = 〈a†
1a1σ̃11〉, v7 = 〈a†

1a1σ̃22〉,
v8 = 〈a†

1a
†
2σ̃33〉, and v9 = 〈a†

2a2σ̃11〉, v10 = 〈a†
1a1σ̃33〉. In ad-

dition, the parameters �i (i = 1, 2, 3, 4) are of the order the
atomic spontaneous decay rates. Their specific expressions are
given as

�1 = γ1

2

[
A2

+ + A2
− + B2

+ + B2
− + C2

+ + A+(A+ − C0)

+ 1

4
(A+ − C0)2

]

+ γ2

2

[
A2

+ + A2
− + B2

+ + B2
− + C2

− + A+(A+ + C0)

+ 1

4
(A+ + C0)2

]
,

�2 = γ1

2

[
A2

+ + A2
− + B2

+ + B2
− + C2

− + A+(A+ + C0)

+ 1

4
(A+ + C0)2

]

+ γ2

2

[
A2

+ + A2
− + B2

+ + B2
− + C2

+ + A+(A+ − C0)

+ 1

4
(A+ − C0)2

]
,

�3 = A−(B+γ1 − B−γ2), �4 = A−(B+γ2 − B−γ1), (A3)

where the coefficients A±, B±, C±, and C0 are the dressed
state transition amplitudes, which are easily obtained as A+ =
sin θ cos θ√

2
, A− = cos2 θ

2 , B± = sin θ (1±sin θ )
2 , C± = cos θ (1±sin θ )

2
√

2
,

and C0 = 2(C+ + C−). We need to point out that, in A+
and A−, only A− involves the modes a1, a2, b1, and b2,
therefore, the subscript “−′′ is omitted in Eq. (10) and the
related equations and level diagrams, i.e., A− = A. Simi-
larly, after introducing time-dependent coupled terms with
single cavity operator w1 = 〈a†

2σ̃32〉, w2 = 〈a†
2σ̃21〉, w3 =

〈a†
1σ̃12〉, and w4 = 〈a†

1σ̃23〉, the equations of motion for vi are

derived as
dv1

dτ
= −(

κa2 + β1 + β2
)
v1

+α0(v5 + v9) + iga2A−(w∗
2 − w2),

dv2

dτ
= −

[
κa1 + κa2

2
+ α0 + α1 − i

(
δa1 + δa2

)]
v2

+β2v4 + α2v8 + iga1B−w2,

dv3

dτ
= −

[
κa1 + κa2

2
+ β0 − i

(
δa1 − δa2

)]
v3

− iga2B+w∗
3 + iga1B−w∗

1,

dv4

dτ
= −

[
κa1 + κa2

2
+ β1 + β2 − i

(
δa1 + δa2

)]
v4

+α0(v2 + v8) − iga1A−w1 + iga2A−w3,

dv5

dτ
= −(

κa2 + α0 + α2
)
v5

+α1v9 + β1v1 + iga2B+(w∗
1 − w1),

dv6

dτ
= −(

κa1 + α0 + α1
)
v6

+α2v10 + β2v7 + iga1B−(w∗
3 − w3),

dv7

dτ
= −(

κa1 + β1 + β2
)
v7

+α0(v6 + v10) − iga1A−(w∗
4 − w4),

dv8

dτ
= −

[
κa1 + κa2

2
+ α0 + α2 − i

(
δa1 + δa2

)]
v8

+β1v4 + α1v2 + iga2B+w4,

dv9

dτ
= −(

κa2 + α0 + α1
)
v9 + α2v5 + β2v1,

dv10

dτ
= −(

κa1 + α0 + α2
)
v10 + α1v6 + β1v7, (A4)

with the parameters being the same order as atomic sponta-
neous decay rates

α0 = A2
−(γ1 + γ2), α1 = C2

+γ1 + C2
−γ2,

α2 = C2
+γ2 + C2

−γ1,
(A5)

β0 = 1
2 (γ1 + γ2)

(
2A2

− + C2
0 + C2

+ + C2
−
)
,

β1 = B2
+γ1 + B2

−γ2, β2 = B2
+γ2 + B2

−γ1.

The newly introduced time-dependent coupled terms w1,
w2, w3, and w4 are only coupled with the dressed populations

dw1

dτ
= −

(
κa2

2
+ �2 − iδa2

)
w1 + iga2B+〈σ̃22〉 + �3w2,

dw2

dτ
= −

(
κa2

2
+ �1 − iδa2

)
w2 + iga2A−〈σ̃11〉 + �4w1,

dw3

dτ
= −

(
κa1

2
+ �1 − iδa1

)
w3 + iga1B−〈σ̃22〉 + �4w4,

dw4

dτ
= −

(
κa1

2
+ �2 − iδa1

)
w4 − iga1A−〈σ̃33〉 + �3w3.

(A6)
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It can be noticed that, in addition to the equation of motion
for correlation signal in Eq. (A1), all of the above equations
contain linear terms about atomic spontaneous emission rates,
�1, �2, �3, �4, α0, α1, α2, β0, β1, and β2, making it difficult
to obtain the steady-state solutions analytically. Therefore,
when these items are taken into consideration, the correlation
function is obtained numerically, which gives the blue dashed
thin lines in Figs. 5(c), 5(d) and Figs. 8(a)–8(h) in Sec. IV.

However, fortunately, under the condition of large filter
widths, all the terms involving atomic spontaneous emission
rates in the above equations can be neglected, therefore, the
steady-state solution of each coupled equation can be solved
analytically and gives the analytical results of the correlations.

APPENDIX B: DERIVATION OF TWO-MODE
CORRELATIONS FOR ARBITRARY TIME

DELAY WITH LARGE FILTER WIDTHS

Following the obtained coupled equations of motion, we
still take the photon pairs (a1, a2) as an example to derive the
unnormalized second-order correlation G (2)(a1, a2, τ ) for ar-
bitrary detection time difference in the limit of large passband
widths. Another two results G (2)(a1, b1, τ ) and G (2)(a1, b2, τ )
can be also obtained straightforwardly.

For arbitrary delay, the unnormalized correlation function
should be directly calculated from the superposition of prob-
ability components 〈a†

1a1(a†
2a2σ̃11)(τ )〉, 〈a†

1a1(a†
2a2σ̃22)(τ )〉,

and 〈a†
1a1(a†

2a2σ̃33)(τ )〉, labeled by G1, G2, and G3, respec-
tively. According to the quantum regression theorem, the time
evolutions of G1, G2, and G3 are dominated by the equations
of motion for v1, v5, and v9 in Appendix A with the help of
large passband widths approximation

dv9

dτ
≈ −κa2v9,

dv1

dτ
≈ −κa2v1 + iga2A(w∗

2 − w2),

dv5

dτ
≈ −κa2v5 + iga2B+(w∗

1 − w1),

(B1)

where the time-dependent coupling terms w1 and w2 are
governed by their equations of motion

dw1

dτ
≈ −

(
κa2

2
− iδa2

)
w1 + iga2B+〈σ̃22〉,

(B2)
dw2

dτ
≈ −

(
κa2

2
− iδa2

)
w2 + iga2A〈σ̃11〉.

Meanwhile, after applying quantum regression theorem to
Eq. (B1) to obtain the equations of motion for G1, G2, and
G3, its steady-state values, G1s ,G2s , and G3s , are solved to be
the initial values of time-dependent probability components,
which are derived straightforwardly as

G1s = iga1B−(u∗
1s − u1s )

κa1 + κa2

, G3s = iga2B+(u∗
4s − u4s )

κa1 + κa2

,

G2s = iga1A(u2s − u∗
2s )

κa1 + κa2

− iga2A(u3s − u∗
3s )

κa1 + κa2

. (B3)

The steady-state values of coupling terms in Eq. (B3) can
also be obtained iteratively from the corresponding equations

of motion in Appendix A. With these steady-state solutions
in hand and after some algebraic arrangements, the total un-
normalized second-order correlation function of photon pairs
(a1, a2) for arbitrary delay can be divided into two parts

G (2)(a1, a2, τ ) = G (2)
sd (a1, a2, τ ) + G (2)

ld (a1, a2, τ ). (B4)

The first term is the short delay behavior given by Eq. (16) and
labeled as G (2)

sd (a1, a2, τ ) in Eq. (B4). The second part takes
the form of

G (2)
ld (a1, a2, τ ) = η1(e−r1τ − 1) + η2(e−r2τ − 1)[( κa1

2

)2 + δ2
a1

][( κa2
2

)2 + δ2
a2

] , (B5)

which comes from the consideration of long delay behavior.
Its time evolution is only determined by the parameters, η1,
η2, r1, r2, of the dressed atom. The parameters η1, η2 are
defined as

η1 = ξ12〈σ̃22〉s + ξ13〈σ̃33〉s
r1(r2 − r1)

, η2 = ξ22〈σ̃22〉s + ξ23〈σ̃33〉s
r2(r1 − r2)

,

(B6)

in which ξ12, ξ13, ξ22, and ξ23 are given by

ξ12 = A2B2
−
[−r2

1 + r1(R1 + R31) − S2
]

+B2
+B2

−(r1R12 − S3),

ξ13 = A2B2
+
[−r2

1 + r1(R2 + R32) − S3
]

+A4(r1R21 − S2),

ξ22 = A2B2
−
[−r2

2 + r2(R1 + R31) − S2
]

+B2
+B2

−(r2R12 − S3),

ξ23 = A2B2
+
[−r2

2 + r2(R2 + R32) − S3
]

+A4(r2R21 − S2), (B7)

where the coefficients relating to the dressed transition rates
Rij are defined as

R1 = R21 + R23 + R32,

R2 = R12 + R13 + R31,

R3 = R21 − R31, R4 = R12 − R32, (B8)

S1 = (R21 − R31)(R12 − R32),

S2 = R32R3 + R31R1,

S3 = R31R4 + R32R2,

with 2r1,2 = (R1 + R2) ∓
√

(R1 − R2)2 + 4R3, and the
transition rates can be easily found. Therefore, we obtain the
unnormalized correlation function for arbitrary time differ-
ence given by Eq. (16) with Eq. (B5). It is easy to verify that
the uncorrelated condition of normalized correlation func-
tion g(2)(a1, a2, τ ) = G (2)(a1, a2, τ )/〈a†

1a1〉s〈a†
2a2〉s is satis-

fied, i.e., limτ→∞ g(2)(a1, a2, τ ) = 1. In addition, we would
like to examine the behaviors of G (2)(a1, a2, τ ) in the limit of
long delay time and infinite bandwidths (color-blind filters).
Because of κ 	 γ , all the exponential decays depending on
κ disappear, and only those depended on the parameters r1

and r2, which are of the order γ , can survive. Then, the
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unnormalized correlation function is simplified as

lim
κ	γ

G (2)(a1, a2, τ ) = G (2)
0 (a1, a2, τ )[( κa1

2

)2 + δ2
a1

][( κa2
2

)2 + δ2
a2

] , (B9)

with numerator

G (2)
0 (a1, a2, τ ) = A2B2

−〈σ̃22〉sP1→1(τ ) + A4〈σ̃33〉sP2→1(τ )

+ B2
+B2

−〈σ̃22〉sP1→2(τ )

+ A2
+B2

+〈σ̃33〉sP2→2(τ ), (B10)

where Pk→k′ (τ ) = |〈kA(0)|k′
A(τ )〉|2 stands for the evolution

probability of the dressed atom from the final dressed state
|kA〉 of the transition responsible for emitting a photon a1

to the dressed state |k′
A〉 being the initial state of the next

transition for emitting photon a2. This indicates that the corre-
lation function in Eq. (B10) describes the simple dynamics of
free evolution of the dressed atom with spontaneous decays.
Therefore, in the limit of long delay, unnormalized correlation
function in Eq. (B9) is essentially the standard correlation
function, which is just modulated by the Lorentzian filter
response functions. After normalization, g(2)(a1, a2, τ ) is in-
dependent of the information of filters, and returns to the
standard form, i.e., g(2)(a1, a2, τ ) = g

(2)
0 (a1, a2, τ ) for τ 	

λ−1. Similarly, for infinite bandwidth, the parameters of filters
also vanish for color-blind filters and the physical requirement
limλ→∞ g(2)(a1, a2, τ ) = g

(2)
0 (a1, a2, τ ) is still conserved.

APPENDIX C: DRESSED STATES AND CORRELATIONS
FOR ARBITRARY DELAY OF THE FOUR-LEVEL

QUANTUM DOT

In this Appendix, we present the dressed states of the
quantum dot modeled by a four-level system to determine the
correlated target spectral bands in Ref. [35], and then, being
an example, the correlation function of photon pair (c1, c2) for
arbitrary delay is given in brief.

The Hamiltonian of the driven four-level quantum dot is

HQD = h̄�BσBB + h̄�V σV V + h̄�HσHH

+�G(σGV + σV G) + �B (σBV + σV B ), (C1)

where the different laser detunings are defined as �V =
ωV G − ωL, �H = ωHG − ωL, and �B = ωBG − 2ωL. For the
sake of simplicity, the condition of two-photon resonance
is assumed to be satisfied, i.e., �B = 0. Meanwhile, two
Rabi frequencies (�B , �G) and two detunings (�V , �H ) are
both set to be equal, i.e., �B = �G = � and �V = �H =
�EB/2 = � (�EB is biexciton binding energy caused by
Coulomb interactions). After diagonalization of HQD , we
obtain the semiclassical dressed eigenstates |1D〉, |2D〉, |3D〉,
and |4D〉 that are expressed in term of the bare states as

⎛
⎜⎝

|4D〉
|3D〉
|2D〉
|1D〉

⎞
⎟⎠ =

⎛
⎜⎜⎝

ε1 ε2 0 ε1

0 0 1 0
1√
2

0 0 − 1√
2

ε3 ε4 0 ε3

⎞
⎟⎟⎠

⎛
⎜⎝

|B〉
|V 〉
|H 〉
|G〉

⎞
⎟⎠, (C2)

where the parameters are defined as

ε1,3 = 1√
2 + (

�±�0
2�

)2
, ε2,4 = 1

2�

� ± �0√
2 + (

�±�0
2�

)2
(C3)

with �0 = √
�2 + 8�2. With these in hand, the bare emission

operators of interest can be decomposed into

σHB = σ−
L0

+ σ−
L+ + σ−

R1

= (μ2N31) +
(

1√
2
N32

)
+ (μ4N34),

σGH = σ−
R0

+ σ−
R+ + σ−

L1

= (μ2N13) +
(−1√

2
N23

)
+ (μ4N43), (C4)

with the transition amplitudes

μ1,3 = ± ε1,3

2(ε1ε4 − ε2ε3)
, μ2,4 = ∓ ε1,2

2(ε1ε4 − ε2ε3)
.

(C5)

Where Nkk′ are the emission operators of dressed quantum
dot from the dressed state |k′

D〉 to |kD〉, i.e., Nkk′ = |kD〉〈k′
D|.

Apparently, in the emission spectrum, the bare low-frequency
radiation |B〉 → |H 〉 contributes two low-frequency fluores-
cent bands L0, L+ and one high-frequency band R1, and the
bare high-frequency radiation |H 〉 → |G〉 generates two high-
frequency fluorescent bands R0, R+ and one low-frequency
band L1. More coincidentally, the fluorescent photons L0 and
R0 share a common dressed state transition amplitude μ2

[labeled by μ in Eqs. (25) and (27)]. With these operators, the
target spectral components L0, R0 and R+ can be correlated,
which are given in Eqs. (24) and (26).

Taking the photon pair (c1, c2) as an example, the unnor-
malized correlation function for arbitrary time delay can also
be decomposed into two parts as

G (2)(c1, c2, τ ) = G (2)
sd (c1, c2, τ ) + G (2)

ld (c1, c2, τ ), (C6)

where the first term represents its short-time behavior given
by Eq. (24), and the second term

G (2)
ld (c1, c2, τ ) = G (2)

0 (c1, c2, τ ) − μ4
2〈N11〉s[(

κ
2

)2 + δ2
c1

][(
κ
2

)2 + δ2
c2

] (C7)

is the correction term when the long-time behavior is taken
into account. This form ensures the automatic degradation
of correlation signal from the filtered form to the standard
form under the condition of long delay (modulated by two
Lorentzian spectral functions, which will vanish algebraically
after normalization), which has been demonstrated in
Appendix B. The steady-state dressed populations 〈N11〉s can
be easily obtained from its equations of motion, which takes
the form of rate equations.
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[9] A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître,

I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, Nature (London)
466, 217 (2010).

[10] A. González-Tudela, E. del Valle, and F. P. Laussy, Phys. Rev.
A 91, 043807 (2015).

[11] C. Sánchez Muñoz, E. del Valle, C. Tejedor, and F. P. Laussy,
Phys. Rev. A 90, 052111 (2014).

[12] M. Peiris, B. Petrak, K. Konthasinghe, Y. Yu, Z. C. Niu, and A.
Muller, Phys. Rev. B 91, 195125 (2015).

[13] M. Peiris, K. Konthasinghe, and A. Muller, Phys. Rev. Lett. 118,
030501 (2017).

[14] A. Ulhaq, S. Weiler, S. M. Ulrich, R. Roßbach, M. Jetter, and P.
Michler, Nat. Photon. 6, 238 (2012).

[15] F. P. Laussy, Nat. Mater. 16, 398 (2017).
[16] G. Bel and F. L. H. Brown, Phys. Rev. Lett. 102, 018303

(2009).
[17] S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler,

J. Wrachtrup, and I. Gerhardt, Nat. Commun. 7, 13632 (2016).
[18] Y. Ben-Aryeh, H. Freedhoff, and T. Rudolph, J. Opt. B. 1, 624

(1999).
[19] A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, M. J. Hartmann,

and E. del Valle, New J. Phys. 15, 033036 (2013).
[20] J. C. L. Carreño, E. del Valle, and F. P. Laussy, Laser Photon.

Rev. 11, 1700090 (2017).
[21] T. H. Chung, G. Juska, S. T. Moroni, A. Pescaglini,

A. Gocalinska, and E. Pelucchi, Nat. Photon. 10, 782
(2016).
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