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Cavity-free quantum optomechanical cooling by atom-modulated radiation
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We theoretically study the radiation-induced interaction between the mechanical motion of an oscillating
mirror and a remotely trapped atomic cloud. When illuminated by continuous-wave radiation, the mirror motion
will induce red and blue sideband radiation, which respectively increases and reduces motional excitation. We
find that, by suitably driving �-level atoms, the mirror correlation with a specific radiation sideband could be
converted from the outgoing to the incoming radiation. Thereby, we can manipulate heating and cooling effects.
Particularly, we develop an optomechanical cooling strategy that can mutually cancel the heating effect of the
outgoing and incoming radiation, rendering the motional ground state attainable by net cooling. Our proposal
complements other efforts in quantum cooling of macroscopic objects since it requires neither a cavity nor perfect
alignment.
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I. INTRODUCTION

Technological innovation is strongly driven by increasing
the precision of mechanical devices while at the same time
reducing their size. Fundamentally, the ultimate limit to con-
trol mechanical motion is imposed by quantum fluctuation.
Reducing motion of a macroscopic object to the quantum
limit allows us to build devices with unprecedented precision
for detecting gravitational waves [1–4], testing fundamental
physics [5,6], quantum information processing [7,8], and
more [9,10]. In practice, the motional fluctuation of most
devices is orders of magnitude higher than the quantum limit,
due to the inevitable coupling to the environment that induces
thermal noise.

For over a century, great effort has been spent to tackle
thermal noise through advancing cooling techniques [11]. A
relatively recent and promising approach is optomechanical
cooling, which dissipates motional excitation by converting it
to electromagnetic radiation [12–14]. Efficient optomechan-
ical cooling usually requires the mechanical oscillator to be
placed in an optical cavity, in order to increase the photon-
phonon interaction time. Reduction of motional excitation by
orders of magnitude has been demonstrated recently [15,16],
and a final excitation at the single phonon level has been
achieved [17,18].

Nevertheless, the technical challenges to combine both a
high-quality mechanical oscillator and a high-quality radia-
tion cavity compromise the applicability of cavity optome-
chanical cooling. Given a poor or no cavity at all, one needs
to enhance the cooling efficiency by additional mechanisms.
Thanks to the versatile techniques developed in atomic control
via electromagnetic radiation, coupling a mechanical oscilla-
tor to trapped atoms emerges as a promising option. Early

*hklau.physics@gmail.com; current address: Institute for Molec-
ular Engineering, The University of Chicago, 5640 South Ellis
Avenue, Chicago, IL 60637, USA.

proposals suggest a standing wave configuration such that
the light beams incoming to and reflected from a mirror are
aligned to form an optical lattice atomic trap [19–23]. An
effective coupling between the mirror motion and the atomic
motional or internal state can be established through photon
exchange to remove motional excitation sympathetically by
laser cooling of atoms. Recently, some of us have proposed
mirror-atom coupling where the incoming and reflected radia-
tion is misaligned and distinct in frequency [24]. By incorpo-
rating electromagnetic induced transparency (EIT), the atoms
modulate the sideband radiation that is induced by the mirror
motion. This effect can be used to amplify or damp the
classical oscillation of the mirror.

In this paper, we extend the idea from Ref. [24] to im-
plement optomechanical cooling in the quantum regime. We
consider a setup with an oscillating mirror illuminated by
two laser beams. The mechanical motion will generate red
and blue sidebands in the reflected radiation. Note that each
sideband acts differently on motional excitation: the blue
sideband is created by beam splitting that cools the mirror,
and the red sideband is excited by two-mode squeezing that
increases motional excitation.

Remote from the mirror, we consider a cloud of �-level
atoms which is trapped at the intersection of an incoming
and an outgoing laser beam. By driving the atoms appro-
priately, we find that the mirror correlation with a specific
sideband can be converted from the outgoing to the incoming
radiation. This allows us to develop two cooling strategies:
converting the blue sideband to enhance the cooling effect, or
converting the red sideband to suppress the heating effect. We
will show that with the latter strategy the mirror can be cooled
to the ground motional state.

Our paper is organized as follows. First, the mirror-
radiation interaction is discussed in Sec. II followed by an
analysis of the dynamics of the trapped atoms in Sec. III. In
Sec. IV, we connect the atom and mirror dynamics through
a time-local dynamic equation for any system operator. In
Sec. V, we discuss two cooling strategies and analyze their
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FIG. 1. Configuration of our system. Two radiation beams, Con-
trol (upper, orange) and Probe (lower, green), are applied to and
reflected from an oscillating mirror. A diluted atomic cloud (red oval)
is trapped at the overlap of the outgoing Control and incoming Probe
beams.

performance through solving the dynamic equation of mo-
tional excitation. In Sec. VI, we briefly discuss the applica-
bility of our scheme to cool realistic oscillators. Conclusions
are drawn in Sec. VII.

II. LIGHT-MIRROR INTERACTION

The setup of our system is schematically shown in
Fig. 1. An oscillating mirror is illuminated by two beams
of continuous-wave (cw) radiation, labeled with Control and
Probe, according to the convention of EIT. The Control beam
falls directly on the mirror and passes, after reflection from the
mirror, through a remotely trapped atomic cloud at distance x̄

from the mirror. Conversely, the Probe beam passes through
the atomic cloud before hitting the mirror. After reflection it
will not be collected but dissipated to the environment. Both
the applied Probe (β = p) and Control (β = c) beams are
described as monochromatic classical light with frequency
ωβ0 and amplitude α̃β related to the radiation power via Pβ =
|α̃β |2ch̄ωβ0/(2π ). In the following, these two classical lights
will be referred to as Probe and Control drives, respectively.

We consider only the fundamental mode of mirror os-
cillation. Higher-order modes can be added to the analysis
analogously. We model the oscillation with a simple harmonic
oscillator of frequency ν and effective mass m. In most sys-
tems of interest, the thermal fluctuation of the mirror position
is much smaller than the wavelength of the light, so that the
incoming and outgoing radiation is dominated by the classical
drive. Quantum effects can be incorporated by considering
only the leading order of quantum fluctuations.

The Hamiltonian around the mirror surface is given by

H = h̄νb̂†b̂ +
∑

β=c,p

∫ kβ0+κ

kβ0−κ

h̄�β (â†
kβ

âkβ
+ â

†
−kβ

â−kβ
)dkβ

+ h̄

2
(μp(â†

p − â
†
−p )(b̂ + b̂†) + μ∗

p(b̂ + b̂†)(âp − â−p ))

− h̄

2
(μc(â†

c − â
†
−c )(b̂ + b̂†) + μ∗

c (b̂ + b̂†)(âc − â−c )),

(1)

where kp0 ≡ ωp0/c and kc0 ≡ ωc0/c. We have assumed that
Probe and Control radiation are distinguishable either by
sufficiently separated frequencies, or by other degrees of free-
dom, e.g., polarization. We pick a sufficiently wide frequency
domain 2cκ around each classical drive frequency, i.e., cκ �
ν, so that the collection of radiation modes in each domain
can be treated as a continuum; a radiation mode belonging
to the continuum around Probe (Control) drive frequency is
denoted as a Probe mode (Control mode). Unless specified,
all our integrations over wave vectors will be executed over
the respective domain (which has a width of 2κ).

The first term in (1) is the bare Hamiltonian of mirror
motion, where b̂ is the annihilation operator of the oscillation
mode. The second term contains the bare Hamiltonians of
the Probe and Control modes. Each of the two modes is
characterized by an annihilation operator âkβ

, a wave vector
kβ , and the detuning from classical drive �β ≡ c|kβ | − ωβ0.
In our setup, the incoming and outgoing modes are almost
perpendicular to the mirror surface, but not collinear due to
misalignment. The wave vector of each mode is represented
by a positive scalar, kβ , and a sign + (−) indicates outgoing
(incoming) propagation.

The third and fourth terms in (1) represent the leading-
order optomechanical interaction between radiation and mir-
ror motion. This interaction originates from the change of
radiation energy density due to mirror motion. Details of
the derivation can be found in Appendix A. The interaction
strength in each mode is characterized by the factor

μβ ≡ 2

√
c

2π
kβ0q0α̃β, (2)

with the quantum fluctuation q0 ≡ √
h̄/(2mν) of the mirror

position. For clarity, we denote an annihilation operator with
subscript k as a mode operator, while that without the sub-
script k as a field operator, which is defined by the transfor-
mation

â±β ≡
√

c

2π

∫
â±kβ

dkβ. (3)

Optomechanical heating and cooling

The optomechanical interaction is usually weak in free-
space systems, so the dominant interaction is that on res-
onance. By using the definition (3), we observe two types
of resonant optomechanical interaction in (1). The first type
couples the blue sideband modes with the mirror motion
in the form of â

†
kb̂ + H.c., where the blue sideband wave

vector can be k = ±(kp0 + ν/c) or ±(kc0 + ν/c). This type
of interaction is known as beam splitting (BS), which con-
verts excitation from one mode to another. If the input blue
sideband mode is in the vacuum, motional excitation will be
converted to photons. The mirror is cooled if the blue sideband
mode is not backcoupled.

The second type couples the red sideband mode with
the mirror motion in the form of âkb̂ + H.c., where the red
sideband wave vector is k = ±(kp0 − ν/c) or ±(kc0 − ν/c).
This type of interaction is known as two-mode squeezing
(TMS) [25]. If the input radiation is in the vacuum, TMS will
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FIG. 2. Level diagram of a �-level atom.

create both motional excitation and red sideband photons. The
mirror is heated if the red sideband mode is not backcoupled.

To study the dynamics of motional excitation, we apply the
input-output formalism [26] to derive the quantum Langevin
equation for any mirror operator Ôb,

˙̂Ob = Lb(Ôb )

≡ iν[b̂†b̂, Ôb] + |μp|2 + |μc|2
2

D[b̂ + b̂†](Ôb )

− iμpâ
(1)†
−p [b̂ + b̂†, Ôb] − iμ∗

p[b̂ + b̂†, Ôb]â(1)
−p

+ iμcâ
in†
−c[b̂ + b̂†, Ôb] + iμ∗

c [b̂ + b̂†, Ôb]âin
−c, (4)

where Ôb can be any polynomial of b̂ and b̂†; â
(1)†
−p and â

in†
−c are

the input operators of Probe and Control fields, respectively
[26]. The dissipator superoperator is defined as D[d̂](Ô ) ≡
d̂†Ôd̂ − 1

2 d̂†d̂Ô − 1
2 Ôd̂†d̂. The incoming Control field is as-

sumed to be vacuum, while the incoming Probe field contains
correlation with the trapped atoms.

III. LIGHT-ATOM INTERACTION

We consider a cloud of atoms trapped remotely from
the mirror. For each atom, we utilize only two metastable
states, |g〉 and |e〉, and one quickly-decaying state |d〉. The
atomic states are arranged in a � configuration, as shown in
Fig. 2. The |g〉 ↔ |d〉 and |e〉 ↔ |d〉 transitions are driven
by the incoming Probe and outgoing Control drives, respec-
tively. The total Hamiltonian of the atomic cloud and the
radiation is

Htotal = Hrad +
N∑

i=1

(
H (i)

a + H
(i)
b + H

(i)
I + H

(i)
Ib

)
. (5)

Hrad = ∫
h̄�pâ

†
−kp

â−kp
dkp + ∫

h̄�câ
†
kc
âkc

dkc is the bare
Hamiltonian of the incoming Probe and outgoing Con-
trol modes. N is the total number of atoms. H (i)

a is the
Hamiltonian for the ith atom,

H (i)
a = −h̄�gσ

(i)
gg − h̄�eσ

(i)
ee + ih̄

�(i)∗
p

2
σ

(i)
gd − ih̄

�(i)
p

2
σ

(i)
dg

+ ih̄
�(i)∗

c

2
σ

(i)
ed − ih̄

�(i)
c

2
σ

(i)
de , (6)

where �g (�e) is the detuning of the |g〉 ↔ |d〉 (|e〉 ↔
|d〉) transition from the Probe (Control) drive frequencies.

The Rabi frequency �
(i)
β is the same in magnitude �β =√

2cγβ/πα̃β for all atoms i, but differs in phase φβi ≡
sβkβ0xi , where sp = −1 and sc = 1, which depends on the
atomic position xi , i.e., �

(i)
β = eiφβi �β . The atomic coher-

ence operator is σ
(i)
ll′ ≡ |l(i)〉〈l′(i)|, where |l(i)〉 is the |l〉 state

of the ith atom. H
(i)
I is the interaction between the atom and

Probe and Control modes,

H
(i)
I = ih̄

√
cγp

2π

∫
eikpxi â

†
−kp

σ
(i)
gd − e−ikpxi σ

(i)
dg â−kp

dkp

+ ih̄

√
cγc

2π

∫
e−ikcxi â

†
kc
σ

(i)
ed − eikcxi σ

(i)
de âkc

dkc,

where γp and γc are the decay rates to the Probe and Control
modes, respectively. H

(i)
b is the bare Hamiltonian of the bath

modes; H
(i)
Ib is the atom-bath interaction that induces atomic

decay. Here, we have assumed that the atomic cloud is dilute
and each atom is coupled to an independent bath.

After integrating the Heisenberg equation for the field op-
erators and applying standard approximations [26], we arrive
at the Langevin equation for any atomic operator σ (i),

σ̇ (i) = L(i)
a (σ (i) )

≡ i

h̄

[
H (i)

a , σ (i)
]

+ (γp + �p )D
[
σ

(i)
gd

]
(σ (i) ) + (γc + �c )D

[
σ

(i)
ed

]
(σ (i) )

−√
γpeiφpi â

(i+1)†
−p

(
t + xi

c

)[
σ

(i)
gd , σ (i)

]
+√

γpe−iφpi
[
σ

(i)
dg , σ (i)]â(i+1)

−p

(
t + xi

c

)
−√

γce
−iφci â(i)†

c

(
t − xi

c

)[
σ

(i)
ed , σ (i)

]
+√

γce
iφci

[
σ

(i)
de , σ (i)

]
â(i)

c

(
t − xi

c

)
−√

�p

(
r̂ in(i)†
p

[
σ

(i)
gd , σ (i)

] − [
σ

(i)
dg , σ (i)

]
r̂ in(i)
p

)
−

√
�c

(
r̂ in(i)†
c

[
σ

(i)
ed , σ (i)

] − [
σ

(i)
de , σ (i)

]
r̂ in(i)
c

)
, (7)

where the index of an atom, i, is arranged according to its dis-
tance from the mirror. If not explicitly indicated, the operators
are evaluated at time t . �p and �c are the spontaneous decay
rates from |d〉 to |g〉 and |e〉, respectively, and r̂ in(i)

p and r̂ in(i)
c

are the input field operators of the bath that is responsible for
the respective decay. â

(i)
−p and â(i)

c are the Probe and Control
input field operators between the ith and (i − 1)th atom,

â
(i)
−p ≡ âin

−p + A(i)
p , â(i)

c ≡ â(1)
c + A(i)

c , (8a)

with the collective atomic operators

A(i)
p (t ) ≡ √

γp

N∑
j=i

eiφpi σ
(j )
gd

(
t − xj

c

)
, (8b)

A(i)
c (t ) ≡ √

γc

i−1∑
j=1

e−iφci σ
(j )
ed

(
t + xj

c

)
. (8c)
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Atom 1 Atom N

FIG. 3. Atomic cloud is modeled as an array of atom that the ra-
diation passes through each in sequence. For a general atomic cloud,
we can divide the cloud into parallel slices (gray rectangles), and
each slice consists of a negligible number of atoms. For simplicity,
in this work we consider each slice contains exactly one atom and
the slices are indexed according to the distance from the mirror. Our
model remains valid if the atoms in each slice are weakly interacting,
which is a usual assumption for diluted cloud.

The arrangement of the atoms and field operators is shown in
Fig. 3.

For each atom, the influence from the classical drive is
much stronger than that from the sidebands and other atoms.
Therefore, the equilibrium state of each atom is well approxi-
mated by its bare steady state. When �g = �e ≡ �, the bare
steady state of a �-level atom,

|DS(i)〉 = �(i)
c√|�p|2 + |�c|2

|g(i)〉 − �(i)
p√|�p|2 + |�c|2

|e(i)〉,
(9)

is a dark state, because the radiation transition component
vanishes, i.e., 〈DS(i)|σ (i)

gd |DS(i)〉 = 〈DS(i)|σ (i)
ed |DS(i)〉 = 0.

As we will discuss, our cooling scheme requires the ma-
nipulation of mirror motion correlation with the radiation
sidebands. If the atomic bare steady state is not dark, a
significant fraction of Probe and Control radiation will be
scattered to the bath and lost. Such loss will reduce the
cooling efficiency. Therefore, our studies focus on the choice
of atomic parameters that render the bare steady state dark.
When the sideband and other atoms are considered, their
influence on the atom can be treated as a perturbation on the
bare steady state.

IV. RADIATION-MEDIATED ATOM-MIRROR
INTERACTION

In our setup, the reflected Control field will contain correla-
tion with the mirror motion. Subsequently, it interacts with the
atomic cloud, which in-turn modulates the Probe field. Finally,
the Probe field carries the correlation contained in the atoms
when falling on the mirror. Overall, the mirror and the atomic
cloud form a cascaded quantum system that is connected by
radiation.

The dynamics of such cascaded quantum system can be
studied by imposing the following input-output relations as

the boundary conditions of Eqs. (4) and (7):

â(1)
c (t ) = −âin

−c(t ) + iμc

2
(b̂(t ) + b̂†(t )), (10a)

â
(1)
−p(t ) = âin

−p(t ) + A(1)
p (t ). (10b)

Then any operator composition of mirror and atomic op-
erators, e.g., Ô ≡ Ôb ⊗ σ (i), follows the combined master
equation ˙̂O = Lb(Ô ) + L(i)

a (Ô ) [26].
Due to the dependence of the Heisenberg operators on

different instances of time, e.g., the field operator in the
fourth line of (7), the combined master equation is technically
difficult to solve. These time shifts appear because it take the
light a finite time to travel between the atoms and mirror.
Nevertheless, in our regime of interest the time dependence
can be approximated to be uniform as we will see now.

First, the Probe field that carries information of atom i from
time t − xi/c interacts with the mirror at time t . Uniform
dependence on t can be achieved by simply rewriting (7)
in terms of the advanced atomic operator σ̃ (i)(t ) ≡ σ (i)(t −
xi/c) [26].

Second, the Control field which interacts with atom i at
time t − xi/c carries mirror information from time t − 2xi/c.
In combination with the effect of the Probe field, this in-
teraction effectively correlates the mirror properties at time
t − 2xi/c with that at time t . Since the mirror motion is
dominated by its bare Hamiltonian, we may approximate the
mirror operator as b̂(t − 2xi/c) ≈ eiν2xi/cb̂(t ).

Third, we consider a small atomic cloud implying that
the light traveling time within the cloud is much shorter
than the atomic and mirror time scale, i.e., |xN−x1|

c
�

min{1/ν, 1/�, 1/�}. This allows all atoms to approximately
share the same time dependence, i.e., σ (t − xi−xj

c
) ≈ σ (t ).

We leave the explicit form of the resulting time-local com-
bined master equation to Appendix C.

V. COOLING STRATEGY

Using the time-local combined master equation for Ô =
b̂†b̂, we obtain the dynamic equation for the mean motional
excitation,

d

dt
〈b̂†b̂〉 = �rad − iμp〈A(1)†

p (b̂ − b̂†)〉 − iμ∗
p〈(b̂ − b̂†)A(1)

p 〉.
(11a)

The first rate, which is given by

�rad = |μp|2 + |μc|2
2

, (11b)

is induced only by classical drives but not the atoms. This rate
is always positive and therefore contributes to heating due to
the fact that TMS heating is stronger than BS cooling in op-
tomechanical interactions. The terms proportional to 〈b̂A(1)

p 〉
and 〈b̂†A(1)

p 〉 represent different types of atom-induced op-
tomechanical interaction; see (8b). Because b̂ roughly oscil-
lates at e−iνt , the zero-frequency component of 〈b̂A(1)

p 〉 is
dominated by the eiνt component of A(1)

p . According to (10b),
this frequency component contributes to the red sideband
Probe mode. Since the red sideband interacts with mirror
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through TMS, the zero-frequency component of 〈b̂A(1)
p 〉 can

be viewed as an atom-induced TMS interaction. Similarly,
the zero-frequency component of 〈b̂†A(1)

p 〉 corresponds to the
atom-induced BS interaction.

To quantify the atomic contributions, we construct the
master equation for Ô = b̂ ⊗ σ (i) and b̂† ⊗ σ (i). In our
regime of weak optomechanical interaction, the expecta-
tion value of these operators can be approximated by a

Floquet series expansion in motional frequency, i.e., 〈Ô(t )〉 ≈∑
n〈Ô〉n(t )einνt , where 〈Ô〉n(t ) varies on a time scale much

slower than 1/ν. Since the bare dynamics of motional ex-
citation is much slower than the oscillation frequency, we
consider the dominant atomic effect on motional excitation
is given by the zero-frequency components, i.e., 〈Ô〉0. After
summing the contributions of each atom, we obtain the recur-
rence relation

〈
b̂A(i)

p

〉
0 = (1 + |α̃c|2J (−ν))

〈
b̂A(i+1)

p

〉
0 − α̃pα̃∗

c J (−ν)
〈
b̂A(i)

c

〉
0 − i e−iντ μc

2
α̃pα̃∗

c J (−ν)〈b̂b̂†〉, (12a)

〈
b̂A(i+1)

c

〉
0 = −α̃∗

pα̃cJ (−ν)
〈
b̂A(i+1)

p

〉
0 + (1 + |α̃p|2J (−ν))

〈
b̂A(i)

c

〉
0 + i e−iντ μc

2
|α̃p|2J (−ν)〈b̂b̂†〉, (12b)

〈
b̂†A(i)

p

〉
0 = (1 + |α̃c|2J (ν))

〈
b̂†A(i+1)

p

〉
0 − α̃pα̃∗

c J (ν)
〈
b̂†A(i)

c

〉
0 − i eiντ μc

2
α̃pα̃∗

c J (ν)〈b̂†b̂〉, (12c)

〈
b̂†A(i+1)

c

〉
0 = −α̃∗

pα̃cJ (ν)
〈
b̂†A(i+1)

p

〉
0 + (1 + |α̃p|2J (ν))

〈
b̂†A(i)

c

〉
0 + i eiντ μc

2
|α̃p|2J (ν)〈b̂†b̂〉, (12d)

with the round-trip traveling time τ ≡ 2x̄/c of light between the mirror and the atomic cloud, where x̄ = ∑
i xi/N is the mean

distance of the atoms from the mirror. The spectral factor reads

J (ω) = γpγc

2π

i16ωc

(|�p|2 + |�c|2)[−2iω(γp + �p + γc + �c ) + 4�ω − 4ω2 + |�p|2 + |�c|2]
. (13)

The derivation of this recurrence relation is given in
Appendix D.

Equations (12a),(12b) and Eqs. (12c),(12d) form two sys-
tems of equation that can be solved separately. For simplicity,
we consider the same amplitudes for both Probe and Control
drives, i.e., α̃p = α̃c ≡ α̃. As discussed in Appendix F, it is in
fact the optimal choice of driving amplitudes that produces the
minimum steady-state motional excitation. Before presenting
the solution, we discuss the physics underneath. By adding
(12a) to (12b), and (12c) to (12d), we get the relations

〈
b̂A(i)

p

〉
0 − 〈

b̂A(i+1)
p

〉
0 = −〈

b̂A(i+1)
c

〉
0 + 〈

b̂A(i)
c

〉
0, (14)〈

b̂†A(i)
p

〉
0 − 〈

b̂†A(i+1)
p

〉
0 = −〈

b̂†A(i+1)
c

〉
0 + 〈

b̂†A(i)
c

〉
0. (15)

According to Eqs. (8a) and (8b), and the fact that b̂ varies
roughly as eiνt , Eq. (14) describes the changes of the red
sideband modes of Probe and Control after interacting with
the ith atom. More explicitly, a reduction of correlations
between outgoing Control mode and the mirror will be the
same as an increase of correlations between incoming Probe
mode and the mirror. This can be interpreted as a conversion
of the correlation with the mirror from the outgoing Control
mode to the incoming Probe mode. Subsequently, the Probe
red sideband will bring the correlation back to the mirror
and affect the TMS interaction. The analogous phenomenon
is described by (15), where the mirror correlation with the
blue sideband mode is converted from outgoing Control to
incoming Probe. This correlation will then affect the BS
interaction.

Following the procedure in Appendix E, we obtain the
solution for Eqs. (12a)–(12d) as

〈b̂A(1)
p 〉0 = −e−iντ iμc

2
S (−ν)〈b̂b̂†〉, (16a)

〈b̂†A(1)
p 〉0 = −eiντ iμc

2
S (ν)〈b̂†b̂〉, (16b)

with

S (ω) = N |α̃|2J (ω)

1 − N |α̃|2J (ω)
. (16c)

When substituting (16) into (11a), we obtain the main result
of our work: a dynamic equation for the mean motional
excitation,

d

dt
〈n̂〉 = �rad + �+〈n̂〉 + �−(〈n̂〉 + 1), (17)

with the heating rate �rad from (11b), the phonon number
operator n̂ ≡ b̂†b̂, and

�± ≡ ±Re[e±iντμ∗
pμcS (±ν)]. (18)

Atom-induced BS contributes �+, and �− comes from atom-
induced TMS. The atoms induce a net cooling effect of the
mirror if �+ + �− < 0. In this case, the residual motional
excitation at the steady state, d〈n̂〉/dt = 0, is

〈n̂〉ss = −�rad + �−
�+ + �−

, (19)

where the subscript ss denotes the steady state.
The sign of (�+ + �−) is determined by the phase, eiντ ,

as well as the relative importance of the atom-induced effects,
of which the magnitude is characterized by the spectral factor
J (ω). In practice, the phase can be manipulated by choosing
the position of the atomic cloud, and the spectral factor can be
engineered by adjusting atomic parameters.

For our purpose of cooling, we explore system parameters
that could implement either of the mechanisms: enhancing
cooling effect of BS or suppressing heating effect due to TMS.
Figure 4 illustrates our cooling strategies. In the following, we
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Control

Probe

Atomic cloud

Control

Probe

(a)

(b)

Atomic cloud

FIG. 4. Illustration of cooling strategies. (a) BS-enhancing strat-
egy: atomic parameters are chosen to convert blue sideband corre-
lation with mirror from outgoing Control to incoming Probe. The
correlation contained by the Probe mode will enhance the BS cooling
effect. Nevertheless, red sideband of both outgoing Control and
outgoing Probe will be dissipated and induce TMS heating. (b) TMS-
suppressing strategy: atomic parameters are chosen to convert red
sideband correlation with mirror from outgoing Control to incoming
Probe. Due to a time delay, the correlation contained by the Probe
mode will suppress TMS heating. However, blue sideband of both
Control and Probe is unaffected. Its dissipation will induce net
cooling on the mirror.

will show that, while both mechanisms can induce cooling,
the motional ground state cannot be reached by enhancing BS
alone. Ground-state cooling requires optimally chosen system
parameters to fully suppress the TMS heating effect.

A. Enhancing beam splitting

First, we study the cooling strategy with an atom-enhanced
BS interaction. In this case, the net cooling rate is dominated
by a negative �+. From (13), we learn that J (ω), and hence
S (ω), always have a negative real part. Therefore, �+ is
always negative if eiντ = 1. Such criterion could be satisfied
by placing the atomic cloud close to the mirror, i.e., x̄ ≈ 0, or
generally for x̄ = nπ c

ν
.

On the other hand, at this position the atom-induced
TMS always contributes to heating, i.e., �− > 0. Achieving
a net cooling rate thus requires enhancing the BS effect,
i.e., |�+| � |�−|. This can be achieved by introducing a
frequency asymmetry in the spectral factor, i.e., |J (ν)| �
|J (−ν)|. As in EIT cooling [27,28], such asymmetry can be

−2 −1 0 1 2

−1.0

−0.5

0.0

0.5

N
or

m
al

iz
ed

FIG. 5. Typical behavior of spectral function J (ω). Blue: real
(solid) and imaginary (dashed) part of J (ω)/|J (ν )|. The parameters
are �p = �c = 4ν and γp + �p = γc + �c = 0.3ν. The detuning �

is chosen to satisfy (20), in order to facilitate the atom interaction
with blue sideband radiation. The interaction with red sideband
is suppressed, as we can see |J (ν )| � |J (−ν )|. Red: real (long-
dashed) and imaginary (dotted) part of J (ω)/|J (−ν )|, of which the
atomic parameters are the same as those of the blue lines, except �

is chosen to satisfy (23).

produced by using sufficiently large Rabi frequencies, i.e.,
|�p|2 + |�c|2 � ν(γp + �p + γc + �c ), and by choosing a
detuning that satisfies

4�ν − 4ν2 + |�p|2 + |�c|2 = 0. (20)

The typical behavior of such a J (ω) is shown with blue lines
in Fig. 5.

1. Few atom regime

In the regime of small number of atoms, i.e.,
N |α̃|2|J (ω)| � 1 for all ω, the net cooling rate can be
approximated as

�+ + �− ≈ N |α̃|2μ∗
pμcRe[J (ν) − J (−ν)]. (21)

According to (2), μ∗
pμc is real and positive under our assump-

tion α̃p = α̃c. It is easy to show that �+ + �− < 0, and so the
mirror is cooled in this setup.

In fact, the same setup is studied in Ref. [24], where the
cooling rate (21) is derived using semiclassical techniques.
However, the few-atom assumption implies that the atom-
induced cooling is always much weaker than the heating
induced by the classical drives, i.e., �rad � |�+|. Unnoticed
in Ref. [24], the residual motional excitation in this setup is
thus enormous, i.e., 〈n̂〉ss � 1.

2. Many atom regime

In order to improve the cooling rate, we take the number
of atoms so large that N |α̃|2|J (ν)| � 1 � N |α̃|2|J (−ν)| is
satisfied. In this regime, the atom-induced BS effect is satu-
rated as �+ ≈ −μ∗

pμc, while �− ≈ −N |α̃|2μ∗
pμcRe(J (−ν))

is small due to an asymmetric spectral function. The
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steady-state motional excitation is

〈n̂〉ss ≈ �rad

μ∗
pμc

� 1, (22)

where the last relation follows from the Cauchy-Schwarz
inequality.

Equation (22) shows that even with the optimal choice of
system parameters, enhancing the BS cooling effect can only
cool the mirror to a thermal state with unity motional exci-
tation. This can be understood realizing that BS interaction is
ineffective to convert motional excitation to the blue sideband,
when the mirror is close to motional ground state. On the other
hand, TMS induces excitation even if the red sideband mode
is in vacuum. As a result, the motional ground state cannot be
a steady state unless TMS is suppressed.

B. Suppressing two-mode squeezing

To pursue ground-state cooling, we consider another cool-
ing strategy that aims to suppress the TMS heating effect. In
this case, the net cooling rate will be dominated by a negative
�−. This is achievable if the atomic cloud is placed at a
distance x̄ = (n + 1

2 )π c
ν

from the mirror, so that eiντ = −1.
At this position, the atom-induced BS reduces the cooling

efficiency, i.e., �+ > 0. A net cooling rate can be attained by
engineering an asymmetric spectral factor |J (−ν)| � |J (ν)|,
which leads to |�−| � |�+|. Similar to the choice of param-
eters in Sec. V A, such asymmetry can be achieved by using
large Rabi frequencies, but choosing a detuning that satisfies

−4�ν − 4ν2 + |�p|2 + |�c|2 = 0 (23)

instead of (20). The typical behavior of this J (ω) is shown
with red lines in Fig. 5.

In the many-atom regime N |α̃|2|J (−ν)| � 1 �
N |α̃|2|J (ν)|, we have �− ≈ −μ∗

pμc and �+ ≈
−N |α̃|2μ∗

pμcRe(J (ν)). The atom-induced TMS interaction
is saturated, but |�+| is small due to the spectral factor
asymmetry. The steady-state motional excitation is given by

〈n̂〉ss ≈ �rad

μ∗
pμc

− 1 � 0. (24)

In contrast to the BS-enhancing strategy, the TMS-
suppressing strategy can reach the motional ground steady
state if μp = μc. According to (2), this can be fulfilled by
choosing two atomic state transitions with similar energy, so
that the classical drive frequency is roughly the same, ωp0 ≈
ωc0 [29].

We now explain the principle behind this strategy. At
the beginning, the Control red sideband couples to the mir-
ror motion through TMS interaction. If this sideband is
lost, motional excitation will increase. Therefore, we choose
the system parameters, such that the mirror correlation
with the outgoing Control red sideband is completely trans-
ferred to the incoming Probe.

The crucial trick of our strategy is that the round-trip
traveling time is chosen to satisfy eiντ = −1. When the Probe
field reaches the mirror, the mirror motion is π phase behind
that at the beginning. This π phase effectively inverts the
sign of the TMS Hamiltonian, so the mirror and Probe red

sideband undergo an anti-TMS interaction. If the optome-
chanical interaction strength is the same for Probe and Control
field, i.e., μp = μc, the anti-TMS can completely “undo” the
mirror-Control TMS. Therefore, the TMS heating effect is
fully suppressed.

On the other hand, because |�+| is kept small, the BS
cooling effect of the blue sideband is barely affected by the
atoms, so the mirror experiences a net cooling. Without TMS
heating, the motional ground state is attainable at the steady
state.

We note that the heating effect due to the two-mode-
squeezing interaction is an ubiquitous problem in optome-
chanical cooling, i.e., in both cavity and cavity-free systems.
In cavity optomechanics (CO), such process imposes the
quantum backaction limit that lower bounds the steady-state
phonon occupation [12,13]. Numerous efforts have been pro-
posed and implemented to evade the backaction limit in CO,
such as by injecting squeezed light [30,31] or by measurement
feedback [32]. Particularly, our method of TMS suppression
resembles the CO strategy of quantum noise interference
[33]. The principle is that, apart from the optomechanical
coupling to the heating red sideband, the mechanical oscillator
is coupled by an additional dissipative channel to the same
sideband. By tuning the additional coupling, the dissipative
channels can be made to destructively interfere; hence the
heating effect is suppressed. In CO, the additional channel
can be realized by introducing dissipative coupling [33], in-
tracavity atomic ensembles [34,35], doped quantum emitters
[36,37], interferometer [16,38], and coupling to additional
mechanical oscillators [39]. In our cavity-free system, TMS
heating is induced by the dissipation of the reflected probe
red sideband through the channel “mirror → outgoing Probe.”
The inclusion of remotely trapped atoms can be viewed as an
introduction of a new channel, i.e., excitation is transferred
through “mirror → outgoing Control → atom → incom-
ing Probe → outgoing Probe.” By choosing the appropriate
atomic parameters and position, the two dissipative channels
destructively interfere and suppress the red sideband heating.

VI. PRACTICAL IMPLEMENTATION

Finally, we discuss the practicality of our scheme in
cooling the realistic mechanical oscillator. We first include
environmental heating to the dynamic equation,

〈 ˙̂n〉 = −
(

|μ|2 + ν

Q

)
〈n̂〉 + ν

Q
Nth. (25)

Q is the quality factor of the oscillator, which is defined
as the number of oscillation periods to lose one-half mo-
tional excitation if the environment is at zero temperature.
Nth ≈ kBT

h̄ν
is the motional excitation at thermal equilibrium.

For simplicity, we have picked the optimal optomechanical
strength μp ≈ μc = μ, and assumed �+ → 0 is suppressed
by appropriately chosen system parameters.

As an example, we consider a state-of-the-art mechanical
oscillator reported in Ref. [40]. This is a single-crystal dia-
mond cantilever with length 240 μm, width 12 μm, thickness
0.66 μm, oscillation frequency ν ≈ 2π × 32 kHz, and quality
factor Q ≈ 1.5 × 106.
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The remotely trapped atoms are chosen to be rubidium 85.
The atomic transition employed is the D2 line, i.e., 52S1/2 ↔
52P3/2, which couples to the radiation of wavelength ≈780 nm
[41]. The Probe and Control fields can be differentiated by dif-
ferent polarization of transitions, or by hyperfine-state energy
shift due to external static magnetic field.

In a 10 mK environment, which is achievable by state-of-
the-art cryogenic techniques [11], implementing our cooling
scheme with a cw laser power of P = 10 mW could reduce
the motional excitation from initially 〈n̂〉(t = 0) = Nth ≈
6500 to a quantum level steady state, 〈n̂〉ss ≈ 2. At this level
of motional excitation, the oscillator can already be used
for a variety of applications, such as detecting macroscopic
nonclassicality [42] or quantum computation [43].

The steady-state motional excitation can be further reduced
by, e.g., enhancing the power of the cw laser, reducing the en-
vironmental temperature, or increasing the zero-point position
fluctuation by using a lower-frequency oscillator.

VII. CONCLUSION

In this work, we have studied the radiation-induced in-
teraction between remotely trapped atoms and the motion
of a mirror. Considering a cavity-free setup with the mirror
driven by two continuous-wave beams, Control and Probe,
we have identified the resonant optomechanical interaction
either as beam splitting with the blue radiation sideband or
two-mode squeezing with the red radiation sideband. These
interactions respectively contribute to the cooling and heating
of the mirror.

Remotely from the mirror, a cloud of atoms is trapped at
the overlap of the outgoing Control and the incoming Probe
beam. Both the rate and the type of atom-radiation interaction
depend sensitively on the atomic parameters. In particular
we have demonstrated that, for �-level atoms driven in a
dark steady-state configuration, the mirror correlation with a
specific sideband of the outgoing Control can be converted to
that of the incoming Probe. Our main result is the dynamic
equation of motional excitation (17).

We have explored two strategies to utilize this atom-
modulated mirror-radiation coupling for cooling the mirror.
Upon resonant interaction with the blue sideband, the mirror
is cooled due to the enhanced BS interaction. However, the
motional ground state cannot be reached since TMS heating
prevails. On the other hand, TMS heating can be suppressed
through resonantly interacting with the red sidebands. With
this strategy ground-state cooling is achievable.

Our scheme extends the class of systems that can be
optomechanically cooled since neither a high-quality cavity
around atoms or mirror is needed, nor precise alignment of
incoming and outgoing radiation to form an optical lattice.
Moreover, the theoretical tools developed in this work could
also be useful to study other radiation-induced interaction
between atoms and mirror, such as atom-modulated phonon
lasing or atom-mirror entanglement generation.
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APPENDIX A: HAMILTONIAN NEAR MIRROR SURFACE

For self-containedness, we outline the derivation of the
cavity-free optomechanical Hamiltonian as follows. Similar
system and interaction have also been studied in Refs. [44,45]
for generating entanglement between optical field and an
isolated vibrating mirror. The total Hamiltonian of the mirror
and the radiation field in the vicinity of the mirror surface is
given by

H

h̄
= νb̂†b̂ +

∫ ∞

−∞
ωkâ

†
kâkdk − A

h̄
q̂
(ε0

2
E(0)2 + μ0

2
H(0)2

)
,

(A1)

where b̂ is the annihilation operator of the mirror motion, âk is
the annihilation operator for the light mode with wave vector
k, ωk = c|k| is the frequency of the mode, A is the cross-
section area of the beam, and q̂ = q0(b̂ + b̂†) is the position
operator of the mirror. The first and second term of (A1) are
the bare Hamiltonians of the mirror motion and radiation field,
respectively. The third term is the optomechanical coupling,
which is the change of total electromagnetic energy due
to the change of radiation space upon mirror displacement.
The electric-field and magnetic-field operator at position x is
defined by

E(x) =
∫ ∞

−∞
i

√
h̄ωk

4πε0A
(âke

ikx − â
†
ke

−ikx ) dk,

H(x) =
∫ ∞

−∞

i

μ0

√
h̄

4πε0Aωk

k(âke
ikx − â

†
ke

−ikx ) dk.

Because the incoming and outgoing radiations are assumed
to be almost along the x direction, we can use a scalar k

to represent the wave vector of the incoming (k < 0) and
outgoing (k > 0) radiation.

After extracting the contribution of the classical drive,
i.e., âk → âk + α̃pe−iωp0t [−δ(k − kp0) + δ(k + kp0)] +
α̃ce

−iωc0t [δ(k − kc0) − δ(k + kc0)], and collecting the
quantum contributions up to second order of mode operators,
we get the Hamiltonian in (1). Note that this derivation
considers only the radiation of one degree of freedom, and so
Probe and Control are distinguished by frequency. For Probe
and Control that are distinct in other degrees of freedom, e.g.,
polarization or orbital angular momentum, the Hamiltonian
can be derived similarly.

The Hamiltonian in (1) is the starting point of our studies
on mirror dynamics. We first directly integrate the Heisenberg
equation of the mode operators, i.e., ˙̂ak = i

h̄
[H, âk]. By using

(3) and the definition (2), we obtain the relations for the
incoming field operators:

â−p(t ) = â
(1)
−p(t ) + i 1

4μp(b̂(t ) + b̂†(t )), (A2a)

â−c(t ) = âin
−c(t ) − i 1

4μc(b̂(t ) + b̂†(t )), (A2b)
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where âin
−c is the Control field input operator from vacuum

onto the mirror surface and â
(1)
−p(t ) is the Probe field input

operator from vacuum through the atomic cloud onto the
mirror surface [26]. Because the electric field vanishes on
the surface of a perfect conductor, the incoming and outgoing
field operators obey the boundary condition

âp + â−p = âc + â−c = 0. (A3)

Substituting Eqs. (A2a) and (A3) into the Heisenberg
equation of mirror operators, i.e., ˙̂Ob = i

h̄
[H, Ôb], we obtain

the Langevin equation (4).

APPENDIX B: ATOMIC DYNAMICS AND STEADY STATE

To study the dynamics of atoms, we arrange the nine
atomic operators as an eight-entry vector, i.e., �σ ≡ (σdd −
σgg, σge, σeg, σdd − σee, σgd, σdg, σed, σde )T, where we have
extracted the time invariant σgg + σee + σdd = 1 [46]. The
bare dynamics of the atom is described by (7) with no con-
tribution from the mirror and other atoms, i.e., â

(i+1)
−p and â(i)

c

are taken as vacuum field operators. The expectation value of
atomic operators varies as〈

σ̇
(i)
1

〉 = −�1
〈
σ

(i)
1

〉 − �1
〈
σ

(i)
4

〉 − �(i)∗
p

〈
σ

(i)
gd

〉 − �(i)
p

〈
σ

(i)
dg

〉
− �(i)∗

c

2

〈
σ

(i)
ed

〉 − �(i)
c

2

〈
σ

(i)
de

〉 − �1,

〈
σ̇ (i)

ge

〉 = −i(�g − �e )
〈
σ (i)

ge

〉 + �(i)∗
c

2

〈
σ

(i)
gd

〉 + �(i)
p

2

〈
σ

(i)
de

〉
,

〈
σ̇ (i)

eg

〉 = i(�g − �e )
〈
σ (i)

eg

〉 + �(i)
c

2

〈
σ

(i)
dg

〉 + �(i)∗
p

2

〈
σ

(i)
ed

〉
,

〈
σ̇

(i)
4

〉 = −�4
〈
σ

(i)
1

〉 − �4
〈
σ

(i)
4

〉 − �(i)∗
p

2

〈
σ

(i)
gd

〉 − �(i)
p

2

〈
σ

(i)
dg

〉
−�(i)∗

c

〈
σ

(i)
ed

〉 − �(i)
c

〈
σ

(i)
de

〉 − �4,

〈
σ̇

(i)
gd

〉 = �(i)
p

2

〈
σ

(i)
1

〉 − �(i)
c

2

〈
σ (i)

ge

〉 + (
i�g − �̃

2

)〈
σ

(i)
gd

〉
,

〈
σ̇

(i)
dg

〉 = �(i)∗
p

2

〈
σ

(i)
1

〉 − �(i)∗
c

2

〈
σ (i)

eg

〉 + (
−i�g − �̃

2

)〈
σ

(i)
dg

〉
,

〈
σ̇

(i)
ed

〉 = −�(i)
p

2

〈
σ (i)

eg

〉 + �(i)
c

2

〈
σ

(i)
4

〉 + (
−i�e − �̃

2

)〈
σ

(i)
ed

〉
,

〈
σ̇

(i)
de

〉 = −�(i)∗
p

2

〈
σ (i)

ge

〉 + �(i)∗
c

2

〈
σ

(i)
4

〉 + (
i�e − �̃

2

)〈
σ

(i)
de

〉
,

(B1)

where σ1 ≡ σdd − σgg , σ4 ≡ σdd − σee, �1 ≡ 1
3 (2γp +

2�p + γc + �c ), �4 ≡ 1
3 (γp + �p + 2γc + 2�c ), and

�̃ ≡ γp + �p + γc + �c. The above equations are linear,
so they can be written in a compact matrix form

〈�̇σ (i)〉 = M(i)〈�σ (i)〉 + �v. (B2)

The bare steady state can be obtained by setting
〈�̇σ (i)〉DS = 0, i.e.,

〈�σ (i)〉DS = − 1

M(i)
�v. (B3)

APPENDIX C: COMBINED MASTER EQUATION

After applying the procedures and approximations in the
main text, the master equation ˙̂O = Lb(Ô ) + L(i)

a (Ô ) can
be written in a time-local form. The expectation value of
any system operator in the form of Ôb or �O ≡ Ôb ⊗ �σ (i)

varies as

〈 ˙̂Ob〉 = iν〈[b̂†b̂, Ôb]〉 + |μp|2 + |μc|2
2

〈D[b̂ + b̂†](Ôb )〉

− iμp

〈
A(1)†

p [b̂ + b̂†, Ôb]
〉 − iμ∗

p

〈
[b̂ + b̂†, Ôb]A(1)

p

〉
,

(C1)

〈 �̇O〉 = iν〈[b̂†b̂, �O]〉 + |μp|2 + |μc|2
2

〈D[b̂ + b̂†]( �O )〉

− iμp

〈
A(1)†

p [b̂ + b̂†, �O]
〉 − iμ∗

p

〈
[b̂ + b̂†, �O]A(1)

p

〉
+ M(i)

〈 �O〉 + 〈Ôb〉�v − √
γp

(
eiωp0

xi
c Mpd

〈
A(i+1)†

p
�O〉

− e−iωp0
xi
c Mp

〈 �OA(i+1)
p

〉)
−√

γc

(
e−iωc0

xi
c Mcd

〈
A(i)†

c
�O〉 − eiωc0

xi
c Mc

〈 �OA(i)
c

〉)

+ i

√
γc

2

(
μ∗

ce
−iωc0

xi
c Mcd

〈
(eiντ b̂ + e−iντ b̂†) �O〉

+μce
iωc0

xi
c Mc〈 �O(eiντ b̂ + e−iντ b̂†)

〉)
. (C2)

The transformation matrices are defined as Mpd �σ ≡ [σgd, �σ ],
Mp �σ ≡ [σdg, �σ ], Mcd �σ ≡ [σed, �σ ], and Mc �σ ≡ [σde, �σ ], i.e.,

Mpd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

Mp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C4)

Mcd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C5)
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Mc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −2
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C6)

We have assumed that the input fields of Probe, Control,
and baths are vacuum, i.e., âin

±β |vac〉 = r̂ in
β |vac〉 = 0, for β

could be p or c. The round-trip traveling time of radiation

between the mirror (at x = 0) and atomic cloud (mean loca-
tion x = x̄) is τ ≡ 2x̄/c. The tilde for the advanced operators
has been omitted.

APPENDIX D: DERIVATION OF RECURRENCE
RELATION

To derive the recurrence relation in Eqs. (12a)–(12d), we
start by using (C2)) for �O = b̂ ⊗ �σ and b̂† ⊗ �σ . We apply the
steady-state approximation σ ≈ 〈DS|σ |DS〉, and collect only
the leading-order quantum correction of atomic operators.
Then we get the following relations for the zero-frequency
components:

2π
〈
b̂σ

(i)
gd

〉
0 = −√

γp

(
eiωp0

xi
c G

(i)
pd (−ν)

〈
b̂A(i+1)†

p

〉
0 − e−iωp0

xi
c G(i)

p (−ν)
〈
b̂A(i+1)

p

〉
0

)
−√

γc

(
e−iωc0

xi
c G

(i)
cd (−ν)

〈
b̂A(i)†

c

〉
0 − eiωc0

xi
c G(i)

c (−ν)
〈
b̂A(i)

c

〉
0

)

+ i

√
γc

2

(
e−iντμ∗

ce
−iωc0

xi
c G

(i)
cd (−ν)

〈
b̂†b̂

〉 + e−iντμce
iωc0

xi
c G(i)

c (−ν)
〈
b̂b̂†

〉)
, (D1)

2π
〈
b̂†σ (i)

gd

〉
0 = −√

γp

(
eiωp0

xi
c G

(i)
pd (ν)

〈
b̂†A(i+1)†

p

〉
0 − e−iωp0

xi
c G(i)

p (ν)
〈
b̂†A(i+1)

p

〉
0

)
−√

γc

(
e−iωc0

xi
c G

(i)
cd (ν)

〈
b̂†A(i)†

c

〉
0 − eiωc0

xi
c G(i)

c (ν)
〈
b̂†A(i)

c

〉
0

)

+ i

√
γc

2

(
eiντμ∗

ce
−iωc0

xi
c G

(i)
cd (ν)

〈
b̂b̂†

〉 + eiντμce
iωc0

xi
c G(i)

c (ν)
〈
b̂†b̂

〉)
, (D2)

2π
〈
b̂σ

(i)
ed

〉
0 = −√

γp

(
eiωp0

xi
c F

(i)
pd (−ν)

〈
b̂A(i+1)†

p

〉
0 − e−iωp0

xi
c F (i)

p (−ν)
〈
b̂A(i+1)

p

〉
0

)
−√

γc

(
e−iωc0

xi
c F

(i)
cd (−ν)

〈
b̂A(i)†

c

〉
0 − eiωc0

xi
c F (i)

c (−ν)
〈
b̂A(i)

c

〉
0

)

+ i

√
γc

2

(
e−iντμ∗

ce
−iωc0

xi
c F

(i)
cd (−ν)

〈
b̂†b̂

〉 + e−iντμce
iωc0

xi
c F (i)

c (−ν)
〈
b̂b̂†

〉)
, (D3)

2π
〈
b̂†σ (i)

ed

〉
0 = −√

γp(eiωp0
xi
c F

(i)
pd (ν)

〈
b̂†A(i+1)†

p

〉
0 − e−iωp0

xi
c F (i)

p (ν)
〈
b̂†A(i+1)

p

〉
0)

−√
γc(e−iωc0

xi
c F

(i)
cd (ν)

〈
b̂†A(i)†

c

〉
0 − eiωc0

xi
c F (i)

c (ν)
〈
b̂†A(i)

c

〉
0)

+ i

√
γc

2

(
eiντμ∗

ce
−iωc0

xi
c F

(i)
cd (ν)

〈
b̂b̂†

〉 + eiντμce
iωc0

xi
c F (i)

c (ν)〈b̂†b̂〉
)
, (D4)

where

G(i)
y (ω) ≡ 2πû5 · −1

iω + M(i)
My〈DS(i)|�σ (i)|DS(i)〉, (D5)

F (i)
y (ω) ≡ 2πû7 · −1

iω + M(i)
My〈DS(i)|�σ (i)|DS(i)〉, (D6)

for y = p, pd, c, or cd. The projection vectors are defined
as û5 ≡ (0 0 0 0 1 0 0 0) and û7 ≡ (0 0 0 0 0 0 1 0), such that
û5 · �σ = σgd and û7 · �σ = σed .

Evaluating Eqs. (D5) and (D6), we find that Gpd = Gcd =
Fpd = Fcd = 0, and

G(i)
p (ω) = |α̃c|2 2π

γp

J (ω), (D7)

G(i)
c (ω) = −e−i(ωp0+ωc0 ) xi

c α̃pα̃∗
c

2π√
γpγc

J (ω), (D8)

F (i)
p (ω) = −ei(ωp0+ωc0 ) xi

c α̃∗
pα̃c

2π√
γpγc

J (ω), (D9)

F (i)
c (ω) = |α̃p|2 2π

γc

J (ω), (D10)

where J (ω) is given in (13). The recurrence relation
Eqs. (12a) and (12b) can be obtained by using the defi-
nitions A(i)

p − A(i+1)
p = √

γpeiωp0
xi
c σ

(i)
gd and A(i+1)

c − A(i)
c =

√
γce

−iωc0
xi
c σ

(i)
ed .

APPENDIX E: SOLUTION OF RECURRENCE RELATION

To obtain the value of 〈b̂A(1)
p 〉0 from the recurrence relation

Eqs. (12a) and (12b), we consider the sum of these equations,
that is the relation in (14). This relation implies that the
properties at the ends of the atomic cloud are related as〈

b̂A(1)
p

〉
0 − 〈

b̂A(1)
c

〉
0 = 〈

b̂A(i)
p

〉
0 − 〈

b̂A(i)
c

〉
0

= 〈
b̂A(N+1)

p

〉
0 − 〈

b̂A(N+1)
c

〉
0. (E1)
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We also consider the difference of Eqs. (12a) and (12b), which
gives the following relation:

〈
b̂A(i+1)

p

〉
0 + 〈

b̂A(i+1)
c

〉
0

≈ 〈
b̂A(i)

p

〉
0 + 〈

b̂A(i)
c

〉
0 − 2|α̃|2J (−ν)

(〈
b̂A(i)

p

〉
0 − 〈

b̂A(i)
c

〉
0

)
+ ie−iντμc|α̃|2J (−ν)〈b̂b̂†〉. (E2)

We have collected only the leading order of the small factor
|α̃|2|J (ω)| � 1, which is valid because each atom is weakly
interacting with quantum radiation. By repeating (E2) from
i = 1 to i = N , and using (E1), we get another relation for
the properties at the ends of the atomic cloud

〈
b̂A(N+1)

p

〉
0 + 〈

b̂A(N+1)
c

〉
0

= (1 − 2N |α̃|2J (−ν))
〈
b̂A(1)

p

〉
0

+ (1 + 2N |α̃|2J (−ν))
〈
b̂A(1)

c

〉
0

+ ie−iντμcN |α̃|2J (−ν)〈b̂b̂†〉. (E3)

Combining Eqs. (E1) and (E3) to eliminate 〈b̂A(N+1)
c 〉0, and

using the definition A(N+1)
p = A(1)

c = 0, we obtain the solu-
tion in (16a). Equation (16b) can be obtained through similar
procedures.

APPENDIX F: UNEQUAL DRIVING AMPLITUDE

In Sec. V we have calculated the cooling rate for the
case with equal driving amplitude, i.e., α̃p = α̃c. For general
amplitudes, Eqs. (12a)–(12d) can also be solved analytically.
The result remains Eqs. (16a) and (16b), but S (ω) becomes

S (ω) = − α̃∗
c

α∗
p

(
|α̃p|2 − |α̃p|2eNJ (ω)(|α̃p |2−|α̃c |2 )

|α̃p|2 − |α̃c|2eNJ (ω)(|α̃p |2−|α̃c|2 )

)
. (F1)

It is easy to check that Eq. (16c) is recovered when taking
the limit α̃p → α̃c. The atom-induced cooling rate follows the
definition in Eq. (18).

For the cooling strategy of enhancing BS effect, we find
that the steady-state motional excitation in the many-atom
regime is lower bounded by

〈n̂〉ss �
max

{|α̃p|, |α̃c|
}

min
{|α̃p|, |α̃c|

} � 1. (F2)

The last relation, which is equivalent to Eq. (22), can be
saturated by choosing α̃p = α̃c and μp = μc.

For the cooling strategy of suppressing TMS heating effect,
we find that the steady-state motional excitation in the many-
atom regime is lower bounded by

〈n̂〉ss �
max

{|α̃p|, |α̃c|
}

min
{|α̃p|, |α̃c|

} − 1 � 0. (F3)

The last relation, which is equivalent to Eq. (24) and repre-
sents ground-state cooling, is attainable by choosing α̃p = α̃c

and μp = μc.
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