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We report a family of solutions of the homogeneous free-space scalar wave equation. These solutions are
determined by linear combinations of the half-integer order Bessel functions. We call these beams “combined
half-integer Bessel-like beams.” It is shown that, by selecting suitable combinations of the half-integer order
Bessel functions, a wide set of beams can be produced in which they may carry the orbital angular momentum
(OAM) or not. We show that this family of beams satisfies a “radial structured” boundary condition at z = 0
plane, therefore they can be produced by the diffraction of a plane wave from suitable “radial structures.” Some
specific examples of the half-integer Bessel-like beams are introduced. Especially, a set of spatially asymmetric
beams, having half-integer OAM, is introduced that can be used to make the concentration of the absorbing and
dielectric micro- or nanoparticles in a microsolution inhomogeneous. Also, by manipulating the Fourier series of
the radial structures, three subfamily of beams can be produced including the radial carpet, petallike, and ringlike
vortex beams. The intensity profile of the petallike beams forms two dimensional optical latices with polar
symmetry at the transverse plane. The ringlike vortex beams carry OAM. Here, by solving the wave equation
we present the full image of the radial carpet beams. All the presented beams have nondiffracting, accelerating,
and self-healing features. The combined half-integer Bessel-like beams can be considered in other areas of wave
phenomena, ranging from sound and elastic waves to many other kinds of classical waves. Therefore, this work
has profound implications in many linear wave systems in nature.
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I. INTRODUCTION

The wave equation is one of the greatest findings in
science and mathematics. It is a second-order linear partial
differential equation that explains the wave phenomena in
classical physics. The wave equation is used for describing
wave phenomena in acoustics, electromagnetism, and fluid
dynamics. The electromagnetic wave equation delivered by
James Clerk Maxwell by creatively combining the Maxwell’s
equations describes the propagation of electromagnetic waves
through a vacuum (with a speed equal to the speed of light)
and a medium.

In recent decades, a number of solutions of the free-
space homogeneous wave equation have been discovered.
Paraxial approximation plays an important role in studying
the optical beam propagation [1]. An optical wave whose
wavefront normals make small angles with the main propa-
gation axis z is known as a paraxial wave and satisfies the
paraxial Helmholtz equation. One of the famous solutions of
the paraxial Helmholtz equation is the Gaussian beam that
provides all aspects of an optical beam. Various closed-form
solutions of the paraxial wave equation have been obtained,
including the standard and elegant Hermite-Gaussian beams
[2], Laguerre-Gaussian beams [3,4], Ince-Gaussian beams
[5,6], Hermite-Laguerre-Gaussian beams [7,8], Helmholtz-
Gauss and Laplace-Gauss beams [9], hypergeometric Gaus-
sian beams [10], and the Cartesian and circular beams [11,12].
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Among various solutions found for the wave equation, the
diffraction-free beams are attracting major attention. These
beams are presenting applications in many areas such as laser
manipulation and patterning, plasma channels, and light-sheet
microscopy. A well-known diffraction-free wave is the Bessel
beam [13,14]. There are a number of nondiffracting beams
such as parabolic waves [15], the Mathieu beams [16], Airy
beam [17,18], Airy-Gaussian beams [19], Bessel X waves,
and Bessel-like beams [20–22].

In a recent paper, in the context of diffraction from radial
gratings, a class of nondiffracting, accelerating, and self-
healing beams, the so called “radial carpet beams” were
introduced in Ref. [23]. The theory of that work is based on
solving of the Fresnel-Kirchhoff integral. In that work, the
generation of unprecedented 2D optical lattices with polar
symmetry was also reported. It was shown that these optical
carpet patterns and 2D optical lattices are shape-invariant and
self-healing for more than several hundreds of meters.

It is worth mentioning that in a number of close works
some aspects of the diffraction of plane and vortex beams
from radial amplitude gratings have recently been reported
[24,25].

In this work we obtain a family of solutions of the paraxial
wave equation and show that the “radial carpet beams” are a
subset of the solutions obtained.

This family of solutions of the paraxial wave equation
consisting of different subfamily of beams with interesting
features. In this work we investigate a set of spatially asym-
metric beams carrying half-integer OAM and a set of ringlike
vortex beams having OAM. Suitable experimental approaches
are proposed to generate such beams.
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II. PARAXIAL HELMHOLTZ EQUATION

Considering U (x, y, z) as the complex amplitude of a
monochromatic light beam, we know that it satisfies the
following differential equation, known as the Helmholtz
equation:

∇2U + k2U = 0, (1)

where k = 2π
λ

is the wave number. The complex amplitude of
a paraxial wave traveling along the z direction can be written
as follows:

U (x, y, z) = A(x, y, z) exp(ikz), (2)

where A(x, y, z) is a slowly varying envelop function. By sub-
stituting Eq. (2) into Eq. (1) and using paraxial approximation,
the following paraxial Helmholtz equation is obtained [26]:

∇2
T A + 2ik

∂A

∂z
= 0, (3)

where ∇2
T = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian operator.
The paraxial approximation to the scalar Helmholtz equation
is equivalent to the Schrodinger equation of a free particle.
There are various families of solutions for this equation.
The Hermit-Gaussian beams form a well-known complete
set of its solutions. By using the ∇2

T form in the cylindrical
coordinates we get

1

r

∂

∂r

(
r
∂A

∂r

)
+ 1

r2

∂2A

∂θ2
+ 2ik

∂A

∂z
= 0, (4)

which is known as the paraxial Helmholtz equation in the
cylindrical coordinates. A conventional complete set of so-
lutions for this equation, known as the Laguerre-Gaussian
beams, is obtained using the separation-of-variables technique
in r and θ , rather than in x and y.

III. COMBINED HALF-INTEGER BESSEL-LIKE BEAMS: A
SET OF SOLUTIONS FOR THE PARAXIAL HELMHOLTZ

EQUATION IN THE CYLINDRICAL COORDINATES

Here an alternate complete set of solutions for Eq. (4) is
presented. To separate the azimuthal dependency, the follow-
ing form of solution is considered:

A(r, θ, z) = g(ρ) exp(inθ ), (5)

where ρ = ρ(r, z) = kr2

4z
is a dimensionless parameter, and n

is an integer. By substituting Eq. (5) in Eq. (4) we can get

r
∂

∂r

(
r
∂g

∂r

)
+ 2ikr2 ∂g

∂z
− n2g = 0. (6)

It is clear that this is a partial differential equation (PDE) in
terms of the coordinates (r, z). Since we have ∂ρ

∂r
= k

2z
r = 2ρ

r

or r
∂ρ

∂r
= 2ρ and ∂ρ

∂z
= − kr2

4z2 = − ρ

z
, and using the chain rule

we can easily obtain the following derivative identities:

r
∂g

∂r
= r

dg

dρ
× ∂ρ

∂r
= 2ρ

dg

dρ
, (7)

r
∂

∂r

(
r
∂g

∂r

)
= r

d

dρ

(
2ρ

dg

dρ

)
× ∂ρ

∂r
= 4ρ

d

dρ

(
ρ

dg

dρ

)
, (8)

∂g

∂z
= dg

dρ
× ∂ρ

∂z
= −ρ

z

dg

dρ
, (9)

and

2ikr2 ∂g

∂z
= −2ikr2

z
ρ

dg

dρ
= −8iρ2 dg

dρ
, (10)

where ρ = kr2

4z
is used. Using Eqs. (8) and (10) in Eq. (6) we

have
1

ρ

d

dρ

(
ρ

dg

dρ

)
− 2i

dg

dρ
− (n/2)2

ρ2
g = 0, (11)

which is an ordinary differential equation (ODE) in terms of
ρ. In the following this ODE is solved.

Let us now write g(ρ) in terms of a new function f (ρ):

g(ρ) = √
ρ exp(iρ)f (ρ). (12)

Substituting Eq. (12) in Eq. (11) we get

f ′′ + 2

ρ
f ′ + f + i

ρ
f + 1 − n2

4ρ2
f = 0, (13)

where f ′ = df

dρ
and f ′′ = d2f

dρ2 are the first and second deriva-
tives of f (ρ), respectively. As one of the coefficients in
Eq. (13) is complex, a complex solution can be proposed with
the following form:

f (ρ) = fr (ρ) + ifi (ρ), (14)

where fr (ρ) and fi (ρ) are the real and imaginary parts of
f (ρ). By substituting this form of solution in Eq. (13), the
following two coupled ODEs are obtained:

fr
′′ + 1

ρ
fr

′ + fr + 1

ρ
(fr

′ − fi ) + 1 − n2

4ρ2
fr = 0 (15)

and

fi
′′ + 1

ρ
fi

′ + fi + 1

ρ
(fi

′ + fr ) + 1 − n2

4ρ2
fi = 0. (16)

The first three terms of both of these ODEs are the same as
the first three terms of Bessel’s differential equation given by

Jν
′′ + 1

ρ
Jν

′ + Jν = ν2

ρ2
Jν, (17)

where Jν = Jν (ρ) indicates the Bessel function of the first
kind. Let us remember two basic Bessel-function recurrence
relations [27],

J ′
ν − Jν−1 = − ν

ρ
Jν (18)

and

J ′
ν−1 + Jν = ν − 1

ρ
Jν−1. (19)

Now considering that fr (ρ) = Jν (ρ) and fi (ρ) = Jν−1(ρ),
and using Eqs. (17)–(19) in Eqs. (15) and (16), the following
identities are obtained:

ν2 − ν = n2 − 1

4
(20)

and

(ν − 1)2 + (ν − 1) = n2 − 1

4
. (21)

Both of the equations lead to the same quadratic equation in
terms of ν,

ν(ν − 1) =
(

n

2
+ 1

2

)(
n

2
− 1

2

)
. (22)
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This equation has two roots, ν1 = n+1
2 and ν2 = −n+1

2 . Ac-
cordingly, the following two solutions for f (ρ) are obtained:

f1(ρ) = J n+1
2

(ρ) + iJ n−1
2

(ρ), (23)

f2(ρ) = J −n+1
2

(ρ) + iJ −n−1
2

(ρ). (24)

Since Eq. (13) is a linear homogeneous ODE, any linear
combination of its solutions, say f (ρ) = af1(ρ) + bf2(ρ), is
also a solution. Therefore, the general solution is

f (ρ) = an

[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

] + bn

[
J −n+1

2
(ρ) + iJ −n−1

2
(ρ)

]
,

(25)

where an and bn are arbitrary constants. Now, according to
Eqs. (5) and (12), one can write

An(ρ, θ ) = √
ρeiρeinθ

{
an

[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]
+ bn

[
J −n+1

2
(ρ) + iJ −n−1

2
(ρ)

]}
. (26)

Since the original PDE, introduced as Eq. (3), is linear and
homogeneous, we can develop the most general solution of
Eq. (3) by taking a linear combination of the solutions

A(ρ, θ ) = √
ρeiρ

{ ∞∑
n=−∞

ane
inθ

[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]

+bne
inθ

[
J −n+1

2
(ρ) + iJ −n−1

2
(ρ)

]}
. (27)

Rearranging, this result can be rewritten as follows:

A(ρ, θ ) = √
ρeiρ

∞∑
n=−∞

(ane
inθ + bne

−inθ )

× [
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]
, (28)

where bn in Eq. (28) corresponds to b−n in Eq. (27).
Here we show that summation in Eq. (28) may be over the

range of n from 0 to ∞, without loss of generality. For this
purpose we can rewrite Eq. (28) as

A(ρ, θ )

= √
ρeiρ

{ ∞∑
n=0

(ane
inθ + bne

−inθ )
[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]

+
∞∑

n=1

(a−ne
−inθ + b−ne

inθ )
[
J −n+1

2
(ρ) + iJ −n−1

2
(ρ)

]}
,

(29)

where in the last summation we replaced −n with n.
For the odd values of n, n±1

2 is an integer number, and

it is easy to show that J −n∓1
2

= J− n±1
2

= (−1)
n±1

2 J n±1
2

by con-
sidering the well-known identity J−m = (−1)mJm for integer
values of m. Therefore, for the odd values of n, the second
summation can be derived with the first summation, and it can
be ignored without loss of generality. Also, for the even values
of n, we show that we need to ignore the last summation to
serve the physical validity of the solutions. In this case −n±1

2
is a negative half-integer number, and it can be shown that
for a Bessel function with a negative half-integer order, the
value of

√
ρJ −n±1

2
(ρ) diverges at the origin. Hence, the second

summation should be ignored to grantee the physical validity
of the results.

Finally, using Eq. (2), the following result is obtained:

U (r, θ, z) = eikz√ρeiρ

∞∑
n=0

(ane
inθ + bne

−inθ )

× [
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]
. (30)

This equation represents a family of solutions of the
paraxial Helmholtz equation, Eq. (3). Based on the form
of these solutions, we call the resulting beams “combined
half-integer Bessel-like beams.” Equation (30) shows that the
spatial structure of half-integer Bessel-like beams is preserved
under propagation.

Making use of the following reference relationships [28]:

J 1
2
(x) =

√
2

πx
sin(x),

(31)

J− 1
2
(x) =

√
2

πx
cos(x),

one can write

J 1
2
(ρ) + iJ− 1

2
(ρ) = i

√
2

πρ
exp(−iρ). (32)

Using this identity, Eq. (30) can be rewritten as follows:

U (r, θ, z) = eikz

{
t0 + √

ρeiρ

+∞∑
n=1

(ane
inθ + bne

−inθ )

× [
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]}
, (33)

where t0 =
√

2
π

(a0 + b0)i.

IV. BOUNDARY CONDITION AT z = 0 PLANE

Let us now calculate U (x, y, z = 0). As ρ ∝ 1
z
, for z → 0

the value of ρ goes to infinity. For large values of ρ the Bessel
function can be written as

Jν (ρ) →
√

2

πρ
cos

(
ρ − νπ

2
− π

4

)
, (34)

and therefore[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

] → i
n
2 +1

√
2

πρ
exp(−iρ). (35)

Now using this result we obtain

U (r, θ, z = 0) = t (θ ) = t0 +
+∞∑
n=1

(tn einθ + t−ne
−inθ ), (36)

where tn = i
n
2 +1

√
2
π
an and t−n = i

n
2 +1

√
2
π
bn. The main fea-

ture of this result is that it has no radial dependency and can
be considered as the transmitted amplitude of a plane wave
immediately after a radial structure. A structure is defined
as a “radial structure” when there is no radial dependency in
its transmission function (see Refs. [23,24]). Now we assume
that the complex amplitude of the light beam at z = 0 plane
has a radial structure, say U (x, y, z = 0) = t (θ ). Using the
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Fresnel-Kirchhoff integral, the propagation of such light beam
can be written in the following form [24]:

U (r, θ, z) = eikz

{
t0 + √

ρeiρ

+∞∑
n=1

√
π

2
(−i)

n
2 +1

× (tne
inθ + t−ne

−inθ )
[
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]}
,

(37)

where k and ρ are the same parameters that were used above.
Now, let us compare this complex amplitude with the one

obtained directly from the wave equation, Eq. (33). If we

set tn = i
n
2 +1

√
2
π
an and t−n = i

n
2 +1

√
2
π
bn in Eq. (37), then

the result will be exactly the same as Eq. (33). This means
that the complex amplitudes obtained from both the wave
equation and Fresnel integral are the same at any propagation
distance. It is worth mentioning that although the paraxial
approximation may be violated at the vicinity of z = 0, this
equality guarantees that the form of light field at z = 0 in
Eq. (36) is correctly obtained from Eq. (33). Below, the
validity of the paraxial approximation at the vicinity of z = 0
will be investigated.

V. SOME GENERAL FEATURES OF THE COMBINED
HALF-INTEGER BESSEL-LIKE BEAMS

As it is seen from Eqs. (33) and (37) the complex amplitude
of the half-integer Bessel-like beams at a given z is a function
of ρ = kr2

4z
. Therefore, the whole pattern of a given beam

expands with a factor
√

z during propagation, and the rate
of the pattern size increment is 1

2
√

z
, which is a descending

function of z. Therefore, although the size of the half-integer
Bessel-like beams increases by a factor

√
z, the rate of

the pattern size increment or equally the cone angle of the
beam, decreases with propagation. This behavior shows the
nondiffractive feature of the half-integer Bessel-like beams.
Moreover, the trajectory of a given point under propagation
may be obtained by following it on the intensity pattern of
a beam for a given value of ρ. For a point on the intensity
pattern with a radius r0 at a given propagation distance of z0,
its radius r at an arbitrary propagation distance of z can be
calculated and the trajectory of the point is given by

r (z) = r0√
z0

√
z. (38)

This equation determines the position of a given point on the
beam under propagation, and can be considered as the ray
equation. This means that the propagation path of a given
point on the intensity pattern is a curve path being concave
toward the optical axis. As the beams expand with unequal
rate with distance z, they are accelerating.

VI. SOME SIMPLE OBJECTIVE EXAMPLES

It is important to provide some objective examples of the
half-integer Bessel-like beams. As the simplest case, we set all
coefficients in Eq. (36) equal to zero except for tm = 1. Then

t (θ ) = exp(imθ ), (39)

FIG. 1. First row: Intensity patterns at the longitudinal (left)
and transverse (right) planes for a half-integer Bessel-like beam
with tm=5 = 1 and with other coefficients equal to zero (a beam
produced by an SPP). Second row: Corresponding phase profiles at
the transverse planes at locations z = −1 m, z = 0, and z = +1 m.

which describes a spiral phase plate (SPP) with mth order
singularity. Substituting Eq. (39) in Eq. (33) or Eq. (37),
corresponding light beam is

U = umei(kz+ρ+mθ )√ρ
[
Jm+1

2
(ρ) + iJm−1

2
(ρ)

]
, (40)

where um = √
π
2 (−i)

m
2 +1. Since Eq. (40) is a result of the

wave equation, it can be used to investigate the treatment of
the beam for both positive and negative values of z. In Fig. 1
the intensity and phase patterns of a half-integer Bessel-like
beam with m = 5 are illustrated. This light field indicates a
vortex beam which carries OAM with a topological charge
of order m. As is apparent from Fig. 1, the intensity pattern
is symmetric with respect to the z = 0 plane, but the phase
distributions are slightly different over two transverse planes
of z = ±1 m. Also, it is seen that at large values of r ,
the phase and intensity profiles reach their values at z = 0
plane, which means that for r 	 0 the light beam structure
remains unchanged under propagation. Diffraction of a plane
or a Gaussian beam from an SPP using the Fresnel integral
is presented in Ref. [29]. Using two different approaches,
the first based on mathematical approximation [29] and the
second on physical reasoning [24], the vortex core size or
radius of the first intensity maximum for this beam can be
estimated to be

rm ≈
√

(m + 1)λz

2
(41)

and

rm ≈
√

mλz

π
, (42)

respectively. Both the above estimations have the same depen-
dency on z which consists with Eq. (38).

Now we check the validity of the paraxial approximation
when z → 0. We know that a wave is called paraxial if its
wavefront normals (rays) make small angles with the z axis
[26]. Using Eq. (42) as a ray path equation [or equivalently
Eq. (41)] we can calculate the angle this ray makes with the z

axis, say, ∂rm

∂z
≈

√
mλ
4πz

. We see that for z → 0 we have ∂rm

∂z
→

∞, this means that there is a collapse for the rays at z = 0 (see
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FIG. 2. First and second columns: Absolute value and phase patterns of t (θ ) = cos(mθ ) for different values of m. Third and forth columns:
Corresponding beams’ intensity and phase patterns at z = 1 m.

the rays paths in Fig. 1). Since in the paraxial approximation
∂rm

∂z
� 1 then

√
mλ
4πz

� 1 or z 	 mλ. Therefore, at |z| 	 mλ,

Eq. (40) describes the behavior of light field.
As another simple example of Eq. (36) we consider the

following combination:

t (θ ) = cos(mθ ) = 1
2 (eimθ + e−imθ ). (43)

This is a real transmission function and can be considered
to be a linear combination of two SPPs having opposite
orders. As the sign of the transmission function alternates
periodically, it does not indicate a pure amplitude structure.
To determine its phase and absolute value, we rewrite it in the
following form:

t (θ ) = |cos(mθ )|eiδ(θ ), (44)

where the phase δ(θ ) is a binary periodic function alternating
between 0 and π with a period of 2π

m
, and |cos(mθ )| being the

absolute value of the transmittance having a period of π
m

. In
Fig. 2, the first and second columns show the absolute value
and phase of this transmittance, respectively, for the different
values of m at the different rows. Unlike an SPP, this trans-
mittance does not impose OAM on an incident plane wave.
Comparing Eqs. (43) and (36), we see that tm = t−m = 1

2 and
all other coefficients are zero. Therefore, the corresponding
light beam is given by

U (r, θ, z) = umei(kz+ρ)√ρ
[
Jm+1

2
(ρ) + iJm−1

2
(ρ)

]
cos(mθ ),

(45)

where um = √
π
2 (−i)

m
2 +1. In Fig. 2, the third and forth

columns show the intensity and phase patterns of the beam at
z = 1 m, respectively. The patterns in each row correspond to
a given value of m. As is apparent these beams have petallike

intensity profiles. In practice, using a pure radial amplitude
grating and an SLM such beams can be easily produced.
Further details are beyond the scope of the current work.

Spatially asymmetric beams

As another combination of different terms of Eq. (36),
we consider the superposition of two SPPs having different
orders:

t (θ ) = 1
2 (eimθ + einθ ). (46)

Using the Euler’s formula and sum-to-product trigonomet-
ric identities this reduces to

t (θ ) = cos

(
m − n

2
θ

)
exp

(
i
m + n

2
θ

)
. (47)

Here again to determine the phase and absolute value of t (θ ),
we rewrite it in the following form:

t (θ ) =
∣∣∣∣cos

(
m − n

2
θ

)∣∣∣∣ exp [iφ(θ )], (48)

in which φ(θ ) is the phase of the transmittance calculated
using

φ(θ ) = δ(θ ) + m + n

2
θ, (49)

where δ(θ ) is a binary periodic function alternating between 0
and π with a period of 4π

m−n
. The light beam topological charge

can be calculated using 1
2π

∮
C

∇φ.dr , with loop C enclosing
the singularity (here the origin). As the term δ(θ ) does not lead
to a pure change in the phase over a cycle, this transmittance
imposes an OAM on an incident plane wave with a topological
charge of order m+n

2 . When both m and n are even or odd, the
order of the topological charge of the beam is integer. When
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FIG. 3. First to forth rows: Absolute value (blue solid line)
and phase (red dash line) profiles of t (θ ) = 1

2 (eimθ + einθ ) for n =
2, 3, 4, 5 and m = 1, respectively. Fifth row: The corresponding
unwrapped phase profiles.

one of the m or n is even and other one is odd, the beam has
a half-integer topological charge. Using the fact that OAM is
preserved under free space propagation the above calculated
result can be used for all propagation distances [30].

Figure 3 shows the absolute value and phase profiles
of t (θ ) for m = 1 and n = 2, 3, 4, 5. The last row shows
corresponding unwrapped phase profiles. Looking at these
unwrapped phase profiles we see that, in each case, the pure
phase change over a cycle is equal to m+n

2 × 2π . Therefore,
the topological charges of the corresponding beams to be
equal to m+n

2 .
In Fig. 4 the absolute value and phase patterns of Eq. (46)

for m = 1 and n = 2, 3, 4, 5 and the corresponding beams’
intensity and phase patterns are shown. As it is seen from the
third column, the intensity patterns of the beams have |m − n|
number of asymmetric spokes. The asymmetric feature of
these kinds of the beams is more dominant for |m − n| = 1.
The intensity gradient of such beams over the transverse
plane provides a lateral force on the small particles, includ-
ing absorbing and dielectric micro- or nanoparticles, in the
direction of intensity gradient or in the opposite direction,
depending on the relative refractive index between particle
and surrounding medium. To obtain a sufficient value of force
to move such particles, highly focused beams can be used
in practice [31,32]. By passing of a plane wave successively
through one of the pure radial amplitude gratings shown in
the first column and an SLM with the corresponding phase
modulation given at the second column in Fig. 4, these beams
can be easily generated.

VII. CATEGORIZATION OF THE SOLUTIONS

As a special form of Eq. (36), we consider tn =
t−n, which is commonly encountered, and Eq. (36)
reduces to

t (θ ) = t0 +
+∞∑
n=1

tn cos(nθ ), (50)

where tn in this equation is equal to 2tn in Eq. (36). Accord-
ingly, Eq. (37) can be rewritten as

U (r, θ, z) = eikz

{
t0 + √

ρeiρ

+∞∑
n=1

un cos(nθ )

× [
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]}
, (51)

where un = √
π
2 (−i)

n
2 +1tn. In general we call this family of

results “radial carpet beams.”
If we set t0 = 0, the radial carpet beams take petallike

forms. We call all similar cases, in which the Fourier expan-
sion in Eq. (50) has no dc term, say t0 = 0, as the dc-less
transmission functions. In the following, we introduce and
investigate some petallike beams of some dc-less transmission
functions.

Two another special cases can be considered by eliminating
t0 and all of the terms with tn or t−n in the summation of
Eq. (36),

t±(θ ) =
+∞∑
n=1

tn exp(±inθ ). (52)

According to Eq. (37) the corresponding light beams are

U±(r, θ, z) = eikz

{
√

ρeiρ

+∞∑
n=1

un exp(±inθ )

× [
J n+1

2
(ρ) + iJ n−1

2
(ρ)

]}
, (53)

where un = √
π
2 (−i)

n
2 +1tn. The main feature of this family of

beams is that they carry OAM. Also the intensity profiles of
these beams have ringlike shape at the lower radial distances
and have twisted shape at the larger values of the radial
coordinate. Therefore we call them “ringlike vortex beams.”
Although the name “twisted-intensity ringlike vortex beams”
can be also used for such beams. Since the ringlike vortex
beams carry OAM, they have potential applications in the
mixing of microparticle suspensions in the optical tweezers
setup.

VIII. RADIAL CARPET, PETALLIKE, AND RINGLIKE
VORTEX BEAMS

In the following the recently mentioned three subfamilies
of beams, the radial carpet, petallike, and ringlike vortex
beams are presented by considering three radial gratings hav-
ing parabolic, triangular, and modified triangular transmission
profiles and by manipulating their Fourier series. The Fourier
expansions of the parabolic and triangular transmission func-

043826-6



COMBINED HALF-INTEGER BESSEL-LIKE BEAMS: A … PHYSICAL REVIEW A 98, 043826 (2018)

FIG. 4. First to forth rows: Absolute value (first column) and phase (second column) patterns of t (θ ) = 1
2 (eimθ + einθ ) and the

corresponding beams’ intensity (third column) and phase (forth column) patterns at z = 1m for n = 2, 3, 4, 5 and m = 1, respectively.

tions are given by

tPa(θ ) = 1

3
+

+∞∑
q=1

4

(πq )2 cos(qmθ ) (54)

and

tTr(θ ) = 1

2
+

+∞∑
q=1
odd

4

(πq )2 cos(qmθ ), (55)

respectively, where m is the gratings’ spokes number and
the “odd” under the second summation indicates that q is
an odd number. The profiles of these transmission functions
are illustrated in the first rows of Figs. 5 and 6 for m = 5,
respectively. Moreover, in the first rows of Figs. 7 and 8
the absolute value and phase patterns of these transmission
functions and the same patterns of the corresponding beams
are shown for m = 10.

By eliminating the dc terms of tPa(θ ) and tTr(θ ), the
following two transmission functions can be introduced:

tPa
t0=0(θ ) = 3

2

+∞∑
q=1

4

(πq )2 cos(qmθ ) (56)

and

tTr
t0=0(θ ) = 2

+∞∑
q=1
odd

4

(πq )2 cos(qmθ ), (57)

where the normalization constants 3
2 and 2 are chosen so that

the maximum of the absolute values of these transmittances
to be 1, see the second rows of Figs. 5 and 6. The profiles of
these transmission functions are illustrated in the second rows
of Figs. 5 and 6 for m = 5. The second rows of Figs. 7 and 8
show the absolute value and phase patterns of the transmission

FIG. 5. First to third rows: Absolute value (blue solid line) and
phase (red dash line) profiles of tPa(θ ), tPa

t0=0(θ ), and tPa
+ for m = 5,

respectively. Forth row: Unwrapped phase profile of tPa
+ .
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FIG. 6. First to third rows: Absolute value (blue solid line) and
phase (red dash line) profiles of tTr(θ ), tTr

t0=0(θ ), and tTr
+ for m = 5.

Forth row: Unwrapped phase profile of tTr
+ .

functions and the same patterns of the corresponding beams
for m = 10. As we see in these cases, the intensity profiles of
the beams have a petal like shapes. It is worth noting that just
by eliminating the t0 term, the intensity profile of the resulted
beams change, remarkably. It is noteworthy that the Fourier
coefficients of tTr

t0=0(θ ) have only odd indices, and as a result
the period of the absolute value of the transmission function
is halved in the second row of Fig. 6. The details of this effect
can be found in Ref. [33].

Replacing cos(qmθ ) in Eqs. 56 and 57 by
exp(±iqmθ ) two following transmission functions can be
considered:

tPa
± (θ ) = 3

2

+∞∑
q=1

4

(πq )2 exp(±iqmθ ) (58)

and

tTr
± (θ ) = 2

+∞∑
q=1
odd

4

(πq )2 exp(±iqmθ ). (59)

The profiles of these transmission functions, with positive
indices, are shown in the third rows of Figs. 5 and 6 for
m = 5, respectively. The forth rows of these figures show
the unwrapped phases of these transmission functions. We
see that, in each case, the pure phase change over a cycle
is equal to m × 2π . Therefore, topological charges of the
corresponding beams are equal to the spokes number m.
The third rows of Figs. 7 and 8 show the absolute value and
phase patterns of these transmission functions and the same
patterns of the corresponding beams for m = 10, respectively.

As the last example and for better demonstration of the
above-mentioned feathers we consider a modified form of the
triangulate transmission function. The Fourier expansion of
this transmission function is

tMTr(θ ) = t0 +
+∞∑
q=1

tq cos(qmθ ), (60)

where m is the number of spokes, t0 = h
2 , and tq =

2
h(qπ )2 [1 − cos(qπh)], in which h is the aperture ratio or the

FIG. 7. Illustration of tPa (first row), tPa
t0=0(θ ) (second row), and tPa

+ (third row) for m = 10. First and second columns: Absolute value and
phase patterns of the introduced transmission functions. Third and forth columns: The corresponding beams’ intensity and phase patterns at
z = 2 m. Real size of the patterns is 10 mm × 10 mm.
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FIG. 8. The same patterns of Fig. 7 for tTr, tTr
t0=0, and tTr

+ .

opening number of the grating. The first row of Fig. 9 shows
profile of a modified triangulate transmission function with
m = 4 and h = 0.6. Similar to the previous examples, the
parabolic and triangular cases, here again we consider tMTr

t0=0

and tMTr
± transmission functions. In Fig. 9, the second and

third rows show the absolute value and phase profiles tMTr
t0=0

and tMTr
± , respectively. The forth row shows unwrapped phase

profile of tMTr
+ with m =4. As is apparent, a topological charge

is imposed to the incident beam is equal to m. In Fig. 10,

FIG. 9. First to third rows: Absolute value (blue solid line) and
phase (red dash line) of tMTr(θ ), tMTr

t0=0(θ ), and tMTr
+ for m = 4 and

h = 0.6, respectively. Fourth row: Unwrapped phase profile of tMTr
+ .

first to third columns, show the intensity (first row) and phase
(second row) patterns of the beams generated by modified
triangular transmission functions of tMTr, tMTr

t0=0, and tMTr
+ with

m = 15 and h = 0.6, respectively.
A close study on the diffraction of plane wave from one

dimensional amplitude gratings with parabolic, triangular, and
two- and three-level rectangular wave functions was presented
in Ref. [33].

IX. CONCLUSION

In summary, this work presents a family of solutions of
the paraxial Helmholtz equation in the cylindrical coordinates.
Each of the solutions is determined by a linear combination
of the Bessel functions of half-integer order. These solutions
introduce a family of nondiffracting, accelerating, and self-
healing beams that may carry OAM. We called them “Com-
bined half-integer Bessel-like beams.” It is shown that these
beams can be generated by the diffraction of a plane wave
from radial structures, so that each of this family of beams
can be produced by a suitable radial structure. We showed
that for a desired beam the coefficients of the corresponding
linear combination of the Bessel functions are equal to the
Fourier coefficients of the corresponding radial structure. In
this work some interesting subfamilies of these beams were
investigated. When the Fourier series of a radial structure
consists of a series of terms including the dc term, in the
diffraction of a plane wave from it a radial carpet beam pro-
duces. If the dc term is eliminated from the Fourier series the
structure under diffraction produces a petallike beam. In this
case when the coefficients of the terms with the same orders
and opposite signs are equal, the beam intensity pattern at
the transverse plane gets the form of a 2D optical lattice with
polar symmetry [23]. If the Fourier series of a radial structure
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FIG. 10. First to third columns: Intensity (first row) and phase (second row) patterns of the beams generated by modified triangular
transmission functions of tMTr, tMTr

t0=0, and tMTr
+ at z = 2 m with m = 15 and h = 0.6, respectively.

consists of only the terms with the positive or negative indices,
it produces ringlike beams carrying OAM that we named them
ringlike vortex beams. The intensity profiles of these beams
have a twisted form at the larger radial distances. Also a set
of spatially asymmetric beams having half-integer OAM is
introduced by special combinations of the Bessel functions
of half-integer order. Since these kinds of beams have an
azimuthal gradient on their intensity profiles, they can be
used in changing the concentration of the microparticles in a
solution. We also show that a simple vortex beam generated
by an SPP belongs to the presented family of beams. As
same as the radial carpet beams [23], for all the presented
solutions, the self-healing feature of the beams can be verified

experimentally or theoretically. A common simple approach
for generating introduced beams is proposed and some appli-
cations for each of subfamilies of the introduced beams are
proposed. Real generation of such beams and illustrating their
applications are beyond the scope of the current work. This
family of solutions of the wave equation can be found in many
linear wave systems in nature, ranging from sound and elastic
waves to many other kinds of classical waves.
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