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Inverse energy flux of focused radially polarized optical beams
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We report the formation of a negative energy flux in the case of tight focusing of an arbitrary-order radially
polarized annular beam. We consider not only the longitudinal component of the Poynting vector (energy flux
density) and the region of its negative values, but also the local inverse energy flux as an integral characteristic
over the region of negative values. Theoretically, the Richards-Wolf formulas in the Debye approximation are
used to maximize the negative value of the energy flux density on the optical axis in the focal region for the
second-order radial polarization (m = 2). In this case, the local inverse energy flux, an integral characteristic
in the bulk region of negative values, increases with increasing radial polarization order, i.e., for m > 2. Jones
matrices are employed to show that the result obtained will be valid for azimuthal polarization, as well as for
a circularly polarized vortex beam. The results of numerical simulation are in good agreement with theoretical
calculations. In addition, taking into account the approximate nature of the Richards-Wolf formulas, we also
additionally model the tight focusing of a circular beam based on the solution of Maxwell’s equation using
the finite element method. It is shown that the local inverse energy flux in the case of the second-order radial
polarization will be 1.5 times less than that in the case of the third-order radial polarization. In turn, the use of
the fourth-order radial polarization makes it possible to increase the local inverse energy flux by a factor of 2.
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I. INTRODUCTION

Recently, the interest of researchers has focused on an
inverse energy flux of nonparaxial laser beams, namely, the
negative values of the Poynting vector in the local domain.

The authors of Ref. [1] considered the energy character-
istics of the superposition of TE- and TM-polarized Bessel
beams. The expression obtained for the Poynting vector shows
that under certain conditions, both the longitudinal and az-
imuthal components can change their sign. Negative values of
the azimuthal component mean that the angular momentum
is directed opposite to that in the neighboring regions. The
negative longitudinal component corresponds to a more inter-
esting physical phenomenon, i.e., propagation of the beam in
the opposite direction with respect to the optical axis. Similar
opposite directions of vectors are observed in a medium with
a negative dielectric permittivity and magnetic permeability
[2,3]. It was shown [1] that the longitudinal component of
the Poynting vector assumes the largest negative value on the
optical axis in the case of circular polarization. The modulus
of the negative minimum of the longitudinal component does
not exceed 25%–30% of the positive maximum. We believe
that this ratio can be increased by using a different beam type.

Monteiro et al. [4] investigated in detail the tight focusing
of circularly polarized Laguerre-Gaussian beams with orbital
indices (0, l) (where l is the order of the optical vortex).
Analytical expressions were obtained for the electric field
components, the Poynting vector, the angular momentum den-
sity, and the angular momentum flux density. Among various
effects, the authors of Ref. [4] found that in the nonparaxial
regime, due to the interaction between the phase vortex singu-
larity (at |l| � 2) and the spin angular momentum, the energy

propagates in the direction opposite to that of the incident
beam near the optical axis. However, judging from the figures
in Ref. [4] we may conclude that the value of the negative min-
imum modulus of the longitudinal component of the Poynting
vector does not exceed 12% of the positive maximum.

One more type of beam, i.e., the Airy beam, was consid-
ered in [5]. The propagation of nonparaxial Airy beams was
described theoretically on the basis of the angular spectrum
of the incident beam with the separate contributions of prop-
agating and evanescent waves. In this case, the longitudinal
component of the Poynting vector is represented as the sum of
three terms: the contribution of propagating waves, evanescent
waves, and the interference term. Negative values of the lon-
gitudinal component of the Poynting vector, corresponding to
the energy backpropagation, appear only with a large degree
of nonparaxiality. It was theoretically proved that negative
values are achieved due to the term corresponding to the inter-
action of propagating and evanescent waves. In this case, the
inverse energy flux of the Airy beams is observed separately
in the TE or TM mode, rather than in a complex superposition
as in the case of Bessel beams [1]. Note, however, that for
Airy beams, the value of the negative energy flux density is
only 11% of the positive maximum.

Mitri [6] presented analytical expressions for the compo-
nents of the electromagnetic field of nonparaxial vortex Bessel
beams with a fractional topological charge. These expressions
were used to obtain conditions under which the values of the
longitudinal component of the Poynting vector are negative.
The best conditions included significant nonparaxiality, a
topological charge equal to 2, and circular polarization.

Recently, the idea of combining the vortex beams with
circular polarization of opposite sign, initially suggested in
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[4] for the Laguerre-Gaussian beams, was generalized for an
arbitrary circularly polarized optical vortex with an integer
topological charge m in [7]. Kotlyar et al. [7], using the
Richards-Wolf (RW) formulas, showed that, regardless of the
beam amplitude and the apodization function, negative values
for the energy flux density are observed near the optical axis.
For m = 2, the maximum relative value of the negative value
of the energy flux density of about 0.8 was obtained. At
m = 3, this value decreases to about 0.35.

Thus, based on the above review, it follows that the max-
imum value of the negative energy flux density is attained
for the vortex phase singularity m = 2 in the case of circular
polarization of the opposite direction. However, if we consider
not the maximum value, but the entire range of negative
values, then other types of beams may suit better.

In this paper, we consider the formation of a negative
energy flux in the case of tight focusing of an arbitrary-order
radially polarized annular beam. Theoretically, using the RW
formulas, the negative value of the energy flux density on the
optical axis in the focal region for the second-order radial
polarization is maximized. In this case, the local inverse
energy flux as an integral characteristic in the bulk region of
negative values increases with increasing order of the radial
polarization. The validity of theoretical calculations is further
justified by numerical calculations both using the RW formu-
las and in the framework of a rigorous electromagnetic theory.

The presence of an inverse energy flux extends the capabil-
ities of optical trapping and manipulation. The action on the
particles in this case will be similar to “tractor beams” [8–11],
meaning that the light does not push the particles forward in
the direction of propagation, but pulls it back. Furthermore,
the presence of an inverse energy flux is useful in the detection
of invisibility cloaks [12,13] and other applications.

II. THEORETICAL ANALYSIS FOR THE TIGHT
FOCUSING OF A CIRCULAR BEAM IN

THE DEBYE APPROXIMATION

The vectors of the electric and magnetic fields in the focal
region in the Debye approximation are determined by the RW
formulas [14–17]:[

E(r, ϕ, z)
H(r, ϕ, z)

]
= − if

λ

∫ α

0

∫ 2π

0
T (θ )F (θ, φ)

[
PE (θ, φ)
PH (θ, φ)

]

× exp (ik[r sin θ cos(φ − ϕ) + z cos θ ])

× sin θdθdφ, (1)

where

PE (θ, φ) =
⎡
⎣ A(θ, φ) C(θ, φ)

C(θ, φ) B(θ, φ)
−D(θ, φ) −E(θ, φ)

⎤
⎦

[
cx (φ)
cy (φ)

]
,

PH (θ, φ) =
⎡
⎣ C(θ, φ) −A(θ, φ)

B(θ, φ) −C(θ, φ)
−E(θ, φ) D(θ, φ)

⎤
⎦

[
cx (φ)
cy (φ)

]
, (2)

A(θ, φ) = 1 + cos2φ(cos θ − 1),

B(θ, φ) = 1 + sin2φ(cos θ − 1),

C(θ, φ) = sin φ cos φ(cos θ − 1), (3)
D(θ, φ) = cos φ sin θ,

E(θ, φ) = sin φ sin θ,

where F (θ, φ) is the amplitude of the initial field; [cx (φ)
cy (φ)] is the

vector of the polarization coefficients, whose norm is equal to
unity; and T (θ ) is the apodization function [for an aplanatic
lens T (θ ) = √

cos θ].
Consider the situation where the amplitude of the initial

field F (θ, φ) is concentrated in a narrow annular region with
a central angle θ0 and width �θ :

F (θ, φ) =
{
F0(φ), θ0 − �θ/2 � θ � θ0 + �θ/2,

0, else.
(4)

Note that the concentration of energy in a narrow annular
region does not always mean a small amount of energy (as
occurs when an annular gap is used [18]). In particular, a ring
with a high energy content can be formed with the help of an
axicon in the focal plane of the lens [19].

Let us find out analytically for field (4), in which for cases
under conditions of tight focusing [when formulas (1)–(3)
are applicable], it is possible to have regions with an inverse
energy flux, and in general, attention will be paid to situations
where one of these regions is near the optical axis.

By the definition, the time-averaged energy flux density
(Poynting vector) is [20]

S = c

8π
Re(E × H∗) = c

8π
Re(E∗ × H). (5)

The longitudinal component of the vector S is accurate to
a constant coefficient and equals

Sz = Re(E∗
xHy − E∗

yHx ). (6)
For an input field of form (4), the components of the

focused electromagnetic field in (1), participating in (6), will
be calculated by the formulas

E∗
x (r, ϕ, z) ≈ p(−z)

∫ 2π

0
F ∗

0 (φ)[A(θ0, φ)c∗
x (φ) + C(θ0, φ)c∗

y (φ)] exp[−ikr sin θ0 cos(φ − ϕ)]dφ,

E∗
y (r, ϕ, z) ≈ p(−z)

∫ 2π

0
F ∗

0 (φ)[C(θ0, φ)c∗
x (φ) + B(θ0, φ)c∗

y (φ)] exp[−ikr sin θ0 cos(φ − ϕ)]dφ,

(7)

Hx (r, ϕ, z) ≈ p(z)
∫ 2π

0
F (φ)[C(θ0, φ)cx (φ) − A(θ0, φ)cy (φ)] exp[ikr sin θ0 cos(φ − ϕ)]dφ,

Hy (r, ϕ, z) ≈ p(z)
∫ 2π

0
F (φ)[B(θ0, φ)cx (φ) − C(θ0, φ)cy (φ)] exp[ikr sin θ0 cos(φ − ϕ)]dφ,

where p(z) = −if �θT (θ0) exp(ikz cos θ0) sin θ0/λ.
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Note that for axisymmetric beams, for which F (φ) =
const., the integrals in expressions (7) are computed ex-
plicitly. This is also valid for some other beams, including
vortices; i.e., F (φ) = exp(imφ).

Next, we consider various variants of the polarization state
and the vortex phase singularity for the circular field (7),
which ensure the presence of negative values of the longitu-
dinal projection of the Poynting vector (6), i.e., presence of a
negative energy flux density.

A. Radial polarization of arbitrary order in the
absence of a vortex phase singularity

This polarization state is considered in order to form a
negative energy flux in the case of tight focusing of an annular
beam. The radially polarized light is ensuring the sharpest
focus, i.e., the minimal focal spot size [15–18,21,22]. In the
case of the radial polarization of arbitrary order m [23,24]
F (θ0, φ) ≡ 1, cx (φ) = cos(mφ), and cy (φ) = sin(mφ) (the
value m = 0 corresponds to the linear x polarization).

The components of field (7) participating in expression (6)
can be calculated analytically using trigonometric formulas
and tabulated integrals ([25], p. 456):

∫ π

−π

exp (iz cos x) cos(nx)dx = 2πinJn(z),

∫ π

−π

exp (iz cos x) sin(nx)dx = 0. (8)

Without going into the details of the intermediate calcula-
tions, we give the resulting expression:

Sz(r ) = (�θ )2T 2(θ0)sin2θ0π
2

× [(1 + cos θ0)2J 2
m(t ) − (1 − cos θ0)2J 2

m−2(t )],

t = kr sin θ0. (9)

Expression (9) has an explicit form without integrals and
allows one to analyze the properties of the energy flux-density
function.

It is obvious that the direction of the energy flux density is
determined by the sign of the expression in square brackets in
(9), so it is sufficient to consider only that. Since the equality
J−n(t ) = (−1)nJn(z), n > 0 holds, there are three essentially
different cases: m � 0, m = 1, and m � 2.

1. Case 1: m < 0

In this case we obtain from (9)

Sz ∼ (1 + cos θ0)2J 2
|m|(t ) − (1 − cos θ0)2J 2

|m|+2(t ). (10)

Since, for small values of the argument, the Bessel function
decreases with increasing order (especially with allowance for
the fact that the coefficient for a function of smaller order is
larger), then, obviously, expression (10) near the optical axis
will be positive. There exist regions of negative values of Sz

in (10): these are rings with a width decreasing with distance
from the optical axis. To assess the effectiveness of achieving
the formulated goal, we introduce a characteristic that is the
ratio of the negative minimum to the positive maximum:

η = |min Sz|
max Sz

. (11)

In the case under study, η increases with increasing |m| and
at θ0 → 90◦. However, we can prove that there will always be
η < 1. For us this case is off interest.

2. Case 2: m = 1

In this case,

Sz ∼ 4 cos θ0J
2
1 (t ); (12)

i.e., the energy flux density is always positive, which means
that in the case of standard radial polarization (first order), the
inverse energy flux cannot be observed.

3. Case 3: m � 2

In this case,

Sz ∼ (1 + cos θ0)2J 2
m(t ) − (1 − cos θ0)2J 2

m−2(t ). (13)

At small values of the argument, the Bessel function
decreases with increasing order; therefore, despite the fact
that the coefficient for the function of higher order is larger,
expression (13) near the optical axis will be negative. Note
that the region of negative values Sz is not limited to the
central part; it also includes rings with a width that decreases
with distance from the optical axis. However, the highest
values of η will be achieved in the central part at m = 2 on
the optical axis.

Since the maximum values of the Bessel function decrease
with increasing order, the largest value of η should be reached
at m = 2. Let us consider this case in more detail:

Sz ∼ (1 + cos θ0)2J 2
2 (t ) − (1 − cos θ0)2J 2

0 (t ). (14)

Obviously, a negative minimum is reached at t = 0. Finding a positive maximum is not so trivial, since the maximum of the
first summand and the minimum of the second one are attained for different values of the argument. After a detailed analysis,
we arrive at the expression

η =
⎧⎨
⎩

(1−cos θ0 )2

0.236(1+cos θ0 )2−0.076(1−cos θ0 )2 = [
0.236

( 1+cos θ0
1−cos θ0

)2 − 0.076
]−1

, 0 � θ0 < 84◦,
(1−cos θ0 )2

0.186(1+cos θ0 )2 = 5.376
( 1−cos θ0

1+cos θ0

)2
, 84◦ � θ0 � 90◦.

(15)

Analysis of expression (15) shows that the maximum value of η = 5.376 is achieved in the case of the tightest focusing,
i.e., at θ0 = 90◦. As the angle θ0 decreases, the value of the inverse energy flux density decreases. In particular, η = 3.541 for
θ0 = 84◦, η = 1 for θ0 = 68◦46′, and η →

θ0→0
0.
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Thus, it is shown that a much larger relative value (by
more than five times) of the inverse energy flux density can be
achieved in comparison with the results obtained previously
in other studies.

Note that if we consider absolute values rather than relative
ones, then due to apodization T (θ ) = √

cos θ in the aplanatic
lens model, the maximum value of the inverse energy flux
density will be achieved at a smaller angle. If we take into
account all factors in formula (9), the maximum value of
the inverse energy flux density will be at the angle θ0 =
arccos[(

√
24 − 2)/10] ≈ 73◦ (in this case, η = 1.423).

Next we will pay attention to another important issue. As a
rule, most publications consider only the energy flux density;
however, for different applications, especially in the case of
optical trapping and manipulation, the total energy flux as an
integral characteristic plays an important role. Note that to act
on a small particle, one needs a local energy flux over a region
� of negative values:

Ŝ =
∫

�

Szd�. (16)

To estimate the local negative energy flux (16), we define
the region � of negative values in the focal plane.

For positive m, the radius rneg of a circle with an inverse
energy flux can be obtained from the following equation
(taking its smallest positive root):

(1+cos θ0)2J 2
m(k sin θ0rneg)= (1−cos θ0)2J 2

m−2(k sin θ0rneg).
(17)

While this equation does not have an explicit solution, it
can be shown that the value of rneg decreases with decreasing
θ0. The largest value of rneg will be reached at θ0 → 90◦, and
it can be found analytically:

rneg = j ′
m−1,1/k, (18)

where j ′
m,1 is the first root of the derivative of the mth-order

Bessel function
In particular, for m = 2, rneg ≈ 1.84/k ≈ 0.293λ, and for

m = 3, rneg ≈ 0.485λ. The radius of the region of negative
values (18) increases with increasing m approximately lin-
early. This is important for optical manipulation of micropar-
ticles because the size of the region of influence on the particle
must be comparable with the particle size.

Taking into account the calculated radius of the region of
negative values, we can calculate the local inverse energy flux
as follows:

Ŝ =
∫ rneg

0
Sz(r )rdr. (19)

For m > 2, the largest negative values of Sz will be
achieved on some circle near the optical axis (on the optical
axis Sz = 0). In this case, the values of η will be smaller
than for m = 2, but the domain � of negative values will be
larger. Consequently, one can expect an increase in the local
negative energy flux Ŝ. For the limiting angle θ0 → 90◦, it can
theoretically be shown that Ŝ ∼ 3

√
m − 1.

B. Other types of the polarization state

For the longitudinal component of the Poynting vector
(6), the distribution of the transverse electromagnetic-field

components is important. Let us evaluate the potentialities
of other types of the polarization state on the basis of their
representation through the Jones matrices. In particular, the
above-considered radial polarization of the mth order can be
represented through a superposition of circularly polarized
vortex fields:

(
Ex

Ey

)
= F (θ, φ)

[
cos(mφ)
sin(mφ)

]

= 1

2
F (θ, φ)

[
exp(imφ) + exp(−imφ)

−i exp(imφ) + i exp(−imφ)

]

= 1

2
F (θ, φ)

[
exp(imφ)

(
1
−i

)
+ exp(−imφ)

(
1
i

)]
.

(20)

It follows from expression (20) that for circular polariza-
tion with a vortex phase of the mth order one can obtain results
analogous to those obtained in the previous section.

Obviously, the same result will be for the azimuthal polar-
ization of the mth order:

F (θ, φ)

[− sin(mφ)
cos(mφ)

]

= 1

2
F (θ, φ)

[
i exp(imφ) − i exp(−imφ)

exp(imφ) + exp(−imφ)

]

= 1

2
F (θ, φ)

[
− exp(imφ)

(
1
−i

)
+ exp(−imφ)

(
1
i

)]
.

(21)

Thus, we have obtained a generalization of the well-known
optimal result for circular polarization with a second-order
vortex phase. Taking into account the analysis carried out in
Sec. II A, circular polarization with a vortex phase of higher
orders, as well as azimuthal polarization of high orders, will
potentially allow a larger local negative energy flux Ŝ.

III. NUMERICAL CALCULATION FOR TIGHT FOCUSING
OF A CIRCULAR BEAM IN THE DEBYE APPROXIMATION

This section presents the calculation results for the longitu-
dinal component of the Poynting vector (6) using expressions
(1)–(3) for the distribution (4) at θ0 = 80◦, �θ = 3◦ with
arbitrary-order radial polarization. Figures 1 and 2 show,
respectively, the results for the first (at m < 0) and third (at
m � 2) cases considered in Sec. II A. The positive part of Sz

is shown in blue, and the negative part in red.
As can be seen from the results shown in Figs. 1 and 2, the

numerical simulation completely agrees with the theoretical
calculations of Sec. II. In all cases (except m = 1), radial
polarization allows negative values to be obtained. However,
at m � 2 the inverse energy flux density is concentrated
near the optical axis, which is of greatest interest for optical
manipulation.

Table I lists the calculated characteristics of the ratio of the
negative minimum to the positive maximum η (11) and the
local energy flux in the region of negative Ŝ (19).
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FIG. 1. Sz calculated in the Debye approximation under focusing
a radially polarized circular field at m < 0: (a) m = −1, (b) m =
−2, (c) m = −3, (d) m = −4; panel (e) shows the normalized cross
sections along the X axis. In panels (a) through (e), x and y range
from −2.5 λ to +2.5 λ.

The results given in Table I confirm the effect predicted
in Sec. II: Although a relatively large minimum (η = 2.39)
is reached at m = 2, the local inverse energy flux increases
with increasing m. The Ŝ increases nonlinearly (as predicted
in Sec. II A); i.e., a higher rate of change occurs for small
values of m.

TABLE I. Calculated characteristics of η and Ŝ for radial polar-
ization of mth order.

m 2 3 4 8

η 2.39 0.87 0.65 0.4
rneg 0.27λ 0.46λ 0.63λ 1.31λ

Ŝ (Normalized) 1 1.3 1.49 1.83

FIG. 2. Sz calculated in the Debye approximation under focusing
a radially polarized circular field at m � 2: (a) m = 2, (b) m = 3,
(c) m = 4, (d) m = 8; panel (e) shows the normalized cross sections
along the X axis. In panels (a) through (e), x and y range from −2.5 λ

to +2.5 λ.

The results of numerical simulation for azimuthal polariza-
tion and circularly polarized vortex beams coincide with the
results presented for radial polarization, which agrees with the
calculations in Sec. II B.

It should be noted that the results of Secs. II and III
were obtained within the framework of the approximate
Debye model [15]. The conditions for the applicability of
this model include the following: linear dimensions of the
exit pupil are large compared with the wavelength [14],
and the focal point is placed many wavelengths away from
the aperture [15]. Thus, the Debye approximation does not
guarantee the correctness of the results for the elements of
micro-optics. Therefore, to confirm the results obtained on
the scale of micro-optics, it is necessary to calculate the
electric and magnetic fields by directly solving Maxwell’s
equations.
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FIG. 3. Square of the electric field amplitude calculated by the
finite element method under the focusing of a radially polarized
annular field at m � 2: (a) m = 2, (b) m = 3, (c) m = 4. x and y

range from −5 λ to +5 λ.

IV. NUMERICAL CALCULATION FOR TIGHT
FOCUSING OF A CIRCULAR BEAM BY THE

FINITE ELEMENT METHOD

In this section, based on the finite element method im-
plemented in the COMSOL software package we calculate the
focusing of a plane wave limited by a ring aperture. The
calculated region has the form of a cylinder of length 7λ and
radius of 5.2λ.

The amplitude distribution in the z = 0 plane has the form

Ex = exp

[
− ik(x2 + y2)

2f

]
cos (mϕ)ring(

√
x2 + y2),

Ey = exp

[
− ik(x2 + y2)

2f

]
sin (mϕ)ring(

√
x2 + y2). (22)

The focusing phase is given by a factor exp[− ik(x2+y2 )
2f

].
Here, f is the focal length equal to λ, and the ring aperture
with an internal radius 4λ and outer radius 5λ is determined
by the factor ring(

√
x2 + y2):

ring(r ) =
{

1, 4λ < r < 5λ,

0, else. (23)

The distributions of the electric field amplitudes are shown
in Fig. 3.

Figure 4 shows the distribution of the longitudinal compo-
nent of the power flux density vector in the transverse cross
section of a beam with radial polarization of different orders.

One can see from comparing Figs. 2 and 4 that the ra-
dial symmetry of the solution is violated when solving the
Maxwell equations.

Based on the simulation performed, we have obtained
the results similar to those in the fourth row of Table I.
The integral value of the inverse flux Ŝ is calculated in a tube
of radius 0.7λ, with the axis of the tube coinciding with the
optical axis of the focused beam. The length of the tube is
10λ and constitutes the entire modeling area. The calculations
have shown that for m = 3 the integral value of the inverse
flux is 1.5 times larger than for m = 2, and for m = 4 it is
almost two times larger than for m = 2.

On the basis of the results of this section, we can conclude
that the Debye approximation gives similar results for the
values of integral fluxes, but it does not take into account the
loss of symmetry of the spatial field distribution.

FIG. 4. Sz calculated by the finite element method under the
focusing of a radially polarized circular field at m � 2: (a) m = 2,
(b) m = 3, (c) m = 4; panel (d) shows the normalized cross sections
along the X axis. In panels (a) through (c), x and y range from −5 λ

to +5 λ.

V. CONCLUSIONS

We have considered the appearance of an inverse energy
flux in a tightly focused circular beam with radial polarization
of arbitrary order. The following results have been obtained:

(1) In the Debye approximation, explicit formulas for the
energy flux density in the focal plane have been derived as
a function of radius. These formulas allow one to obtain
quantitative characteristics of the longitudinal projection of
the Poynting vector (zero-crossing positions, minimum and
maximum values in each of the constant-sign regions).

(2) Analysis of theoretical expressions has shown that the
maximization of the negative value of the energy flux density
on the optical axis will occur in the case of second-order radial
polarization (m = 2). In this case, the Debye model predicts a
much larger relative value (by more than five times) of the
inverse energy flux density in comparison with the results
obtained previously in other papers.

(3) The local inverse energy flux as an integral character-
istic over a region of negative values has been shown theo-
retically and numerically to increase with increasing order of
radial or azimuthal polarization or with increasing order of the
vortex singularity for circular polarization. This effect is asso-
ciated with an increase in the range of negative values with
increasing number m. The result obtained is important for the
optical manipulation of microparticles, because the size of the
region of influence on the particle must be comparable with
the particle size.

(4) On the basis of Jones matrices, it has been shown that
the result obtained for radial polarization will be valid for
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azimuthal polarization, as well as for a circularly polarized
vortex beam.

(5) Numerically, using the finite element method, it has
been shown that the local inverse energy flux in the case of
tight focusing of a radially polarized beam will increase with
increasing polarization order.

The obtained results are important in extending the capa-
bilities of optical trapping and manipulation.
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