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Perturbative representation of ultrashort nonparaxial elegant Laguerre-Gaussian fields
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An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian
(LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach
provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in
the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative
model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of
arbitrarily short duration. This model is thus appropriate for simulating laser-matter interactions, including those
involving short laser pulses.
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I. INTRODUCTION

The ability to produce vortex beams of light [1–4] or elec-
trons [5–7] with well-defined orbital angular momentum al-
lows for the study of angular momentum exchange processes
when such beams interact with matter. Recently, optical vortex
(or structured light) beams have been used to probe chiral
matter [8], to study multipole excitation of atoms as a function
of their location with respect to the beam axis [9], to im-
prove vacuum acceleration of electrons [10], and to advance
quantum information technologies [1,11], among numerous
other applications. Such structured light can be created in the
extreme ultraviolet by means of high-order harmonic genera-
tion [12–14]. For some applications of optical vortex beams,
high intensity is required (e.g., for vacuum acceleration of
charged particles [10]), which is usually achieved by tightly-
focusing the beam. However, tightly-focused beams with spot
sizes comparable to the laser wavelength cannot be correctly
described within the paraxial approximation [15,16].

Perturbative solutions for the fields beyond the lowest-
order paraxial approximation were considered as early as
1975, in which the first few orders of nonparaxial corrections
were found [16–18]. The first-order correction introduces a
longitudinal electric field, which is absent in the paraxial
approximation. Many higher-order corrections to the electro-
magnetic (EM) fields have since been found [19,20].

Perturbative solutions of the scalar Helmholtz equation
(HE) (whose exact solution is termed the phasor) provide
an alternative approach for treating nonparaxial effects. So-
lutions for the HE phasor have been obtained primarily by
two different methods. One method involves solving for the
exact phasor in integral or differential form. This phasor is
then expanded perturbatively [18,21,22]. Alternatively, the
HE can be solved one perturbative order at a time and an
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exact phasor built from the sum of these solutions [17,23–25].
With either of these two methods, the HE can be solved
under different sets of boundary conditions [26]. Common
choices for boundary conditions include (i) a purely paraxial
beam in the focal plane [18,24,25] (where the exact solution
is valid in the half space after the focus only, while the
perturbative solution is valid in all space), (ii) an oscillatory
far-field beam [17,19], or (iii) an outgoing spherical wave
in the far field [21–23]. Couture and Belanger [23] showed
that the latter, with infinitely many orders of correction, was
equivalent to modeling the Gaussian beam with a so-called
complex source point.

The complex source-point model warrants additional dis-
cussion. It describes the beam as an outgoing spherical wave
originating from an imaginary point on the optical axis. The
phasor described by this model has a circular singularity in the
focal plane since the imaginary location of the point source is
related to a circle in real space [27,28]. A boundary condition
of far-field counterpropagating spherical waves was imple-
mented to remove the singularity in the complex source-point
model [28–31]. This is known as the complex source-sink
model, with the source and sink at the same imaginary loca-
tion along the optical axis. While the singularity is removed
in this model, the energy density diverges logarithmically
as the transverse coordinate grows large [32]. It has been
stated, however, that this energy divergence is irrelevant in
practice since neither experiments nor simulations look to a
sufficiently large transverse distance for it to matter [33,34].

As our aim in this paper is to describe tightly-focused
optical vortex beams carrying orbital angular momentum, we
utilize henceforth Laguerre-Gaussian (LG) models of such
optical beams. In general, LG beams are classified by two
indices LGn,m, with n and m representing the radial and
azimuthal profiles, respectively. These are referred to as the
LG modes, of which the lowest order is a Gaussian beam
and higher orders can describe vortex beams. In particular,
we utilize the so-called elegant LG (eLG) model, wherein the
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arguments of certain special functions are complex variables.
Note that there is a physical difference between LG and eLG
models, as discussed by Saghafi and Sheppard [35]. Bandres
and Gutiérrez-Vega (BGV) have provided exact integral and
differential solutions for monochromatic eLG beams of any
LG mode [see Eqs. (16) and (21) of Ref. [22]]. These solu-
tions, based on the complex source-point model, contain the
singularity discussed above. In Ref. [22], BGV presented an
equally general perturbative solution which does not contain
the singularity, since a truncated perturbative model does not
exactly satisfy the source-point boundary condition [see Eq.
(24) of Ref. [22]]. As an alternative approach, April employed
a closed-form source-sink model for monochromatic eLG
fields in Ref. [31] that is singularity-free.

Nearly all of the analytical models discussed thus far
entail a significant limitation: They assume a monochromatic
beam. Many modern experiments, particularly those studying
high-intensity laser-matter interactions, involve optical pulses,
shaped pulses, chirped pulses, etc., all of which require a
polychromatic description. While long pulses can be well
approximated as the product of a temporal Gaussian enve-
lope and a monochromatic field, this description becomes
inadequate for ultrashort pulses [36]. Others have employed
polychromatic descriptions, but these often assume that kz

is frequency independent or involve non-LG models (see,
e.g., Refs. [37–39]). April [40] generalized his source-sink
model [31] for monochromatic eLG fields to allow for poly-
chromatic descriptions by introducing a Poisson-like fre-
quency spectrum [41,42]. Application of the Hertz poten-
tials [43,44] then allowed the computation of a complete
set of EM fields for an arbitrarily short pulse duration and
any LG mode. These fields are free of all singularities [30]
and can be made free of all discontinuities [45], which are
present in the complex source-point models. While Ref. [40]
presents a complete model for describing eLG pulses in the
frequency domain, the Fourier transform required to achieve a
time-domain phasor, and therefore the EM fields, is nontrivial.
To our knowledge, this integral has only been carried out for
the lowest radial order n = 0 in Ref. [45]. Due to a sum over
radial orders in the frequency-domain phasor of Ref. [40], the
Fourier transform for higher radial modes becomes increas-
ingly complicated to calculate.

In this paper we present an analytical method for calcu-
lating the time-domain phasor, and EM fields, of a tightly
focused, arbitrarily short pulse for any LG mode. Our method
generalizes the perturbative approach of BGV [22] by includ-
ing a Poisson-like frequency spectrum and calculating the EM
fields from the time-domain phasor. We show that our fields
agree with those generated from the model of Refs. [40,45]
for the n = 0 case and that fields for higher-order LG modes
can easily be produced. The primary advantage of this method
over that proposed in Ref. [40] is the ability to obtain an
explicit expression for the time-domain phasor, thus enabling
one to obtain the EM fields by a straightforward prescription.

This paper is organized as follows. In Sec. II we derive
the time-domain phasor used to calculate the EM fields. In
Sec. III we derive general expressions for these EM fields,
which are valid for any LG mode and for any order of
perturbative correction to the phasor. In Sec. IV we present a
test of the convergence of our perturbative results and examine

the necessity of the temporal model we employ. In Sec. V
we summarize our results and present our conclusions and
outlook. In Appendices A and B we present some details of
our derivations and in Appendix C we determine the spatial
radius of convergence for this perturbative model.

II. PHASOR

The derivation of our phasor (the spatiotemporal solution
to the scalar HE [46]) begins with the frequency-domain per-
turbative phasor of BGV [Eq. (24) of Ref. [22]] in cylindrical
polar coordinates

UBGV(r, ω) = (−1)n+m22n+m exp(ikz + imφ)

×h2n+m+2vm/2 exp(−v)
N∑

j=0

(
h2

k2w2
0

)j

f (2j )
n,m (v)

≡ U0,BGV + ε2

β
U2,BGV + ε4

β2
U4,BGV + · · · , (1)

where ε ≡ 1/(kw0) is a small dimensionless parameter, h =
(1 + iz/zR )−1/2, β = 1/h2, v = h2ρ2/w2

0, w0 is the beam
waist, zR = kw2

0/2 is the Rayleigh length, and N is the term
at which the infinite series is truncated. The factors f

(2j )
n,m (v)

can be obtained from Eqs. (25) of Ref. [22] (as discussed
in detail in Appendix A below). These factor are each linear
combinations of associated Laguerre polynomials Lm

n (v) and
can be found to any order using the results in Ref. [22].

If we were to evaluate the perturbative expansion of the
phasor in Eq. (1) to infinite order (i.e., N → ∞), this would
be equivalent to describing wave emission from a complex
point source (cf. Ref. [23]). The singularity that naturally
arises from this point source, however, is avoided by our
truncation of the perturbative expansion at some finite order
N . This truncation is equivalent to approximating the source-
point spherical wave, an effect of which is that we have a
singularity-free model. As such, the incoming spherical waves
employed in other works are not required to cancel a source-
point singularity in our model.

Keeping terms up to order ε2, the sum in the phasor of
Eq. (1) reduces to

1∑
j=0

(
h

kw0

)2j

f (2j )
n,m (v) = n!Lm

n (v)

+ ε2

β

[
2(n + 1)!Lm

n+1(v) − (n + 2)!Lm
n+2(v)

]
. (2)

In Eq. (2), the associated Laguerre polynomials Lm
n (v) can be

expressed as finite sums [47]

Lm
n (v) ≡

n∑
j=0

Gn,m,j v
j , (3)

in which

Gn,m,j ≡ (−1)j (n + m)!

(n − j )!(m + j )!j !
. (4)

Since BGV’s phasor was derived for the case of a monochro-
matic field, in order to describe a temporally finite pulse
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it must be generalized. We accomplish this by multiplying
BGV’s phasor by a Poisson-like frequency spectrum [41,42]

f (ω) = 2πeiφ0

(
s

ω0

)s+1
ωs exp(−sω/ω0)

�(s + 1)
�(ω), (5)

where s is the spectral parameter controlling the pulse dura-
tion, ω0 is the central frequency, φ0 is the initial phase of the
pulse, �(s + 1) is a Gamma function, and �(ω) is the unit
step function. Our polychromatic frequency-domain phasor is
then defined as

U (r, ω) ≡ UBGVf (ω). (6)

In the limit of a narrow spectrum (s � 1), Eq. (5) reduces to
a Gaussian spectrum with pulse duration τ = √

2s/ω0.
In order to Fourier transform the phasor in Eq. (6) to the

time domain, we adopt the condition of isodiffraction, i.e.,
we assume that every frequency component has the same
wavefront radius of curvature. For this choice of complex
source-point location, the isodiffraction condition ensures that
zR is constant for all frequency components, whereas the
beam waist w0 = √

2zR/k depends on ω through the vac-
uum dispersion relation k = ω/c, where c is the speed of
light [41,42,48].

Owing to the introduction of a Poisson-like frequency
spectrum to the monochromatic phasor of BGV, implemen-
tation of the smallness parameter must be modified slightly.
Since ε now varies with the frequency, we can use its defini-
tion to factor out its frequency dependence

ε2 = c

2zRω
= c

2zRω0

ω0

ω
≡ ε2

c

ω0

ω
, (7)

where εc is a frequency-independent (constant) small param-
eter in terms of the central pulse frequency ω0.

With all frequency dependences accounted for, one can
now Fourier transform U (r, ω) into the time domain

U (r, t ) = 1√
2π

∫ ∞

−∞
U (r, ω) exp(−iωt )dω, (8)

where the negative exponential is chosen so that the resulting
pulse is traveling in the +ẑ direction. Using the integral
representation of the Gamma function [cf. Eq. (6.1.1) of [49]]

�(γ + 1) = ηγ+1
∫ ∞

0
dω ωγ exp(−ηω), Re η > 0, (9)

we obtain the time-domain phasor (by methods shown explic-
itly in Appendix B):

U (r, t ) = �n,m

⎡⎣ n∑
j=0

c0,0ξ
jT −(γ+1)

+ ε2
c

β

⎛⎝n+1∑
j=0

c1,1ξ
jT −γ −

n+2∑
j=0

c1,2ξ
jT −γ

⎞⎠⎤⎦. (10)

The new variables in Eq. (10) are defined as

ξ ≡ ρ2

2cβzR

, (11a)

T ≡ 1 + ω0

s

(
− iz

c
+ ξ + it

)
, (11b)

�n,m ≡ (−1)n+m22n+m
√

2πn! exp(iφ0)

× ξm/2β−(n+m/2+1) exp(imφ) (11c)

and the constants are defined as

c0,0 ≡ Gn,m,j

(
ω0

s

)γ−s
�(γ + 1)

�(s + 1)
, (12a)

c1,1 ≡ (n + 1)G(n+1),m,j

(
ω0

s

)γ−s−1 2ω0�(γ )

�(s + 1)
, (12b)

c1,2 ≡ ω0(n + 1)(n + 2)G(n+2),m,j

(
ω0

s

)γ−s−1
�(γ )

�(s + 1)
,

(12c)

γ ≡ m/2 + s + j. (12d)

Further details of this derivation can be found in
Appendix B.

III. FIELDS

From the expression for the phasor U (r, t ) in Eq. (10),
Hertz potentials [43,44] can be used to generate expressions
for the complex EM fields. The desired polarization of the
laser field is determined by the form of these Hertz potentials
and not from any property of the phasor. As an example, for
the case of radial polarization the EM fields can be expressed
from the phasor as simply

E(r, t ) = ∇ × ∇ × [U (r, t )ẑ], (13a)

H(r, t ) = ε0
∂

∂t
∇ × [U (r, t )ẑ]. (13b)

For different polarizations, these expressions for E and H
would change (see Table 3 on p. 372 of Ref. [40] and the text
at the bottom of p. 361 of Ref. [40] for more details).

In the expressions that follow for the unnormalized EM
fields, we have carried out calculations for all but the most
simple partial derivatives of the phasor. By leaving these
derivative terms in the field equations, we ensure that the
expressions remain valid for higher perturbative orders in
which the phasor is modified to have additional terms

Eρ = − i

ρ

{
m(n + m + 1)

βzR

U − 2ω0ξ

szR

∂2U

∂β∂T

+ ω0

s

[
2ξ (n + m + 2)

βzR

+ m

(
ξ

βzR

+ 1

c

)]
∂U

∂T

+ ξ (2n + 3m + 4)

βzR

∂U

∂ξ
− m

zR

∂U

∂β

+ 2ξ 2

βzR

∂2U

∂ξ 2
+ 2ω0ξ

s

(
2ξ

βzR

+ 1

c

)
∂2U

∂ξ∂T

− 2ξ

zR

∂2U

∂ξ∂β
+ 2ω2

0ξ

s2

(
ξ

βzR

+ 1

c

)
∂2U

∂T 2

}
, (14)

Eφ = m

ρ

[
n + m + 1

βzR

U + ω0

s

(
ξ

βzR

+ 1

c

)
∂U

∂T

+ ξ

βzR

∂U

∂ξ
− 1

zR

∂U

∂β

]
, (15)
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Ez = ξ

ρ2

{
−4ω0

s
(m + 1)

∂U

∂T
− 4(m + 1)

∂U

∂ξ

− 4ω2
0ξ

s2

∂2U

∂T 2
− 4ξ

∂2U

∂ξ 2
− 8ω0ξ

s

∂2U

∂ξ∂T

}
, (16)

Bρ = −mω0

c2sρ

∂U

∂T
, (17)

Bφ = − iω0

c2sρ

{
m

∂U

∂T
+ 2ξ

(
ω0

s

∂2U

∂T 2
+ ∂2U

∂ξ∂T

)}
. (18)

As is the case with all radially polarized fields, Bz = 0. The
perturbative order necessary to achieve convergence will be
discussed in the next section.

IV. RESULTS

A. Test for accuracy of fields obtained
from the perturbative phasor

Depending on the parameters used to describe the optical
field, perturbative orders higher than ε2

c may need to be
included in the phasor. These higher-order corrections are
needed not only as the spot size is reduced, but also as the
radial or azimuthal LG indices are increased. Numerical sim-
ulations show that excluding terms above order ε2

c is sufficient
only for the lowest LG modes.

A simple method for checking the convergence of the
perturbative expansion of the phasor is to verify that the
wave equation is satisfied to within some numerical tol-
erance. Since the phasor must be a solution to the wave
equation [40], we can write explicitly

∇2U = 1

c2

d2

dt2
U. (19)

One can check directly that the equation is satisfied at any
given order of perturbation. If an appropriate perturbative
order is used to represent the phasor, numerical comparison
of |∇2U | and |∂2

t U/c2| will agree, since the wave equation
will be satisfied. Disagreement, on the other hand, indicates
that additional terms in the perturbative expansion must be
included in order to achieve a converged phasor. We note that
since all fields are calculated as derivatives of the phasor,
use of Eq. (19) to check the adequacy of the perturbative
expansion is valid for any field polarization, not just for the
radially polarized fields calculated above as an example.

To illustrate this technique, a comparison of the left- and
right-hand sides of Eq. (19) is shown in Fig. 1 for three
LG modes, calculated for two different orders of perturbative
correction. For each of the results in Fig. 1, we present the root
mean square error (RMSE) between |∇2U | and |∂2

t U/c2| cal-
culated using 200 plot points across the range of ρ/λ shown.
Convergence of the perturbative expansion can be claimed if
the RMSE is sufficiently small (the exact definition of which
depends on the application). The results in Figs. 1(d)–1(f)
show improved agreement between the left- and right-hand
sides of the wave equation over those in Figs. 1(a)–1(c),
respectively, as the order of perturbation increases from O(ε2

c )
to O(ε4

c ). However, agreement between these terms becomes
worse as the LG mode increases from n = 2 to n = 3 for both
the phasors of O(ε2

c ) and those of O(ε4
c ), thus illustrating

the need to check for convergence. Calculations for other LG
modes having indices n + m � 3 (not shown) have RMSE
values similar to those for the LG modes shown in Fig. 1 when
corrections to similar perturbative orders are included.

We emphasize that the addition of higher-order corrections
to the phasor does not change the EM field equations that have
been derived in Sec. III. The expressions for the EM fields
given in Eqs. (14)–(18) remain valid as the phasor is modified,

FIG. 1. Comparison of both sides of the wave equation (19) for the phasor, |∇2U | and |∂2
t U/c2|, for three LG modes, calculated for two

different orders of perturbative correction: (a) and (d) LG mode with m = 2 and n = 0, (b) and (e) LG mode with m = 0 and n = 2, and
(c) and (f) LG mode with m = 0 and n = 3. The phasor contains perturbation terms to (a)–(c) order ε2

c and (d)–(f) order ε4
c . The RMS error

decreases when the higher-order term is included in the phasor. These plots were made near the beam waist using s = 70 and w0 = λ = 800 nm
(ε2

c ≈ 0.0253).
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FIG. 2. Comparison of numerical values of the relative intensi-
ties of fields Eρ and Ez near the beam waist for the LG0,0 mode for
two different spectral parameters: (a) s = 2848 (∼20-cycle FWHM,
53.4 fs) and (b) s = 7 (∼1-cycle FWHM, 2.65 fs). Solid dark (blue)
and light (gray) curves are calculated using fields derived from
April’s phasor [40] (“A”), while the dashed and dash-dotted curves
are calculated from the fields given in Eqs. (14) and (16) of the
present paper with the phasor to perturbative order ε2

c (“pert”), all
with w0 = 1.5λ and λ = 800 nm (ε2

c ≈ 0.0113).

since these field expressions are written in terms of partial
derivatives of the phasor. Thus, use of our field equations
for higher perturbative orders is relatively straightforward,
requiring only the addition of higher-order corrections to
the phasor. Appendix B provides an example in which the
perturbative correction of order ε4

c is calculated in detail.
In Fig. 2 we compare our converged fields from Eqs. (14)

and (16) with those obtained from the closed-form phasor of
April [40]. The normalized electric field intensities in the ρ̂

and ẑ directions are shown for each model, for both long and
short pulse durations. Excellent agreement is seen between
the fields of our model (subscript pert in the figure) and those
of April (subscript “A”), for both long [Fig. 2(a)] and short
[Fig. 2(b)] pulses. The spatial radius of convergence of the
perturbative expansion is discussed in Appendix C.

B. Sensitivity of the fields to the spectral profile

The EM fields are calculated using the time-domain phasor
U (t ), which may be obtained in one of two ways. The exact
way, as done in Sec. II, is to Fourier transform the frequency-
domain phasor to the time domain according to Eq. (8).
An approximate approach is to multiply the monochromatic

FIG. 3. Comparison of numerical values of the relative intensi-
ties of fields Eρ and Ez near the beam waist for the LG0,0 mode for
two different spectral parameters: (a) s = 2848 (∼20-cycle FWHM,
53.4 fs) and (b) s = 7 (∼1-cycle FWHM, 2.65 fs). Solid dark (blue)
and light (gray) curves are calculated using the temporal Gaussian
(“TG”) model of Eq. (20) with the indicated pulse durations, while
the dashed and dash-dotted curves are calculated using the Fourier
transformed Poisson spectrum (“PS”) of Eq. (8) to order ε2

c , all with
w0 = 1.5λ and λ = 800 nm (ε2

c ≈ 0.0113).

phasor by a temporal Gaussian envelope, as follows:

U (r, t ) = UBGV(r, ω0) exp

[
−iω0t − (t − z/c)2

τ 2

]
. (20)

While these two methods may agree for longer pulse dura-
tions, it is known that use of a Gaussian temporal envelope as
in Eq. (20) fails to correctly model the behavior of ultrashort
pulses [36].

The problem may be understood by considering the time-
frequency uncertainty relation, i.e., that the spectral band-
width grows as the pulse length decreases. For sufficiently
short pulses, the bandwidth becomes so large that negative-
frequency components enter with appreciable weight. These
nonphysical frequencies may cause the electric fields to grow
with transverse distance from the optical axis instead of decay,
as required for a physically correct model [41].

A Poisson-like frequency spectrum was used in the deriva-
tion of our phasor in Sec. II to correctly model the behavior
of ultrashort pulses. Owing to its inherent unit step function
�(ω), a Poisson-like spectrum removes unphysical negative
frequency components from the frequency-domain phasor.
Thus, upon Fourier transformation into the time domain, one
eliminates the possibility of nonphysical temporal fields.
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A comparison of the fields calculated from the time-
domain phasors defined in Eqs. (8) and (20) for two different
pulse durations is given in Fig. 3. As shown in Fig. 3(b) for
short pulses, the fields generated from Eq. (20) (subscript
“TG”) clearly differ from those generated from the Poisson
spectrum phasor (subscript “PS”). In contrast, for long pulses,
Fig. 3(a) shows much better agreement between the fields
generated by the two different methods. This better agreement
occurs since the frequency bandwidth of the temporal Gaus-
sian does not extend to negative values in the case of a long
pulse. Note that the “PS” fields in Fig. 3 are the same as the
“pert” fields in Fig. 2.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented an analytic method for
calculating the EM fields of a tightly focused, arbitrarily short
laser pulse of any radial and azimuthal LG mode. In brief,
the EM fields are obtained from the time-domain phasor,
whose analytic expression to the ε2

c perturbative order is given
in Eq. (10). An example for obtaining the phasor to higher
orders in ε2

c is given in Appendix B. For the case of radially
polarized EM fields, Eqs. (13)–(18) show how to obtain the
EM fields from the phasor of any perturbative order. With only
lowest-order perturbative corrections included, these fields
are consistent with the field model of April [40] for the
Gaussian mode over a wide range of pulse durations. Use
of a Poisson-like frequency spectrum was essential to obtain
this agreement, as this spectrum eliminates the possibility of
negative-frequency modes that lead to unphysical fields for
ultrashort pulses.

Invoking the condition of isodiffraction is necessary for
solving the Fourier integral of the phasor when transforming
it into the time domain. The phasor for a completely general
nonparaxial eLG beam, valid for arbitrarily short pulses, has
never to our knowledge been expressed in the time domain
without use of the isodiffraction condition, as otherwise the
necessary Fourier integral becomes prohibitively complicated.
For nonparaxial complex source-point models, this condition
of isodiffraction requires that the imaginary distance to the
source point, zR in this case, remains frequency independent.

A major benefit of our perturbative model is its scalability
to higher radial and orbital LG modes. Expressions for the
time-domain EM fields for these higher LG modes using other
models usually requires the calculation of infinite sums or the
evaluation of integrals involving special functions of complex
variables. The integrals over these complex special functions,
for arbitrary LG modes, are difficult to evaluate. In our model,
all EM fields are written simply in terms of the phasor and its
elementary derivatives.
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APPENDIX A: DERIVATION OF THE FACTORS f (2 j )(v)

We begin with the frequency-domain phasor, for any LG
mode, of BGV in integral form [Eq. (16) of Ref. [22]]

Un,m =
∫ ∞

0
(−α)2n+m(−1)n exp(±imφ)w2n+m

0

×
[
zR

kz

exp[ikz(z − izR ) − kzR]

]
Jm(αρ)α dα, (A1)

where α ≡ k⊥ and k2 = k2
⊥ + k2

z . An intermediate result of
Ref. [22] is that the phasor of Eq. (A1) is equivalent to an
infinite series representation given by Eq. (22) of Ref. [22],

Un,m =
∫ ∞

0
(−α)2n+m(−1)n exp(±imφ)w2n+m

0

×
⎡⎣w2

0

2
exp(ikz) exp

(
− iα2

2k
(z − izR )

)

×
∞∑

j=0

G(2j )

(kw0)(2j )

⎤⎦Jm(αρ)α dα. (A2)

Comparing these two equations, it is clear that the terms inside
the square brackets of each expression must be equal. Making
use of the relation zR = kw2

0/2 and our previous definition of
β from Eq. (1), and defining � ≡ w2

0k
2
⊥, the terms in large

square brackets of Eqs. (A1) and (A2) can be equated and
solved for the infinite sum, yielding

∞∑
j=0

ε (2j )G(2j ) = 1√
1 − ε2�

exp

(√
1 − ε2� − 1

2ε2h2
+ �

4h2

)
.

(A3)

In this expression, we again define ε ≡ 1/(kw0) since the
description at this point is monochromatic. The right-hand
side can then be expanded in a Taylor series about ε2 = 0.
Collecting powers of ε2 in this expansion yields the perturba-
tive terms G(2j ),

∞∑
j=0

ε (2j )G(2j ) = O(ε8) + 1 + ε2

(
�

2
− �2

16h2

)

+ ε4

(
3�2

8
− �3

16h2
+ �4

512h4

)
+ ε6

(
5�3

16
− 15�4

256h2
+ 3�5

1024h4
− �6

24576h6

)
. (A4)

These results confirm Eq. (23) of Ref. [22] and elucidate how
to extend the method to arbitrarily large j . These terms G(2j )

are then used in Eq. (A2) along with the integral∫ ∞

0
α2n+m exp(−p2α2)Jm(αρ)α dα

= n!

2
p−(2n+m+2)

(
ρ

2p

)m

Lm
n

(
ρ2

4p2

)
exp

(
− ρ2

4p2

)
(A5)
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to produce the factors f (2j )(v) given by BGV in
Ref. [22].

APPENDIX B: PHASOR TO ORDER ε4
c

In this appendix we derive the O(ε4
c ) correction to the time-

domain phasor, starting with the frequency-domain phasor in
Eq. (1). Considering only the term of order ε4 in Eq. (1),
we make the replacements w0 → √

2zR/k and k → ω/c and
invoke the condition of isodiffraction, which requires that zR

is constant. We obtain

ε4
c

β2
U4,BGV = (−1)n+m22n+m exp(iωz/c + imφ)

×h2n+m+2vm/2 exp(−v)

[(
c

2ωβzR

)2

×
{

6(n + 2)!Lm
n+2(v) − 4(n + 3)!Lm

n+3(v)

+ 1

2
(n + 4)!Lm

n+4(v)

}]
. (B1)

Multiplying this result by the Poisson-like frequency spectrum
in Eq. (5), expressing the associated Laguerre polynomials as
sums [see Eqs. (3) and (4)], and extracting powers of ω within
the sums, we obtain

U4(ω) = �n,m

�(s + 1)
exp

{
−ω

(
− iz

c
+ ξ + s

ω0

)}

×
(

s

ω0

)s+1
θ (ω)

√
2πε4

c

β2

⎡⎣n+2∑
j=0

c̃2,2ξ
jωγ−2

−
n+3∑
j=0

c̃2,3ξ
jωγ−2 +

n+4∑
j=0

c̃2,4ξ
jωγ−2

⎤⎦, (B2)

where some variables defined in Eq. (11) have been used and
new constants are defined as follows:

c̃2,2 ≡ 6ω2
0(n + 2)(n + 1)G(n+2),m,j , (B3a)

c̃2,3 ≡ 4ω2
0(n + 3)(n + 2)(n + 1)G(n+3),m,j , (B3b)

c̃2,4 ≡ ω2
0

2
(n + 4)(n + 3)(n + 2)(n + 1)G(n+4),m,j . (B3c)

We now Fourier transform U4(ω) to the time domain as in
Eq. (8) to obtain U4(t ),

U4(t ) = �n,m

�(s + 1)

(
s

ω0

)s+1
ε4
c

β2

∫ ∞

0
exp(−ωη)

×
⎡⎣n+2∑

j=0

c̃2,2ξ
jωγ−2 −

n+3∑
j=0

c̃2,3ξ
jωγ−2

+
n+4∑
j=0

c̃2,4ξ
jωγ−2

⎤⎦dω, (B4)

where η = −iz/c + ξ + s/ω0 + it . Using the integral repre-
sentation of the Gamma function in Eq. (9), we obtain

U4 = �n,m

(
s

ω0

)s+1
ε4
c

β2

⎡⎣n+2∑
j=0

c2,2ξ
jη−(γ−1)

−
n+3∑
j=0

c2,3ξ
jη−(γ−1) +

n+4∑
j=0

c2,4ξ
jη−(γ−1)

⎤⎦, (B5)

where c2,δ ≡ c̃2,δ�(γ − 1)/�(s + 1) for δ = 2, 3, 4. Taking
now the overall prefactor (s/ω0)s+1 in Eq. (B5) inside each
of the sums and using the definition of T in Eq. (11b), we can
write for any power q,(

s

ω0

)s+1

η−q =
(

s

ω0

)s+1−q

T −q . (B6)

Defining the coefficients c2,δ ≡ c2,δ (s/ω0)(s+2−γ ) for
δ = 2, 3, 4, the final result for the O(ε4

c ) term U4(t ) is

U4 = �n,m

ε4
c

β2

⎡⎣n+2∑
j=0

c2,2ξ
jT −(γ−1)

−
n+3∑
j=0

c2,3ξ
jT −(γ−1) +

n+4∑
j=0

c2,4ξ
jT −(γ−1)

⎤⎦. (B7)

Adding this result to the O(ε2
c ) phasor U (2) in Eq. (10), the

complete O(ε4
c ) time-domain phasor U (4)(t ) is

U (4) = �n,m

⎡⎣ n∑
j=0

c0,0ξ
jT −(γ+1)

+ ε2
c

β

⎛⎝n+1∑
j=0

c1,1ξ
jT −γ −

n+2∑
j=0

c1,2ξ
jT −γ

⎞⎠
+ ε4

c

β2

⎛⎝n+2∑
j=0

c2,2ξ
jT 1−γ −

n+3∑
j=0

c2,3ξ
jT 1−γ

+
n+4∑
j=0

c2,4ξ
jT 1−γ

⎞⎠⎤⎦. (B8)

The calculation of higher-order terms would proceed simi-
larly. The upper limits of the sums, their interior coefficients,
the leading powers of ε2

c /β, and the integrated powers of ω

would change, but otherwise the process would be identical to
that demonstrated above.

APPENDIX C: RADIUS OF CONVERGENCE
OF THE PERTURBATIVE PHASOR

Perturbative models require that higher-order terms in the
perturbative expansion have smaller magnitude than lower-
order terms so that the infinite series converges. However, the
series expansions upon which such perturbations are based
often do not have this behavior in all space. For example,
the one-dimensional function 1/(x2 + 1) is well defined at all
values on the real axis. Expanding this function in a Maclaurin
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FIG. 4. Illustration of the radius of convergence for the phasor
in Eq. (1), demonstrated by the dominant perturbative order j as a
function of spatial location. Each region is labeled by the perturbative
order j ∈ [0, 3] that is largest therein. The region in which the j = 0
term dominates is the region in which the perturbation is converged.
This plot was made using w0 = λ = 800 nm (ε = 1/(2π )).

series gives 1 − x2 + x4 + · · · , which only converges in the
finite region |x| < 1, rendering the series expansion useless
outside this radius of convergence. In this appendix, we esti-
mate the radius of convergence for the perturbative phasor in
Eq. (1).

We begin by considering the magnitude of the frequency-
domain phasor in Eq. (1). Each term in the perturbative sum
contains a factor f

(2j )
n,m (v), derived in Appendix A, which is a

sum of associated Laguerre polynomials. At some perturba-
tive order j , the dominant contribution to f

(2j )
n,m (v) is

f (2j )
n,m (v) ≈ (n + 2j )!

j !
Lm

n+2j (v), (C1)

since Lm
n+2j (v) has the highest power of v among all

associated Laguerre polynomials contributing to f
(2j )
n,m (v)

[cf. Eqs. (2) and (3)]. The term in Lm
n+2j (v) having the highest

power of v is G(n+2j,m,n+2j )v
n+2j [cf. Eq. (3)]. Making use of

Eq. (4) and noting that |h| = (1 + z2/z2
R )−1/4, one can write

the magnitude of the dominant contribution to the j th-order
term of Eq. (1) as

|U (2j )| ≈ 22n+mε2j

j !

(
1 + z2

z2
R

)−(2n+3j+m+1)/2

× exp

[
− ρ2

w2
0(1 + z2/z2

R )

](
ρ

w0

)2n+4j+m

. (C2)

As noted above, the radius of convergence is defined by the
spatial region in which the term of order j is smaller than
the term of order j − 1. To find such a region, we calculate
the difference |U (2j )| − |U (2j−2)| < 0. Given that ρ � 0 and
z2 � 0, this inequality can only be satisfied for

ρ <

[
j

(
1 + z2

z2
R

)3/2
w4

0

ε2

]1/4

. (C3)

This condition must be satisfied for all j , and the maximum
allowed value of ρ increases with larger j . Therefore, the
radius of convergence ρc is determined by the minimal case
of j = 1,

ρ <

[(
1 + z2

z2
R

)3/2
w4

0

ε2

]1/4

≡ ρc. (C4)

Note that ρc is defined for any z and is independent of the LG
modes n and m.

This radius of convergence is demonstrated in Fig. 4,
wherein the magnitude of the perturbative phasor given in
Eq. (C2) is plotted as a function of ρ and z for up to three
orders of perturbative correction. The minimum radius of
convergence ρc is given in Eq. (C4), which corresponds to the
line between regions 0 and 1 in Fig. 4. The space with ρ values
below this line corresponds to the region of perturbative
convergence or the region in which the zeroth-order phasor
is dominant.
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