
PHYSICAL REVIEW A 98, 043819 (2018)

Q-switched pulsing lasers subject to delayed feedback: A model comparison
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We report theoretical and numerical results on the dynamics of pulsing lasers with gain and absorber sections
subject to delayed optical self-feedback. We consider two modeling approaches, with the Yamada model, on the
one hand, and a delay model for ring-cavity mode-locked lasers, on the other hand. We focus on the limit where
a single mode is involved, and we show that, in the case without feedback, the dynamics of both models show
very good quantitative agreement: Q-switched periodic pulsing regimes with similar properties are observed. A
bifurcation analysis unveils the conditions for the dynamics to be similar in both systems when an additional
delayed feedback term is considered: in particular, what is important is to match the period and the width of the
pulsing dynamics of the solitary lasers. Our results show that the simple Yamada model can catch the essence of
the dynamics of pulsing lasers with feedback in the limit of single-mode systems. This may considerably simplify,
in future work, the investigation of the dynamics of certain self-pulsing lasers with feedback.
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I. INTRODUCTION

Sources of short, high-amplitude pulses of light are widely
used in many applications, such as telecommunications and
optical signal processing [1]. As such, they have attracted
considerable attention in the last decades, and self-pulsing
regimes have been observed in a variety of laser systems. This
includes fiber laser cavities [2], vertical cavity surface-emitting
lasers [3], and semiconductor lasers with integrated saturable
absorbers [4,5].

Despite similar features of the pulsing dynamics, the un-
derlying physical mechanism for self-pulsations can be fun-
damentally different from one device to another. Q-switching
is arguably the simplest mechanism for self-pulsating lasers,
as it relies only on variable losses in the laser cavity [6]. In
the case of passive Q-switching, these are induced by a sat-
urable absorber medium, in which the transmission increases
dramatically when the light intensity in the cavity exceeds a
given threshold. Because the intracavity intensity is initially
low, the losses due to the saturable absorber are high and
most of the energy provided by pumping the gain medium is
stored in the gain section. When the gain overcomes the losses,
the intensity starts to increase, which eventually saturates the
absorber and causes a sudden drop of the cavity losses. The
light intensity hence increases rapidly until all the energy stored
in the device has been released, at which point the intensity
drops back to a very low value. As the process repeats, short,
high-amplitude pulses of light are emitted, in between which
the intensity is practically 0 while the gain recovers. This
mechanism for self-pulsations does not involve the interaction
between different modes of the laser cavity, and microlasers
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with integrated saturable absorbers, which are essentially
single mode due to their small size, have been designed
specifically to feature a Q-switching instability [4,7]. Such
systems are described accurately by the Yamada rate equations,
a system of three ordinary differential equations (ODEs) for
the gain, the absorption, and the light intensity [8,9], which is
described in more detail in the next section. In particular, it has
been shown that the phase of the electric field is not relevant
for the description of these systems [10].

Self-pulsations in lasers can also be achieved by mode-
locking. This technique relies on the phase synchronization
of a large number of longitudinal modes of the laser cavity to
produce trains of very short optical pulses at a high repetition
rate [11–13]. Compared to Q-switched lasers, mode-locked
lasers require a different design to allow a large number of
modes to contribute to the laser emission and to induce a
fixed phase relationship between them. The number of modes
involved in the lasing process is given by the spectral width of
the amplifying medium and can be reduced by spectral filter
elements. Mathematical models for mode-locked lasers are
more complex than models for Q-switched lasers; in particular,
they have to take into account the phase of the complex electric
field. Many theoretical studies have adopted a traveling-wave
equations approach [14,15]. This results in accurate modeling
of the dynamics, which requires time-consuming numerical
simulations and complicates a systematic bifurcation analysis.
Alternatively, a delay model relying on the assumption of
unidirectional light propagation in the laser cavity has been
proposed in [16] and [17] in the form of delay differen-
tial equations (DDEs). Although DDEs are mathematically
more complex than ODEs, bifurcation analysis can be per-
formed with advanced numerical methods [18–20], yielding
global knowledge of the dependence of the dynamics on the
parameters.
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Besides several mode-locked regimes, mode-locked lasers
can also exhibit a Q-switching instability, which can lead to
a pulsing regime with a modulated amplitude, referred to as
Q-switched mode-locking [21]. In this case, if the spectral
filter width is reduced such that only a single-cavity mode can
contribute to the lasing process, mode-locking can no longer
occur, but the Q-switching instability remains [13]. In this
particular case, the Yamada model and the DDE model for
mode-locked lasers (DDE MLL) describe the same physical
phenomenon, but with very different equations.

Pulsing lasers, whether mode-locked or Q-switched, are
highly sensitive to perturbations: small amounts of noise
can trigger substantial fluctuations of the repetition rate of
pulses [22–24]. This timing-jitter phenomenon is detrimental
to most applications. Delayed optical self-feedback has been
proposed as an efficient technique to reduce timing-jitter
significantly and, more generally, to allow better control of
the pulsing dynamics [12,24]. The effect of feedback has been
studied numerically in both the Yamada model and the DDE
MLL model, where the feedback is introduced, respectively,
via an external mirror and through an additional integrated
ring cavity. It is noteworthy that in the presence of feedback,
both models are systems of DDEs, with one delay time for
the Yamada model and two different delay times for the
DDE MLL model. Extensive bifurcations analysis has been
performed [21,24–26], which focused on the feedback-induced
dynamics in a Q-switched laser in the excitable regime and in
a laser in the fundamental mode-locked regime.

We consider here the effect of feedback when both solitary
lasers are in the Q-switched pulsing regime. We first present
the Yamada model and the DDE MLL model in more detail and
show how they relate to each other. We then perform a bifur-
cation analysis of both models without feedback and compare
their dynamics, with a focus on the dependence of the pulse
width and pulsing period of the Q-switched regime on the pump
and absorption levels. With the numerical continuation toolbox
DDE-Bitool for delay systems [18–20], we then perform a
bifurcation analysis of both models with feedback and unveil
the conditions under which the feedback-induced dynamics
will be qualitatively the same. In particular, we investigate
how small changes in the width and period of the pulsing
solution of the solitary laser (i.e., without feedback) affect
the feedback-induced dynamics. As such, we demonstrate
that, over a large range of parameters, the dynamics of the
DDE MLL model in the limit of a single active mode can be
accurately described by the simpler Yamada model.

II. MODEL EQUATIONS

The Yamada model [8] describes the dynamics of Q-
switched single-mode semiconductor lasers. It is originally a
system of three ODEs for the gain G, the absorption Q, and
the intensity I , which becomes a system of three DDEs when
an additional optical feedback term is introduced [25]:

Ġ(t ) = �G[A − G(t ) − G(t )I (t )],

Q̇(t ) = �Q[B − Q(t ) − aQ(t )I (t )],

İ (t ) = (G(t ) − Q(t ) − 1)I (t ) + ηI (t − τ ). (1)

micropillar LSA

pumpFB
mirror

FIG. 1. Sketch of a semiconductor micropillar laser with an
integrated saturable absorber section, pumped optically, and subject
to delayed optical feedback from an external mirror [10].

Here, �G and �Q are the recombination rates of carriers in
the gain and absorber sections, respectively, a is the saturation
parameter, A is the pump level, and B is the linear absorption.
Furthermore, η and τ are the feedback strength and feedback
delay, respectively. All the time variables are rescaled with
respect to the photon lifetime τph in the cavity [7]. Importantly,
this model only describes the evolution of the intensity of the
electric field. In particular, the phase of the electric field is
not taken into account and the feedback is modeled as being
incoherent: no phase relationship is considered between the
electric field at instant t and that at instant t − τ . Although
this may appear to be a major limitation, the Yamada model
with feedback has been shown to be valid for a microlaser with
feedback like the one sketched in Fig. 1. In particular, it shows
very good agreement with experimental observations, when
the pulses are short compared to the delay time [10,26].

The DDE MLL model for mode-locked lasers, on the other
hand, was originally derived from the standard traveling-wave
equations for semiconductor lasers under the assumption of
unidirectional propagation [17,27]. As such, it describes the
mode-locked dynamics of a ring cavity semiconductor laser,
as represented schematically in Fig. 2. In the case without
feedback, it is a system of three DDEs already, which has been
extended to include delayed optical feedback from one or more
external cavities [28]. It is then written as a system of three

external feedbacklaser cavity

c

FIG. 2. Sketch of a ring-cavity semiconductor laser with an
integrated saturable absorber (LSA) section, spectral filtering, and
one external feedback (FB) cavity.
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TABLE I. Parameter values used in numerical simulations of
Eq. (1) and Eqs. (3)–(5), respectively, with physical units where
appropriate.

Symbol Value Symbol Value

�G (γ̃g ) 0.0125 (1 ns−1) �Q (γ̃q ) 0.9375 (75 ns−1)

a 1.04 τ̃ph 12.5 ps

γg (γ̃g ) 0.00625 (1 ns−1) γq (γ̃q ) 0.4675 (75 ns−1)

rs 78.0 τc (̃τc ) 1 (6.25 ps)

κ 0.34 γ (γ̃ ) 1 (0.16 ps−1)

DDEs for the complex electric field E(t ) at the outcoupling
facet, as well as the gain G and the absorption Q integrated
over one internal round-trip:

Ė(t ) = −γE(t ) + γR(t − τc )e−i��τcE(t − τc )

+K e−iCγR(t − τc − τ )e−i��(τc+τ )E(t − τc − τ ),

(2)

Ġ(t ) = Jg − γgG(t ) − e−Q(t )(eG(t ) − 1)|E(t )|2, (3)

Q̇(t ) = Jq − γqQ(t ) − rse
−Q(t )(eQ(t ) − 1)|E(t )|2, (4)

with

R(t ) = √
κe

1
2 ((1−iαg )G(t )−(1−iαq )Q(t )).

Here, αg and αq are the linewidth enhancement factors in the
gain and absorber sections, respectively, and γ and �� are the
width and the center frequency of the spectral filter element.
Further, τc is the internal round-trip time, and κ describes the
outcoupling losses such that a fraction

√
κE(t ) of the light

remains in the cavity. The delayed optical feedback is described
by the feedback strength K , the delay τ , and the feedback
phase shift C. Moreover, Jg and Jq , on the one hand, and γg

and γq , on the other hand, are the pump parameters and the
recombination rates of carriers in the gain and the absorber
section, respectively. Finally, the saturation energy ratio is
represented by the parameter rs . For numerical purposes, the
time variables and parameters, as well as the rates, are rescaled
(either multiplied or divided) by the round-trip time τ̃c [29]. In
particular, this means that τc = 1 in Eqs. (2)–(4); nevertheless,
we keep τc explicitly in this and the following formulas for
clarity. It is noteworthy that in systems (1) and (2)–(4), each
variable evolves on its own time scale, which is modeled by
the parameters �G and �Q in the Yamada model and γg and
γq in the DDE MLL model; the different parameters and their
chosen values are listed in Table I. Equations (1) and (2)–(4) are
slow-fast dynamical systems with three different time scales.
The dynamics of such systems is of theoretical and practical
interest, beyond the particular models considered here; see, for
example, [30].

A. From the DDE MLL model to the Yamada model

Although both models rely on different assumptions, they
are derived from the same physical principles. We now show
how the Yamada model, (1), can be related directly to the DDE
MLL model, (2)–(4). Assuming that the frequency maximum

of the spectral filter coincides with the gain maximum, ��

is 0. Assuming further, as in [21] and [28], αg = αq = 0 and
a vanishing phase shift C = 0, the electric field becomes real.
Moreover, the feedback term in system (2)–(4) is included such
that the light enters from the back facet and has to go through
the ring cavity before one round-trip is complete (see Fig. 2).
In principle, this leads to a gain- and loss-dependent feedback
strength, which can be assumed to be constant for small gain
G and absorption Q, in particular, in small devices. One can
then write

Ė(t ) = −γE(t ) + γ
√

κe
1
2 (G(t−τc )−Q(t−τc ))E(t − τc )

+Kγ
√

κE(t − τc − τ ). (5)

In Eq. (5), the derivative includes all temporal changes during
one internal round-trip within the device. When the electric
field envelope evolves slowly in time and thus does not change
much during one internal round-trip, one can neglect the left-
hand-side term γ −1Ė(t ) in Eq. (5). Under this assumption we
can define a new derivative describing only the slow changes
between round-trips by [31,32]

E(t − τc ) ≈ E(t ) − τc

dE

dt
. (6)

The assumption is well satisfied for the rather long Q-switched
pulses and we arrive at the equation

dE(t )

dt
= 1

τc

{−E(t ) + e
1
2 [ln(κ )+G(t )−Q(t )]E(t )

+ K
√

κE(t − τ )},
where G and Q are now evaluated at time t rather than time
t − τc. Note, further, that the effect of outcoupling losses is
still included and described by κ . Linearizing the exponential
term with the argument of small gain G and absorption Q and
redefining G̃ = G/τc and Q̃ = Q/τc, as well as introducing
the intensity I = |E|2, one eventually obtains

˙̃G = Jg

τc

− γgG̃(t ) − G̃(t )I (t ),

˙̃Q = Jq

τc

− γqQ̃(t ) − rsQ̃(t )I (t ),

İ =
[
G̃(t ) − Q̃(t ) + ln(κ )

τc

]
I (t ) + 2K

√
κ

τc

E(t − τ )E(t ).

(7)

It has been shown theoretically that, in the limit of pulsing
dynamics, one can consider, again in first approximation,
that KE(t − τ )E(t ) ≈ K̃I (t − τ ). In particular, a bifurcation
analysis shows that both terms lead to identical qualitative
dynamics [26]. By defining the dimensionless variables and
parameters as in [9], one eventually obtains the Yamada model
with feedback, (1).

A serious difficulty for the comparison of both models is the
matching of parameters. We consider identical values for the
physical parameters γ̃g = 1 ns−1, γ̃q = 75 ns−1, and rs = 78.
Here, a tilde above a symbol indicates the nonrescaled value;
these are chosen to match the parameter values commonly
considered in the literature for the DDE MLL model, (2)–
(4) [29]. It is noteworthy that the values of γ̃g and γ̃q , which
describe the time scales on which the gain and absorption
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FIG. 3. Schematic of the relative contributions of the filter width
γ and the round-trip losses (modeled through the ratio κ) to the photon
lifetime τ̃ph in the DDE MLL model, (3)–(5), for a fixed value of the
round-trip time τ̃c. For a small filter width (left), τ̃ph depends on both
the round-trip losses and the bandwidth of the spectral filter element,
while for a large filter width (right), τ̃ph is constrained only by the
round-trip losses.

variables evolve, differ considerably from the values usually
considered for the Yamada model [7,9,10]. In what follows, we
consider Eqs. (3)–(5), and we take into account a single mode
by setting γ = 1 (corresponding to a physical filter width of
γ̃ = γ /τ̃c), so that mode-locking cannot occur. Importantly,
a change in the filter width γ induces an effective change in
the total photon lifetime τph in the cavity. The photon lifetime
inherent in the DDE MLL model is defined via exponential
decay of the electric field; using E(t ) ∼ exp [ − t

2τph
] in Eq. (5)

without gain, absorption, and feedback, which yields the
transcendental equation,

τc = 2τphγ

(
1 − √

κ exp

[
τc

2τph

])
. (8)

In the limit of large γ this gives τph = −τc/ ln(κ ). In physical
units this gives τ̃

γ=100
ph = 5.9 ps for the values κ = 0.34 and

τ̃c = 6.25 ps considered hereafter; see Fig. 3. For our smaller
filter width γ = 1, this gives τ̃

γ=1; κ=0.34
ph = 12.5 ps, which is

the value considered hereafter to rescale the parameters of the
Yamada model, (1). Overall, keeping τph constant when γ is
varied implies that one needs to adapt the round-trip losses,
which are modeled through the factor κ and relate to the Q
factor of the cavity modes. Relationships between the pump
and the linear absorption parameters of both models can be
derived analytically and are given in the Appendix.

III. DYNAMICS WITHOUT EXTERNAL FEEDBACK

The dynamics of the Yamada model and the DDE MLL
model have been studied extensively in the case without
external feedback (given by K = 0 and η = 0) [9,17,29].
Compared to the literature, we consider here a different regime
of operation: namely, a Q-switched pulsing regime with γ = 1
for the DDE MLL model and different time scales �G and
�Q associated with the gain G and absorption Q for the
Yamada model. We focus on the existence of Q-switched
pulsing regimes and on the dependence of the pulse width w

and pulse period T0 on both the pump and the linear absorption
parameters.
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FIG. 4. Bifurcation diagrams of model (1) (top) and model (3)–(5)
with γ = 1 (bottom), with respect to the pump parameter. Left:
Amplitude of the intensity variable, where the equilibrium and
periodic solutions are in dark and light blue, respectively. Solutions are
stable along thick parts of the curves. T and H, transcritical and Hopf
bifurcations, respectively; SN, saddle-node bifurcations of periodic
orbits. Right: Period T0 in ps (solid blue line) and pulse width w in
ps (dashed red line) along the branch of periodic solutions. Inset:
Evolution of T0 near the leftmost Hopf bifurcation.

In actual experiments, the pump is the main control param-
eter and it is associated with the amount of energy provided to
the gain section of the lasers. Figure 4 shows one-parameter
bifurcation diagrams of both models for fixed absorption levels
(Jq = 1.1 and B = 1.7), when the pump level is considered
as a bifurcation parameter. This shows that the qualitative
dynamics is identical in the two models. In particular, the
same bifurcation scenario is observed when the pump is
increased from 0: for low pump, the laser is on a nonlasing
equilibrium, which becomes unstable at the laser thresholds
through a transcritical bifurcation T . The laser subsequently
settles on another stable equilibrium with nonzero intensity, the
so-called continuous-wave solution, which corresponds to the
emission of a constant beam of light. These equilibria almost
immediately become unstable through a supercritical Hopf
bifurcation H. At this point, a stable periodic orbit emerges,
whose amplitude and period grow rapidly when the pump is
increased: it then corresponds to the emission of short pulses
of light, between which the light intensity is practically 0. At
Jg = 0.13 and A = 16.8, this stable periodic orbit collides,
in a saddle-node bifurcation, with a periodic orbit of the
saddle type which previously emerged from a subcritical Hopf
bifurcation of the continuous-wave equilibrium. At this point,
the laser settles back on the lasing equilibrium, which is the
only stable solution. One can note that the sudden increase in
the amplitude of the periodic solution around Jg = 0.02 (for
the DDE MLL model) and A = 1.7 (for the Yamada model),
combined with the large but finite value of the period T0,
suggests a canard explosion [33]. This phenomenon is typical
of slow-fast dynamical systems where variables evolve on
different time scales [34]. Its investigation is beyond the scope
of this article and will be discussed elsewhere.

We now investigate how the bifurcation scenario evolves
when the linear absorption parameter is changed. Figure 5
represents the two-parameter bifurcation diagrams of both
models when the pump (Jg and A) and the linear absorption
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FIG. 5. Bifurcation diagrams of models (1) (top) and (3)–(5)
(bottom) in the (A,B ) plane and (Jg, Jq ) plane, respectively. Curves:
S, saddle-node bifurcation; T, transcritical bifurcation; H, Hopf
bifurcation; SN, saddle-node bifurcation of periodic orbits emerging
from a degenerate Hopf bifurcation point, DH. Along thick parts of
curve H the Hopf bifurcation is supercritical. In regions 4 and 5, the
pulse width w (in ps) is represented by color.

(Jq and B) are considered as bifurcation parameters. In the
parameter plane, each curve corresponds to the locus of a
specific codimension-one bifurcation. More specifically, one
finds

(i) a curve (S) of saddle-node bifurcation, where a stable
and a saddle equilibrium bifurcate;

(ii) a curve (T) of transcritical bifurcation, corresponding
to the lasing threshold, where the zero-intensity equilibrium
change stability;

(iii) a curve (H) of Hopf bifurcation, where the lasing
equilibrium changes stability and a periodic solution emerges,
which is locally stable (unstable) when the Hopf bifurcation is
supercritical (subcritical);

(iv) a degenerate Hopf point (DH) where the Hopf bifur-
cation changes criticality; and

(v) a curve (SN) of saddle-node bifurcation of periodic
orbits emerging from the point DH, where one stable and one
saddle-type periodic orbit collide and disappear.

The different bifurcation curves divide the parameter plane
into regions where the dynamics is qualitatively different.
In region 1, the only solution is a stable zero-intensity (i.e.,
nonlasing) equilibrium. In region 2, the stable nonlasing equi-
librium coexists with one additional stable (continuous-wave)
equilibrium and one saddle-type equilibrium. Entering region
3 from region 2, the nonlasing equilibrium becomes unstable
so that the continuous-wave regime is the only stable solution.
In region 4, all the equilibria are unstable, and the only stable
solution is a periodic solution. In region 5, all the solutions of
region 4 remain and coexist with an additional saddle-type
periodic orbit. In regions 4 and 5, the width of the stable
pulsing periodic solution estimated at half the maximum of
the intensity [|E|2 for (3)–(5) and I for (1)] is represented in
Fig. 5 by the color map. The values differ slightly between the

0 τ 850
0

η

0.8

0 τ 850
0

K

0.6

FIG. 6. Hopf bifurcation curves of models (1) (left) and (3)–(5)
(right) in the plane of feedback delay τ (in ps) and feedback strength
η and K . The parameter values (A,B ) = (9.34, 3.36) and (Jg, Jq ) =
(0.063, 1.1) agree according to the conversion given in Appendix but
yield different pulse profiles without feedback.

two models; however, the orders of magnitude are similar and
the same trend is observed with respect to both continuation
parameters. In particular, the width increases dramatically for
small values of the absorption parameter. For a given value of
this parameter, the pulse width is almost constant over a large
range of the pump parameter and increases dramatically for
small values of the pump. This trend was already highlighted
in Fig. 4 for a single value of the linear absorption parameter.

Importantly, the range of parameters represented in Fig. 5
corresponds to identical nondimensionless values for both
models (see the conversion given in the Appendix). With no
feedback, both models thus show very good qualitative and
quantitative agreement for identical values of the physical
parameters. In particular, the same stable regimes (continuous
wave or Q-switched) are observed, and for the Q-switched
regime the pulse width and pulse repetition rates have similar
values.

IV. MATCHING THE MODELS IN THE
PRESENCE OF FEEDBACK

We consider now the effect of delayed feedback on the
dynamics when the solitary laser is in the Q-switched pulsing
regime. We focus on Hopf bifurcations, which are of particular
interest since they correspond to the emergence of (pulsing)
periodic solutions. An important motivation is to understand
the conditions under which the DDE MLL model, (3)–(5),
can be approximated accurately by the Yamada model, (1),
which may considerably simplify numerical and theoretical
investigation.

We consider fixed values Jg = 0.063 and Jq = 1.1 for
(3)–(5), which correspond to A = 9.34 and B = 3.36 in (1);
see the analytical expressions in the Appendix. Figure 6
represents the Hopf bifurcation curves of both models in the
plane of feedback delay τ and feedback strength [η for (1) and
K for (3)–(5)]. Some common features are observed: in both
models, a single curve H is found, which displays the generic
repeating property of delay systems [35], and self-intersects
in codimension-two Hopf-Hopf bifurcation points [36]. How-
ever, more self-intersections of H are observed for model (1);
in particular, one observes secondary self-intersections, where
the loops generated by the primary self-intersections overlap.
Generally, branches of torus bifurcation, associated with the
emergence of quasiperiodic oscillations and the change in
stability of periodic solutions, emanate from Hopf-Hopf bifur-
cation points [36]. As such, more self-intersections of the Hopf
bifurcation curve strongly suggest that the overall bifurcation
diagram is more complex.

043819-5



SOIZIC TERRIEN et al. PHYSICAL REVIEW A 98, 043819 (2018)

10 t/T0

0

160

I

0
6GQ2

0

0

I

160

10 t/T0

0

0.7

|E|2

0
30GQ7 0

0

|E|2
0.7

FIG. 7. Intensity time series (left) and phase portrait in the
physical space (right) of the pulsing solution of model (1) (top)
and (3)–(5) (bottom) without feedback, for (A, B ) = (7.9, 1.7) and
(Jg, Jq ) = (0.063, 1.1), chosen to yield a pulse width of w ≈ 24.5 ps
and a pulse period of T0 ≈ 35 × w in both cases.

Figure 6 demonstrates that considering identical values
of the parameters does not capture the essence of the
feedback-induced dynamics. We showed in Fig. 5 that the
pulsing characteristics of both models without feedback match
for a range of pump and absorption levels. As we show now,
the key is to choose the parameters of (1) and (3)–(5) such
that the pulse width and period of the Q-switched solutions are
identical for the solitary lasers (i.e., without feedback). Figure 7
represents the pulsing solutions of (1) and (3)–(5), without
feedback, for (A,B ) = (7.9, 1.7) and (Jg, Jq ) = (0.063, 1.1),
respectively, chosen to yield similar laser outputs. In both
models, the pulse width is close to 24.5 ps, and the pulse
period T0 is 35 times as large. Although the match is not
perfect, Fig. 7 shows that in both models the pulse shape is
strongly asymmetrical, and the dynamics mainly takes place
in two planes close to (G,Q, 0) and (G,Q0, I ) for (1) and
to (G,Q, 0) and (G,Q0, E) for (3)–(5), where Q0 and Q0 are
constants. This is related to the different time scales on which
the variables evolve, represented by γ̃g and γ̃q . The exact nature
of the influence of these time scales on the lasers dynamics is
beyond the scope of this paper; it will be discussed elsewhere.

For these matched values of (A,B ) and (Jg, Jq ), Fig. 8
shows the curves of Hopf bifurcations of (1) and (3)–(5) in
the plane of feedback parameters. The two models now show
very good agreement on the level of Hopf bifurcations: not
only is a single curve H observed in both models, but also
they self-intersect in a very similar manner. In particular, the
primary self-intersections occur for very similar values of τ ,
and no secondary self-intersection is observed.

0 τ/T0 1
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0.6

0 τ/T0 1
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0.1

0.5

FIG. 8. Hopf bifurcation curves of (1) (left) and (3)–(5) (right)
in the plane of feedback delay and feedback strength, for (A, B ) =
(7.9, 1.7) and (Jg, Jq ) = (0.063, 1.1), respectively, chosen such that
without feedback (η = 0 and K = 0), both systems are pulsing with
pulse width w = 24.5 ps and pulse period T0 = 850 ps.
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FIG. 9. Hopf bifurcation curves of (1) (left) and (3)–(5) (right) in
the plane of feedback parameters. From top to bottom: B = 1.9 and
B = 1.5 (left); and Jq = 1.5 and Jq = 0.8 (right). Values of A and Jg

are chosen so that, without feedback, the pulse period–to–pulse width
ratio is 35.

A. Influence of the pulse width and period

We now demonstrate that the good agreement of (1) and
(3)–(5) on the level of H exists over a wide range of other
parameters, provided that the pulse width and pulse period are
identical in the solitary laser. The results in Fig. 8 were obtained
for a pulse width w = 24.5 ps in the solitary laser. We now
investigate the feedback-induced dynamics when w = 22.5 ps
and w = 26.5 ps, which is achieved for B = 1.9 and B = 1.5
in (1) and Jq = 1.5 and Jq = 0.8 in (3)–(5), respectively. The
values of the pump parameters A and Jg are chosen such that
the period-to-width ratio remains, as before, close to 35. For
these parameters, Fig. 9 presents the curves of Hopf bifurcation
in the plane of feedback parameters. Although the exact values
of τ at which H self-intersects do not match perfectly, the
results are very similar in terms of the numbers of both primary
and secondary self-intersections of H. Overall, Fig. 8 and 9
show that a wider pulse (corresponding to a lower absorption
level; see Fig. 5) is associated with more self-intersections
of H.

We now investigate the influence of the pulse period T0

of the solitary laser on the feedback-induced dynamics. We
consider the same three values of the pulse width w as in Figs. 8
and 9 (that is, the same values of the absorption parameters),
but we now choose the pump level such that the period-to-width
ratio is close to 50 in the solitary laser. Figure 10 represents
the corresponding curves H of Hopf bifurcation in the plane
of feedback parameters, again showing very good agreement
between the models. As before, a wider pulse (that is, a
lower absorption level) results in more self-intersections of H.
Moreover, comparison of Fig. 10 with Figs. 8 and 9 shows that
a higher period-to-width ratio in the solitary laser (i.e., a lower
pump level; see Fig. 5) also results in more self-intersections
of H.

We checked that these results are robust to a change of the
round-trip time τ̃c in the DDE MLL model. Considering τ̃c =
3.125 ps (i.e., half of the value considered here) and adjusting
the ratio κ (associated with round-trip losses) such that the
photon lifetime remains equal to 12.5 ps, the curve H in the
plane of feedback parameters is practically unchanged from
the one in Fig. 8, provided that the solitary laser features an
identical pulse width and pulse period.

The very good agreement between the two models on the
level of curve H strongly suggests that the feedback-induced
dynamics in models (1) and (3)–(5) can be matched for a large
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FIG. 10. Hopf bifurcation curves of (1) (left) and (3)–(5) (right)
in the plane of feedback parameters. From top to bottom: B = 1.9,
B = 1.7, and B = 1.5 (left); Jq = 1.5, Jq = 1.1, and Jq = 0.8 (right).
Values of A and Jg are chosen so that, without feedback, the pulse
period–to–pulse width ratio is 50.

range of parameters. The clear conclusion is that what matters
is indeed maintaining the value of the pulse width and pulse
period in the solitary laser.

B. Feedback-induced dynamics

The motivation for matching the Hopf bifurcation curves of
both models was the fact that they organize the overall pulsing
dynamics. We now investigate in more detail this feedback-
induced dynamics for a particular set of laser parameters.
Figure 11 represents the overall bifurcation diagrams of both
models in the plane of feedback parameters, for the same
pump and absorption levels as considered in Fig. 8. We

••
• •

•DH

•

• •

0 τ 850
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FIG. 11. Bifurcation diagram of (1) (top) and (3)–(5) (bottom)
in the plane of feedback delay τ (in ps) and feedback strength,
for (A,B ) = (7.9, 1.7) and (Jg, Jq ) = (0.063, 1.1), respectively. The
solitary laser is in the Q-switched regime, with a pulse width of 24.5 ps
and a pulse period 35 times as large. Curves: H, Hopf bifurcations; SN,
saddle-node bifurcations of periodic orbits emerging from degenerate
Hopf points, DH; TR, torus bifurcations emerging from Hopf-Hopf
bifurcation points, HH; PD, period-doubling bifurcations.

now represent the criticality of the Hopf bifurcation: along
thick parts of curve H, the Hopf bifurcation is supercritical,
meaning that the emerging periodic solution is locally stable,
while it is locally unstable when the Hopf bifurcation is
subcritical [36]. The points DH at which the Hopf bifurcation
changes criticality are degenerate Hopf bifurcation points,
from which the SN curves emerge [36]. These curves form the
locus of saddle-node bifurcations of periodic orbits, where one
stable and one saddle-type periodic orbit collide and disappear.
TR curves of torus bifurcation are also represented, which
emerge from Hopf-Hopf bifurcation points where the Hopf
bifurcation curve self-intersects. Torus bifurcations can lead to
stable quasiperiodic dynamics; this is discussed in [21] for the
DDE MLL model and in [26] for the Yamada model. Finally,
one finds PD curves of period-doubling bifurcations, which
emerge from 1:2 resonant points along the TR curve [36].

In Fig. 11, curve H changes criticality in a similar manner
for (1) and (3)–(5), and the SN curves cross curve H for
similar values of τ . In both models, these SN curves inter-
act in pairs at cusp bifurcations points when the feedback
strength becomes close to 0. Since Hopf bifurcations and
saddle-node bifurcations correspond to the emergence and
the disappearance of periodic solutions, respectively, these
similarities strongly suggest that different periodic solutions
exist and are stable for similar ranges of τ in both models.
The torus bifurcation curves also show similar qualitative
behavior in (1) and (3)–(5); in particular, one finds isolated
closed TR curves, which do not connect to a point HH. The
torus bifurcations are of practical interest beyond the possible
emergence of quasiperiodicity: although most parts of the H
curves correspond to subcritical Hopf bifurcations, meaning
that the emerging periodic solution is unstable, several of these
unstable periodic solutions stabilize via a torus bifurcation
when the delay τ is increased. As a consequence, there is a
high degree of multistability in different regions of the plane
of feedback parameters, with the coexistence of several stable
pulsing periodic solutions [21,26].

Although both models show an overall good qualitative
agreement, differences are observed in the finer details of the
dynamics. The DDE MLL model, (3)–(5), features multiple
cusp points along the SN curves and 1:1 resonances where
TR curves connect with SN curves. Nevertheless, overall the
bifurcation diagrams of the DDE MLL model and the Yamada
model show good qualitative and quantitative agreement,
considering that the modeling approaches are very different
from each other.

V. INFLUENCE OF THE NUMBER OF MODES

When a single cavity mode is considered (γ = 1), we have
shown that the dynamics of the DDE MLL is represented
accurately by the simpler Yamada model. We now investigate
the influence of a larger, but still small, number of cavity
modes on the dynamics of the DDE MLL model without
feedback. Our focus is on the properties of the Q-switched
pulsing solution, which are the key for matching both models.
We consider γ = 8 and set κ = 0.58 such that the photon
lifetime remains τ̃ph = 12.5 ps (see Fig. 3). Figure 12(a)
shows the bifurcation diagram of model (3)–(5) in the (Jg, Jq)
plane, when no feedback is considered (K = 0). As for the
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FIG. 12. (a) Bifurcation diagram of (3)–(5) in the (Jg, Jq ) plane,
for γ = 8 and κ = 0.58. Displayed are two curves, H and Hf , of Hopf
bifurcations, associated with Q-switching and fundamental mode-
locking, respectively, and two curves, SN, of saddle-node bifurcations
of periodic orbits, emerging from degenerate Hopf bifurcation points,
DH. (b) Intensity profile of the Q-switched periodic solution for values
of (Jg, Jq ) indicated by the red and black x’s, respectively, in (a).

single-mode case in Fig. 5, one finds a curve H of Hopf
bifurcation where the Q-switched pulsing periodic solution is
born, and a curve (SN) of saddle-node bifurcation of periodic
orbits emanating from a degenerate Hopf bifurcation point DH.
Compared to Fig. 5, an additional curve Hf is found, where the
fundamental mode-locked periodic solution is born: this is a
pulsing solution with a period close to the round-trip time τc

of the device [29].
Figure 12 also shows the intensity profile of the Q-switched

solution for two different sets of (Jg, Jq). Compared to the
case γ = 1, the pulse shape is not affected for low values
of Jq . On the other hand, it deforms when one approaches
curve Hf : one observes a multipulse profile with several
intensity peaks within one period. This strongly suggests that
the feedback-induced dynamics of the DDE MLL model can
still be represented accurately by the Yamada model for small
values of Jq , but no longer for larger absorption levels, close to
the second Hf curve on the (Jg, Jq ) plane. When the number of
modes γ is increased further, several additional curves of Hopf
bifurcation, associated with mode-locked regimes of higher
order (the so-called harmonic mode-locked regimes), move
toward smaller values of Jq on the (Jg, Jq ) plane. As a result,
from about γ = 10, the Yamada model cannot be considered
a valid representation of the DDE MLL model, neither for the
solitary laser nor for the system with feedback.

We remark that decreasing the filter width γ below 1 in the
DDE MLL model also induces a change in the pulse shape
of the Q-switched solution, which then differs significantly
from the one observed in the Yamada model. In that case,
the feedback-induced dynamics is similar to the case γ = 1
when the values of Jg and Jq are chosen such that the area
under the pulse (associated with the pulse energy) is kept
constant, although this corresponds to a different pulse width.
In this case, the dynamics of (3)–(5) in the plane of feedback
parameters can still be represented accurately by (1).

VI. CONCLUSIONS

The effect of optical self-feedback on the dynamics of self-
pulsing semiconductor lasers with gain and absorber sections
was investigated. We compared two modeling approaches,
the well-known Yamada model and the ring-cavity DDE
MLL model, and characterized their bifurcation structure. We
focused on the single-mode limit and on the Q-switching
dynamics, even though the DDE MLL model is designed to
describe the multimode effects of mode-locking.

Our results showed very good qualitative agreement be-
tween both modeling approaches over wide parameter regions.
The bifurcation structures in the plane of feedback parameters
show good qualitative and quantitative agreement as long as
the pulse width and pulse period of the Q-switched solution
are equal in both models without feedback. This is robust
with respect to changes in the parameters, suggesting that the
physical principles ruling the feedback-induced dynamics are
caught by the properties of the Q-switched pulsing solution.
The fact that the dynamics of the DDE MLL model is
represented accurately by the simpler Yamada model in the
single-mode limit is of practical interest, since this might
simplify considerably numerical and theoretical investigations
of self-pulsing lasers subject to delayed feedback.

Interestingly, these results are robust to a moderate increase
in the number of modes in the DDE MLL. However, when
the number of modes is too large, additional instabilities, in
particular, mode-locked solutions, emerge. The region of stable
Q-switched emission thus shrinks, and more complex pulse
shapes of the Q-switched emission are observed in the vicinity
of the new instabilities.
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APPENDIX: RELATIONSHIP BETWEEN THE
PARAMETERS OF THE DDE MLL AND

THE YAMADA MODELS

Starting from Eq. (7), which followed from the DDE MLL
model in the limit of small changes during one round-trip,
one can derive equations for the gain G and the absorption
Q, written in the same form as the Yamada model, (1). As
the first step, we rescale time to change from scaling with the
round-trip time τ̃c to scaling with the photon lifetime τ̃ph as in
the Yamada model; recalling that τc = 1, one obtains

˙̃G = τ̃ph

τ̃c

Jg − �GG̃(t ) − G̃(t )I (t )
τ̃ph

τ̃c

,

˙̃Q = τ̃ph

τ̃c

Jq − �QQ̃(t ) − rsQ̃(t )I (t )
τ̃ph

τ̃c

,

İ = τ̃ph

τ̃c

[
G̃(t ) − Q̃(t ) + ln(κ )

]
I (t ) + 2K̃

√
κ τ̃ph

τ̃c

I (t − τ ),

(A1)
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where the decay rates �G = γgτ̃ph/τ̃c and �Q = γq τ̃ph/τ̃c and
time are now scaled as in the Yamada equations. Factorizing
out �G and �Q, and defining I (t ) = τ̃phI (t )/(̃τc�G) as in [9]
and η = 2K̃

√
κτ̃ph/τ̃c, one obtains

˙̃G = �G

(
Jgτ̃ph

τ̃c�G

− G̃(t ) − G̃(t )I (t )

)
,

˙̃Q = �Q

(
Jq τ̃ph

τ̃c�Q

− Q̃(t ) − rs

�G

�Q

Q̃(t )I (t )

)
,

İ = τ̃phln(κ )

τ̃c

[
G̃(t )

ln(κ )
− Q̃(t )

ln(κ )
+ 1

]
I (t ) + ηI (t − τ ). (A2)

Redefining gain and absorption by G = G̃/ ln(κ ) and Q = Q̃/

ln(κ ), respectively, we arrive at

Ġ = �G

(
Jgτ̃ph

τ̃c ln(κ )�G

− G(t ) − G(t )I (t )

)
,

Q̇ = �Q

(
Jq τ̃ph

τ̃c ln(κ )�Q

− Q(t ) − aQ(t )I (t )

)
,

İ = τ̃ph ln(κ )

τ̃c

[G(t ) − Q(t ) + 1]I (t ) + ηI (t ). (A3)

Finally, defining

A = Jg

γg ln(κ )
= Jgτ̃ph

τ̃c�G ln(κ )
, B = Jq τ̃ph

τ̃c�Q ln(κ )
= Jq

γq ln(κ )
,

a = rs

γg

γq

= rs

�G

�Q

gives the Yamada model in the form of Eq. (1) and, thus,
a conversion between the pump parameters in both mod-
els. However, since the photon lifetime resulting from the
pure round-trip losses in the DDE MLL model [̃τph ∼
−τ̃c/ ln(κ ) = 5.8 ps] and the one including the filter-induced
losses [̃τ γ=1; κ=0.34

ph = 12.5 ps as given by Eq. (8)] differ, the
factor τ̃ph ln(κ )/τ̃c in the third equation can deviate from 1.
In our case of a small filter width γ = 1 this factor is 2.158.
This may be a reason why the dynamics observed after direct
conversion of the pump parameters does not match perfectly
between the Yamada and the DDE MLL model.
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