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Particle production in ultrastrong-coupling waveguide QED
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Understanding large-scale interacting quantum matter requires dealing with the huge number of quanta that
are produced by scattering even a few particles against a complex quantum object. Prominent examples are found
from high-energy cosmic ray showers, to the optical or electrical driving of degenerate Fermi gases. We tackle
this challenge in the context of many-body quantum optics, as motivated by the recent developments of circuit
quantum electrodynamics at ultrastrong coupling. The issue of particle production is addressed quantitatively
with a simple yet powerful concept rooted in the quantum superposition principle of multimode coherent states.
This key idea is illustrated by the study of multiphoton emission from a single two-level artificial atom coupled
to a high impedance waveguide, driven by a nearly monochromatic coherent tone. We find surprisingly that the
off-resonant inelastic emission line shape is dominated by broadband particle production, due to the large phase
space associated with contributions that do not conserve the number of excitations. Such frequency conversion
processes produce striking signatures in time correlation measurements, which can be tested experimentally in
quantum waveguides. These ideas open new directions for the simulation of a variety of physical systems, from
polaron dynamics in solids to complex superconducting quantum architectures.
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I. INTRODUCTION

Exploring the quantum world [1] is an ongoing quest fu-
eled by the search for fundamental understanding, which has
enabled the creation of unexpected technologies. The advent
of lasers and semiconducting microelectronics has indeed
crucially relied on building blocks that are determined at the
microscopic level by quantum effects. Whether intrinsically
quantum effects such as entanglement can provide further
practical scientific developments is at present intensely inves-
tigated. However, addressing increasingly complex quantum
systems is pushing the boundaries of what simulations can
cope with on present-day hardware, due to the exponential
complexity growth when working with states from the Hilbert
space. This question is certainly very acute when dealing with
the temporal driving of large-scale quantum circuits, which
can lead to a rapid proliferation of propagating quanta. How
to encode quantum information efficiently in such a situation,
using only available classical computers, is a very general
challenge in contemporary physics.

Because quantum many-body scattering is relevant for a
wide range of physical systems (solid-state materials, cold
atomic gases, high-energy collisions in particle accelerators),
fruitful concepts are best developed with the relevant physics
at hand. For this reason, we focus in this article on the
topic of many-body quantum optics, which combines discrete
atomic states (the scatterer) with broadband photonic fields
(leading to a huge Hilbert space of quanta). Historically, light-
matter interaction has been thoroughly studied in the regime
of standard quantum optics [2,3], where the combination of
small atomic dipoles and perturbative fine structure constant

αQED � 1/137 leads to small radiative corrections, such as the
famous Lamb shift at order [αQED]3 (in units of the atomic
frequencies). Quantum electrodynamics (QED) corrections
to the bare atom picture also control the natural linewidth
of atomic transitions [3,4] associated to vacuum fluctuations
of the electromagnetic field, occurring also at third order
in αQED. As a consequence, the electromagnetic modes that
may strongly interact with an atom are limited to those very
close to its resonance frequency. A variety of strategies are
being pursued in atomic quantum optics in order to enhance
the strength of light-matter coupling. First, there is extensive
work on confining light to a cavity in order to increase
the magnitude of the electric field [1,5,6]; however, in this
case, interesting effects involving a photon continuum are
discarded. Under strong pumping, multiphoton nonresonant
contributions can become sizable, but this suffers from the
same problem of rather limited bandwidth. Finally, several
strategies involving photonic crystals or Rydberg atoms are
being pursued in which a collective light-matter coupling is
made strong by using a large number of weakly coupled
components [7–10].

We wish to address, however, regimes where radiative
effects become of order 1 in a system with a single emitter
and a broad continuum of photonic modes, an area known
as ultra-strong-coupling waveguide quantum electrodynamics
(wQED). Access to this regime is becoming possible [11,12]
through circuit quantum electrodynamics in which artifi-
cial superconducting atoms interact on-chip with microwave
transmission lines (see Refs. [10,13] for general reviews
on the topic); in fact, in cavities, ultrastrong coupling has
been achieved in this system [14–19]. In ultrastrong wQED,

2469-9926/2018/98(4)/043816(17) 043816-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043816&domain=pdf&date_stamp=2018-10-08
https://doi.org/10.1103/PhysRevA.98.043816


NICOLAS GHEERAERT et al. PHYSICAL REVIEW A 98, 043816 (2018)

many-body phenomena are expected to occur that have no
counterpart in standard quantum optics [2,3] or in low-
coupling superconducting transmission lines [20–26]. A
nonexhaustive list of theoretical predictions includes giant
Lamb shifts [27–31], single-photon down conversion [32,33],
non-RWA transmission lineshapes [28,34,35], multimode en-
tanglement [36–38], and nonclassical emission [39]. The
key element in all of the novel many-body phenomena in
ultrastrong wQED is that the number of excitations is no
longer conserved because the rotating-wave approximation
is not legitimate anymore. It is worthwhile then to focus
directly on this nonconservation. We show here that a key
signature of scattering or excitation in the ultrastrong regime
is broadband photon production: A greater number of photons
come out than go in, even in the very low power single-photon
excitation regime.

In contrast to previous studies which focused on effects
that become prominent when the light-matter coupling α

reaches values of order one (the so-called Kondo regime),
we investigate here many-body effects that are realistically
observable when entering the ultra-strong-coupling regime,
with typically 0.1 � α � 0.3. These many-body effects are
nevertheless dramatic and have the additional advantage that
they may be probed experimentally in the very near future.
This regime is characterized by a qubit linewidth � that is
a sizable fraction of its resonance frequency �, owing to
the perturbative relation � � πα�. For α � 1, it is widely
believed in the quantum optics context that dominant physical
processes are well captured by the so-called rotating wave
approximation (RWA), upon which nonresonant transitions
are discarded from the outset. While it is true that RWA
provides quantitatively accurate results for the linear response
of an atom weakly coupled to a waveguide, we find that low-
power nonlinear scattering properties, however, are dominated
by non-RWA contributions, even for arbitrarily small coupling
in which the RWA is thought to become exact.

The scenario that we consider is shown in Fig. 1. A
right-going coherent state pulse is injected into a waveguide.
The waveguide and qubit are initially in their ground state,
implying that the qubit is nonperturbatively dressed by a
cloud of waveguide photons [37]. The incoming coherent state

k0

1/σ

n̄

x0

ΔR

IN OUT OUTCLOUD

FIG. 1. Illustration of the setup considered in this paper: a long
transmission waveguide (gray horizontal line) is side-coupled to a
two-level system, allowing the measurement of multiphoton scatter-
ing matrices in a typical two-terminal geometry from the reflection
and transmission (outgoing states with arrows pointing outward) of
a coherent state Gaussian wave packet (incoming state with arrow
pointing inward). A many-body polarization cloud lives in the central
region (tied to the qubit) [37]. Frequency-conversion processes are
extracted by a spectral and number state analysis of the outgoing
wave packets.

pulse then scatters from this dressed state, leading to outgoing
transmitted and reflected pulses that have acquired on general
grounds a many-body character [40].

Our goal here is twofold. First, we uncover new physical
effects in nonlinear many-body photon scattering by analyz-
ing the photonic content of nonresonant emission spectra.
One major observation is that significant nonlinear emission
arises from both RWA and non-RWA pathways. In light of
standard knowledge in quantum optics, it comes as a surprise
that non-RWA processes are found to dominate in magnitude
the RWA nonlinear response when off resonance. Indeed,
in the regime of ultrastrong coupling, the linewidth of the
qubit broadens substantially, leading to important nonresonant
inelastic contributions to the scattering cross section. Under
a drive that is detuned in frequency above the resonance
of the qubit, for instance, inelastic down-conversion occurs
by the “splitting” of an incoming photon into several lower
energy ones [32]. For larger power, there are similar processes
involving an increasing number of incoming photons, all of
which are described by counter-rotating terms. These pro-
cesses are favored by a wide continuum of available outgoing
multiphoton states. The surprising dominance of non-RWA
processes can thus be interpreted as a consequence of the
larger phase space of outgoing states for particle production.

Another dramatic many-body effect is uncovered by study-
ing the correlations in time. We find that ultrastrong coupling
leads to striking qualitative signatures in the photon statis-
tics of a single emitter, namely incomplete antibunching on
resonance at zero time delay and strong bunching at finite
delay, that are very prominent in the off-resonant case. These
previously unrecognized features are quantitatively different
from RWA results and constitute important signatures of
particle production from an experimental point of view. A
further indication of interesting many-body effects is that
perturbative expansions for the elastic and inelastic emission
spectra cannot be captured quantitatively.

Our second objective is to provide a general and pow-
erful simulation toolbox to access the nonlinear and inelas-
tic processes involved to any order in the incoming beam
power. This methodology relies on an expansion of the full
many-body wave function (qubit + waveguide) in terms of
multimode coherent states, using quantum superpositions of
several classical-like configurations. It was introduced re-
cently as a numerically controlled technique to capture the
ground state [30,36] or quenched dynamics [39] in ultrastrong
coupling wQED. Two original developments are made in the
present paper. First, a new and more numerically efficient
algorithm is proposed, which allows for the first time to tackle
in a controlled way the many-body dynamics in waveguides
composed of several thousands of modes. Second, we develop
a many-body scattering protocol that can be used to simulate
realistic scattering setups, as shown in Fig. 1, allowing us
to deal with the challenging problem of many-body parti-
cle production in quantum optics. The resulting multipho-
ton emission processes in the output field are characterized
precisely. Despite the coupling being weak to intermediate
in magnitude, non-RWA contributions to these multiphoton
processes open the door to a tremendously large Hilbert
space. Typically our calculations manage up to five photons in
the outgoing beam, which, for a long waveguide accounting
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for about 1000 environmental modes, leads to an effective
Hilbert space of order 1015 � 250. It is quite remarkable that
a quantum superposition of classical-like multimode coherent
states can be harnessed as an efficient computing resource to
address quantum many-body problems that are currently well
beyond the reach of any brute force numerical method.

Regarding waveguides, several strategies are possible in
order to bring these systems into a truly many-body territory,
such as using the inductive coupling of a flux qubit to a
low-impedance coplanar waveguide transmission line [11,41],
or tailoring a chargelike qubit with a capacitive coupling to a
high-impedance metamaterial [28,32,37]. For this latter pur-
pose, long chains of Josephson junctions [42–45] constitute a
promising platform that is currently under investigation [12]
in the context of multimode ultra-strong-coupling quantum
optics. In any case, it remains challenging at present to control
experimentally a strongly nonlinear element constituting a
true two-level system (such as the Cooper pair box or a
flux qubit) that is also very well coupled to a designed
environment, because nonlinearity brings a high sensitivity to
external noise sources. Designs based on a weakly nonlinear
qubit, such as a transmon [46] ultrastrongly coupled to a
waveguide [12,47] could offer an interesting alternative for
high-precision measurements, at the expense, however, of
weakening the sought-after nonlinear effects.

The paper is organized as follows. We first review in Sec. II
the basic model of waveguide quantum electrodynamics and
develop a general many-body wave-function approach for the
study of inelastic photon emission by a single two-level sys-
tem. Section III presents detailed inelastic emission spectra,
in connection with the relevant physical processes. Section IV
provides a comparison to standard results in quantum optics,
based on the RWA, which can only account for processes in
which two input photons are inelastically scattered, keeping
the number of outgoing photons equal to two. This section
closes with a discussion of the temporal correlations of the
emitted light, showing several qualitative features of ultra-
strong coupling. Finally, the perspectives section, Sec. V,
discusses prospects for experimental measurements of these
effects in superconducting circuits and the need for develop-
ing further our theoretical tools in order to capture realistic
aspects of Josephson waveguides beyond the spin-boson limit.
Appendixes contain technical derivations that should make
the manuscript self-contained and present details on the new
algorithm proposed in this work.

II. MANY-BODY COHERENT STATE
SCATTERING FORMALISM

A. Modeling a two-level system coupled to a waveguide

The main assumption that will be made in this study is the
restriction of the atom to a perfect two-level system. This hy-
pothesis is perfectly legitimate for strongly nonlinear qubits,
such as the Cooper pair box or the flux qubit [11,20,48,49],
although these devices typically experience more strongly
charge or flux noise compared to a transmon qubit (which
is, however, weakly nonlinear). Focusing on a two-level sys-
tem aims to capture the maximum inelastic scattering cross
sections, due to its intrinsically high nonlinearity. It is thus

an excellent test bed to examine physics that is already quite
rich and to develop state-of-the-art methodologies in the most
challenging situation from a computational point of view.
Following this path, a qubit coupled to a full one-dimensional
waveguide is quite generically expressed by the so-called
spin-boson Hamiltonian (setting h̄ to unity):

H = �

2
σx − σz

2

∑
k∈R

gfull
k (ak + a

†
k ) +

∑
k∈R

ωka
†
kak , (1)

with � the bare splitting of the qubit levels. We stress that
we do not work in the qubit eigenbasis here, but rather in a
basis that makes the qubit-waveguide coupling diagonal, as
described by the σz term above (this corresponds, for instance,
to the charge basis for a Cooper pair box that is capacitively
coupled to a waveguide). This choice allows a natural descrip-
tion of the driving force behind the entanglement between
the qubit and the waveguide and sets the natural language
for our numerical technique based on coherent states. The
momentum dependence of the coupling constant gfull

k to mode
a
†
k of the full waveguide depends on the device geometry

and its physical parameters, such as interisland capacitances,
ground capacitances, and interisland Josephson energy. In the
case where the waveguide is constructed from a Josephson
junction array, Refs. [32,37,50] proposed explicit microscopic
derivations of the coupling constants based on rather different
designs. Similarly, the momentum dispersion of the eigen-
frequencies ωk of the photonic modes is determined by the
microscopic details of the waveguide.

In what follows, we will consider for simplicity a linear
dispersion relation given by ωk = |k| (taking the speed of light
in the metamaterial c = 1) and a simple parametrization of the
coupling constant. For this purpose, and in order to simplify
the problem, we start by folding the bosonic modes of the
full waveguide onto a half-line and by defining even and odd
modes:

ae
k = 1√

2
(ak + a−k ) and ao

k = 1√
2

(ak − a−k ), (2)

so that the Hamiltonian (1) can be rewritten as

H = �

2
σx − σz

2

∑
k>0

gk

(
a

e

k + a
e†
k

)

+
∑
k>0

ωk

[
a

e†
k a

e

k + a
o†
k a

o

k

]
, (3)

with the coupling constant to the even modes, gk = √
2gfull

k .
We choose a parametrization of the effective coupling con-
stant gk given by the following spectral function:

J (ω) =
∑
k>0

πg2
k δ(ω − ωk ) = 2πα ω e−ω/ωc . (4)

This form of spectral function, although not completely
generic, contains the main realistic ingredients of the qubit-
waveguide interaction, such as a linear Ohmic frequency
dependence at low energy, and a rapid falloff near the plasma
edge ωc, that we assume to be exponential in form. For
a discretized momentum grid, we deduce that the coupling
constant gk to even modes reads

gk =
√

2 α ωk δk e−ωk/ωc , (5)
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where δk is the wave-number spacing corresponding to the
discretization of the continuous momentum integral.

In the form of Hamiltonian (3), only the even modes are
interacting with the qubit, while the odd modes are freely
propagating. This allows us to write the state vector |ψ〉 as
the direct product of the even sector |ψe〉 and the odd sector
|ψo〉,

|ψ〉 = |ψe〉e ⊗ |ψo〉o = |ψe〉e |ψo〉o , (6)

provided the initial state can be decomposed accordingly. The
dynamics in the odd sector is essentially trivial, while many-
body effects have to be considered to capture the dynamics in
the even sector, a topic that we address now.

B. Many-body quantum dynamics
with multimode coherent states

The rationale behind the multimode coherent state (MCS)
expansion is as follows. The only source of nonlinearity in
Hamiltonian (3) is the two-level system, and this nonlinearity
is transferred from a single degree of freedom (the qubit)
to a large number of degrees of freedom (the modes of the
waveguide). A first effect of this coupling is to dress the two
qubit states by displacing the oscillators, as is clear from the
σz term in Eq. (3). This picture, which is only approximate
when a single coherent state displacement is used, becomes
quantitavely exact for the many-body ground state when
superposing a small set of coherent states [36]. Regarding the
quantum dynamics, an input coherent state (as is relevant in
our description of the scattering problem) remains stable only
when turning the coupling to zero (classical-like propagation).
At finite coupling, quantum fluctuations of the output field
around the dominant classical trajectory are again accounted
for by the superposition of additional Gaussian states. The
strategy is thus to write the state vector in the even sector as a
coherent state expansion, also referred to in the following as
the multimode coherent state (MCS) ansatz [30,36,51]:

|�e(t )〉 =
Ncs∑
m=1

[pm(t )|fm(t )〉| ↑〉 + qm(t )|hm(t )〉| ↓〉], (7)

where we have introduced the complex and time-dependent
amplitudes pm(t ) and qm(t ) for each qubit component, with m

an index that labels the states used in the superposition. These
multimode coherent states also occur as two discrete sets of
states (one for each qubit component):

|fm(t )〉 =
Nmodes∏
k=1

e[fk,m(t )ae†
k −f ∗

k,m(t )ae

k ]|0〉 (8)

and similar for |hm(t )〉. Because of the completeness of the
coherent state basis on a discrete von Neumann lattice [52],
which naturally extends to the case of many modes, this
discrete decomposition can target in principle an arbitrary
state of the full Hilbert space for Ncs → ∞. However, for
a fixed choice of Gaussian states, this leads to the unfath-
omable exponential cost that is typical of many-body quan-
tum mechanics. The advantage of the MCS ansatz (7) lies
in the variationally optimized time-dependent displacements
fk,m(t ), which allows one to track with high precision and low
numerical cost the dynamics of the full state vector.

What is truly remarkable about such a multicomponent
multimode wave function is the relatively small number of
coherent states Ncs that are necessary to capture both the
static many-body ground state [36] and the complex dynamics
resulting from quantum quenches [39], even deep in the
ultrastrong coupling regime. The method works efficiently
from the case of single-mode cavities [53–55] up to the chal-
lenging situation of an infinite continuum [51]. As we will see
later, addressing frequency conversion brings an additional
difficulty in that nonlinear emission signals are extremely faint
when driving off resonance compared to the dominant elastic
contributions, which requires very careful convergence of the
numerics.

In principle, the exact Schrödinger dynamics, controlled by
the Hamiltonian (3), can be derived from the real Lagrangian
density,

L = 〈�(t )| i
2
−→
∂t − i

2
←−
∂t − H|�(t )〉, (9)

by applying the time-dependent variational principle [56],
δ
∫

dtL = 0, upon arbitrary variations of the state vector (7)
with respect to its set of variational parameters. This mini-
mization obviously provides Euler-Lagrange equations

d

dt

∂L
∂v̇

= ∂L
∂v

(10)

for the set of variables v = {pm, qm, fk,m, hk,m}, which can be
solved by numerical integration [34,39,57–59]. The detailed
form of the dynamical equations is provided in Appendix A 1.
A numerical algorithm which supersedes the one proposed in
Ref. [39] and allows us to deal with up to thousands of modes
is presented in Appendix A 2.

C. General coherent state scattering formalism

Now that we have obtained exact dynamical equations for
the time evolution under the spin-boson Hamiltonian (1), we
need to prepare our initial state in order to perform scattering
simulations according to the scheme in Fig. 1. The generic
difficulty is that the qubit is dressed nonperturbatively by a
cloud of photons [27,29,31,33,36,37] in the ultrastrong cou-
pling regime, so that this ground state assumes a many-body
character. Thanks to the MCS ansatz introduced in Eq. (7), we
can efficiently express the static ground state of the joint qubit
and waveguide system in terms of multimode coherent states:

|�GS〉 =
NGS

cs∑
m=1

pGS
m

[∣∣f GS
m

〉
e
| ↑〉 − ∣∣ − f GS

m

〉
e
| ↓〉]|0〉o, (11)

where we enforced the Z2 spin symmetry of the spin-boson
Hamiltonian (3) to simplify the expression. We have also used
the fact that the odd modes do not interact with the qubit, so
that the ground-state displacements include only even modes
in Eq. (11), and the odd modes are placed in the vacuum state.

By implementing numerically a variational optimization
[30,36], one can determine the set of weights pGS

m and dis-
placements f GS

k,m and thus obtain a nearly exact result for the
ground state up to negligible numerical error. Conveniently,
only a small number of coherent states NGS

cs , typically less
than 10, are required in the realistic domain of parameters of
the spin-boson model.
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The second step in the scattering picture of Fig. 1 is to
include a wave packet (with arrow pointing inward) impinging
on the dressed ground state. We will work in what follows
with a single coherent state pulse as input, which is realistic
in terms of the classical sources used in actual experiments.
Let us denote zk as the displacement of the incoming wave
packet in mode k of the physical waveguide and zx its Fourier
transform to real space:

zx =
∫ ∞

−∞

dk√
2π

e+ikxzk. (12)

We choose to use here a Gaussian-shaped wave packet

zk = √
n̄

(
1

2πσ 2

) 1
4

e
− (k−k0 )2

4σ2 e−i(k−k0 )x0e−ik0x0/2, (13)

corresponding to a signal initially centered around position
x0 in the waveguide, with mean wave number k0, spatial
extent 1/σ , and total intensity corresponding to n̄ photons
on average, as illustrated on Fig. 1. The associated real-space
wave packet is then

zx = √
n̄

(
2σ 2

π

) 1
4

e−(x−x0 )2σ 2
e+ik0(x−x0 )e+ik0x0/2. (14)

Note that these amplitudes are both normalized so that∫ ∞
−∞ dx|zx |2 = ∫ ∞

−∞ dk|zk|2 = n̄.
The even and odd parts of the incoming wave packet are

then defined strictly for k > 0 as

ze
k = 1√

2
(zk + z−k ) and zo

k = 1√
2

(zk − z−k ). (15)

Since even and odd modes commute, we can then define
a displacement operator D(z) for the initial incoming wave
packet which verifies

|ze, zo〉 = D(z) |0〉 = D(ze )D(zo) |0〉
= e

∑
k>0(ze

ka
e†
k −ze∗

k ae
k )e

∑
k>0(zo

ka
o†
k −zo∗

k ao
k ) |0〉 . (16)

The final step in the initialization of the state vector is to
combine the incoming wave packet coherent state zk with the
displacements entering the full many-body ground state (11).
Straightforward calculations, shown in Appendix A 3, lead to
the following explicit expression for the input state:

|�IN〉 =
NGS

cs∑
m=1

pGS
m

[ |↑〉 e
1
2

∑
k>0 (ze

kf
GS∗
k,m −ze∗

k f GS
k,m)

× e
∑

k>0[(f GS
k,m+ze

k )a
e†
k −(f GS

k,m+ze
k )

∗
ae

k ]

− |↓〉 e
1
2

∑
k>0 (−ze

kf
GS∗
k,m +ze∗

k f GS
k,m)

× e
∑

k>0

[
(−f GS

k,m+ze
k )a

e†
k −(−f GS

k,m+ze
k )

∗
ae

k

]] |0〉e |zo〉o . (17)

The many-body scattering theory thus amounts to using
state (17) as the initial condition for the dynamical equations
of motion (10) performed in the even sector; see Eqs. (A1) and
(A2) for their full explicit form. During the dynamics, as the
incoming wave packet impinges on the qubit, the necessary
number of coherent states Ncs will sensibly grow from the
initial value NGS

cs due to nonclassical emission, therefore
requiring us to add extra coherent states to the state vector

when needed (the procedure is detailed in Appendix A 5).
In the odd sector, which is completely decoupled from the
qubit, the related displacements are trivially evolving in time
according to iżo

k = ωkz
o
k , and a single coherent state is enough

for the whole time evolution.
After a given time T long enough to ensure interaction of

the wave packet with the qubit and subsequent decoupling of
the two outgoing wave packets from the many-body cloud sur-
rounding the qubit (in the reflection and transmission channel
of the full 1D waveguide), one expects on general grounds
(since the spin-boson model is nonintegrable with a realistic
dispersion) a factorization of the final wave function as

|�(T )〉 = |�GS〉 ⊗ |�OUT〉 , (18)

where |�GS〉 is the many-body ground state of the spin-boson
model and |�OUT〉 a many-body outgoing wave packet that
contains a nontrivial decomposition of the emitted signal
in terms of a large number of multimode coherent states
(typically NOUT

cs ∼ 20–30):

|�OUT〉 =
NOUT

cs∑
m=1

pOUT
m

Nmodes∏
k=1

e[f OUT
k,m a

e†
k −f OUT∗

k,m a
e

k ]|0〉. (19)

The extraction procedure for the outgoing weights pOUT
m and

displacements f OUT
k,m is given in Appendix A 3. The factor-

ization property (18) occurs because the spin-boson model
(with a macroscopic number of modes) is a truly dissipative
system, always showing a path for relaxation. In practice, this
hypothesis can be checked from the numerical calculations by
observing that the dressed qubit does not show correlations
with the outgoing photons. Indeed, any observable of the qubit
relaxes back to its initial equilibrium value at the end of the
scattering protocol. Also, the nature of the scattered photons
does not depend on how one traces out the qubit density
matrix. We now proceed to the analysis of the transmission
and spectral properties of this scattered many-body wave
packet.

III. MULTIPHOTON INELASTIC SCATTERING

A. Elastic emission and high power saturation

As a first illustration for our dynamical many-body scatter-
ing method, we investigate the elastic reflection as a function
of the frequency and power of the incoming signal. This
problem is particularly challenging because of the combina-
tion of nonperturbative ultrastrong coupling with nonequi-
librium effects that arise at finite input power. Ultrastrong
coupling scattering at nonvanishing power has been addressed
previously with approximate techniques [28,34,35,49] and
with more advanced numerical methods [29,33]. However,
systematic extraction of many-body scattering matrices has
not been performed to our knowledge.

Our calculation scheme proceeds similarly to an exper-
imental setup: the incoming Gaussian coherent-state wave
packet, shown schematically as the incoming distribution of
photons in real space in Fig. 1, is initialized to the left of the
qubit. The qubit is placed at position x = 0 as seen from its
sharply decreasing photonic cloud [37] which is present in
both the input and output ports but remains statically bound
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to the central impurity. After propagation toward the qubit
and subsequent interaction, the photon flux decouples at long
times and is separated into a reflected left-going (k < 0) signal
and a transmitted right-going (k > 0) signal, both shown with
arrows pointing outward in Fig. 1. Note that in all the simu-
lations made in this paper, we have considered the linewidth
σ of the wave packet in k space to be smaller than the qubit
linewidth � (in order to achieve high spectroscopic resolution)
but large enough to keep the simulations on a reasonable
system size (typically we consider from Nmodes = 1000 to
Nmodes = 3000 modes for the chain used in the even sector).
All calculations are done in the units of the plasma frequency
ωc as defined in the spectral density (4), and the wave-packet
linewidth appearing in Eq. (13) is taken as σ = 0.005ωc,
unless indicated otherwise.

We define the reflection and transmission coefficients in the
following way:

T =
∑

k>0 〈a†
kak 〉out∑

k>0 〈a†
kak 〉in

and R =
∑

k<0 〈a†
kak 〉out∑

k>0 〈a†
kak 〉in

, (20)

where we have denoted 〈· · ·〉in as the average over the state
vector corresponding to the coherent incoming wave packet
before scattering and 〈· · ·〉out as the average over the many-
body outgoing wave packet after scattering. Both are obtained
from the full state vector (19) by simply filtering out in real
space the polarization cloud associated with the ground state,
as explained in Appendix A 3.

Results for different values of the incoming power are
shown in Fig. 2. The probability of reflection generally in-
creases on resonance; indeed, for elastically scattered pho-
tons, interference effects cause almost complete reflection
when exactly on resonance. For small values of the incoming
power (n̄ = 0.01 and n̄ = 0.1), for which the initial coherent
state wave packet has a very small probability of contain-
ing Fock states with more than one photon, one can note

FIG. 2. Saturation effects in the reflection coefficient Eq. (20)
as a function of incoming wave vector k0, for three different am-
plitudes n̄ = 0.01, 0.1, 2.0 of the input, with a wave packet width
σ = 0.005ωc. These curves correspond to converged numerical data
with up to Ncs = 16 coherent states in the MCS wave function (7).
The bare qubit frequency is � = 0.1ωc and the dimensionless light-
matter interaction is α = 0.1, leading to a sizable renormalized qubit
frequency �R � 0.08ωc.

that the reflection only reaches R � 0.9 at peak value. This
incomplete reflection of the photons arises from the finite
linewidth of the incoming wave packet and not from inelastic
losses. Since our incoming Gaussian pulse is not perfectly
monochromatic, the modes at the edge of a resonant incoming
beam (centered at k0 = �R) are slightly off-resonant and do
not get fully reflected by the qubit. Even in the present case of
a relatively small light matter coupling α = 0.1, many-body
effects due to the ultrastrong coupling are apparent in the
reflection curve of Fig. 2. First, a non-Lorentzian asymmetric
line shape is obtained, with a high-energy tail more prominent
than at low energy. In addition, we clearly observe a substan-
tial renormalization of the qubit frequency �R � 0.08ωc from
its bare value � = 0.1ωc.

For higher incoming power, one physically expects satu-
ration effects to take place, and these are clearly evidenced
by the curve with average number of photons n̄ = 2.0 in
Fig. 2. We stress that converging such computations in the
high-power regime is quite challenging, and approximate
techniques such as a single coherent state truncation lead to
uncontrollable noise levels, as found in previous work [34].
We show in detail in Appendix A 4 that the reflection curve
converges smoothly at n̄ = 2.0 for about Ncs = 16 coherent
states in the MCS state vector (7). This is also confirmed
by a systematic control of the error, as done previously for
quantum quench protocols [39].

B. Off-resonant frequency-conversion spectra

We now turn to analyzing the emitted radiation in the off-
resonant case, in which the system is excited at a frequency
k0 above the renormalized qubit transition frequency �R . A
typical inelastic spectrum is shown in Fig. 3, here for k0 =
0.16ωc, �R = 0.08ωc, and an injected n̄ of 0.5. The stronger
transmission relative to reflection (upper panel) simply re-
flects the off-resonant situation k0 ≈ 2�R , in agreement with
the reflection curve in Fig. 2. The vertical scale is expanded
in the lower panel, so that the inelastic contributions are made
apparent at the foot of the large reflection and transmission
elastic peaks located at ±k0. Note that the actual linewidth of
this elastic peak, set by σ = 0.005ωc, is in fact much smaller
than what the lower panel seems to indicate, because the
maximum peak amplitude is 2000 times higher that the scale
of the graph. The gray-shaded curve displays the expectation
value of the total number of outgoing photons 〈a†

kak 〉out
while the dashed line indicates the total number of incoming
photons 〈a†

kak 〉in centered around k0. The first striking result
is the broad spectrum of emission extending from the qubit
frequency �R all the way down to k = 0.

The full lines display how the total outgoing photon con-
tribution is distributed among different Fock states |N〉 with
photon number N = 2, 3, 4, allowing us to assess the nature
of particle production. Our method to obtain these photon-
number-resolved amplitudes by considering the probability
of all the possible single- and multiphoton states for a given
momentum k is explained in Appendix A 6. Note that the ma-
jority of the inelastic emission involves three- and four-photon
contributions. Since the incoming average photon number is
only 0.5, clearly substantial particle production is occurring.
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FIG. 3. Mean density of photons at momentum k in the outgoing
wave packet (the incoming wave packet is displayed as a dashed
line); bottom panel is an enlargement of the top panel. The total
outgoing signal (gray shaded) is decomposed into Fock resolved
excitations (in full lines) with N = 2 (bottom curve), N = 3 (top
curve), and N = 4 (middle curve) photons, in order to highlight
the processes of Fig. 4. The parameters for this simulation are
the incoming wave-packet wave number k0 = 0.16ωc and linewidth
σ = 0.005ωc, the mean photon number n̄ = 0.5, the qubit bare
energy � = 0.1ωc, and the coupling strength α = 0.1. Simulations
were performed by considering a wave function containing Ncs = 30
coherent states and Nmodes = 1200 modes.

Both the broad inelastic spectrum and particle production are
quintessentially ultrastrong coupling phenomena.

For an initial understanding of the various contributions to
this spectrum, we consider a schematic diagrammatic pertur-
bation theory as shown in Fig. 4. For two incoming photons,
an inelastic RWA process can occur by distributing the total
incoming energy 2k0 into a resonant photon at �R and another
at 2k0 − �R as shown in Fig. 4(a). However, for a single
incoming photon with momentum k0, since the emission is
still maximum at the (renormalized) resonant qubit frequency
�R , an excess energy of k0 − �R must be distributed between
two extra outgoing photons (in order to properly relax to the
ground state). The accessible nonresonant states thus lead
to the non-RWA three-photon emission process shown in
Fig. 4(b). In general, the two extra photons that are produced
are not resonant, and the amplitude of the total process is siz-
able only because of the ultrastrong coupling regime. Indeed,
the elastic reflection curve of Fig. 2 is spectrally very broad,
and emission does not necessarily occur strictly on resonance.

The non-RWA nature of the particle production process is
obvious from the nonconservation of excitations: the middle
outgoing arrow in Fig. 4(b) corresponds to the emission of a
photon upon excitation of the two-level system (instead of the
usual de-excitation). Four-photon production is also displayed
in Fig. 4(c) for an input state with two photons. In this case,

k0

|g
|g

|e
ΔR

k0 k0
|e|g

|g
|g

|g
k0 k0

k0
|g

(a)

(b)

(c)

|e |e

|g|g |e|e|e

|g

2k0−ΔR

RWA

beyond 
RWA

beyond 
RWA

k1 k2 k0−k1−k2

k1 k2 k0−k1−k2

k3

k3

FIG. 4. Diagrammatic representation of some nonlinear photon
processes occurring during scattering onto a two-level system. Panel
(a) is a RWA frequency exchange process restricted at the two photon
level, which shows two sharp emission lines at �R and 2k0 − �R

(due to energy conservation). Panel (b) shows the non-RWA one-
photon to three-photon conversion [32], which leads to a broad
emission continuum, sharply peaked at the resonance �R in the case
of an off-resonant drive. Panel (c) is a similar particle producing
process, now with two input photons, one being down converted to
three photons and the other being elastically scattered.

one input photon is elastically scattered at k0, while the second
input photon splits into three photons similar to the process
in Fig. 4(b). Since the RWA 2 → 2 process in Fig. 4(a) and
the non-RWA 2 → 4 process in Fig. 4(c) come at the same
order in the input power, they can be used to directly compare
the relative strength of RWA and non-RWA processes. All
three processes of Fig. 4 are clearly observed in the spectrum
shown in Fig. 3, as the emission amplitude is decomposed into
photon number states N = 2, 3, 4. In view of the wide use
of the RWA in the quantum optics context, the main surprise
in these results (to be discussed in more detail below) is that
non-RWA processes strongly dominate in amplitude the RWA
processes.

Some of the off-resonant processes were previously pre-
dicted perturbatively by Goldstein et al. [32] in the α → 0
limit and at the Toulouse limit, and we are able to characterize
quantitatively the nonlinear emission for the first time at finite
α values, as seen in Fig. 5. The main effect brought by stronger
coupling is a further renormalization of the spontaneous emis-
sion line �R down to lower values, as well as a global increase
of the probability for inelastic conversion. Interestingly, we
find that the perturbative formula (B1) cannot quantitatively
describe our data anymore in this regime, even when allowing
to fit the inelastic linewidth. Perturbation theory thus fails
to capture the pileup of low-energy photons found in the
numerical simulations, which signals the approach to the
incoherent Kondo regime, in which the qubit resonance is
fully washed out. A detailed study of nonlinear spectra as a
function of incoming momentum is given in Appendix B 1.

C. Particle production processes

We now investigate more precisely the photonic content of
the emitted radiation in the inelastic channel. Let us start with
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FIG. 5. Frequency conversion spectrum by going deeper in
the ultra-strong-coupling regime (α = 0.1, 0.2, 0.3, bottom to top
curves) for an off-resonant incoming wave vector k0 = 0.2ωc. Pa-
rameters are otherwise taken as in Fig. 3. Although the resonance
frequency �R and inelastic linewidth γ inel

R were fitted, one observes
increasing deviations to the fitting formula (B1) at larger α. Enhanced
scattering of low-energy modes, precursor of the Kondo regime,
originate from nonperturbative many-body corrections beyond the
lowest order perturbation theory of Ref. [32].

the two-photon particle-conserving RWA contribution (bot-
tom full line N = 2 in Fig. 3) forming two lobes symmetri-
cally arranged around the main elastic peak (at k0 = 0.16ωc).
The lowest energy lobe is centered around k � 0.08ωc � �R

corresponding to the spontaneous re-emission of the qubit,
while the high-energy lobe is located around k � 0.24ωc �
2k0 − �R , as expected from energy conservation [Fig. 4(a)].
A closer view into this two-photon joint emission process
is given by the complete two-photon probability distribu-
tion |αk1 k2 |2 that is plotted in the top panel of Fig. 6 (see
Appendix A 6 for details). The main two-photon elastic peaks
are the white disks located at [±k0,±k0] that have been cut off
in order to magnify the small inelastic contributions. From the
lateral inelastic peaks, one can immediately read off the two-
photon frequency conversion process in which two photons
with energy k0 redistribute their energy into one photon with
momentum �R and another with energy 2k0 − �R .

The inelastic spectrum originating from the conversion of
a single incoming photon into three outgoing photons, with
probability 〈nk〉3photon of measuring one of these photons at
energy k, is represented by the middle full line in Fig. 3.
This inelastic line shape presents quite unusual features: a
sharp resonance at the qubit frequency �R , a broad continuum
extending from zero energy up to the foot of the elastic peak,
and a small lobe at the same energy 2k0 − �R as the previous
two-photon conversion process. The latter is easily understood
as an input of three photons with momentum k0, out of which
one photon is elastically scattered, while the other two are
RWA frequency converted to �R and 2k0 − �R (similar to
the previous 2 → 2 RWA process). We have checked that this
3 → 3 RWA process becomes relatively weaker in amplitude
as the input power n̄ is turned down, and is indeed associated
to a three-photon input.

The broad low-energy continuum is readily explained by
the one-photon to three-photon non-RWA conversion process
shown in Fig. 4(b). This interpretation is backed up by study-
ing in the right panel of Fig. 6 the probability distribution
|αk1k2k3=�R

|2 of three-photon outgoing states for which one of
the three outgoing modes is resonant, k3 = �R . To understand
this diamond-shaped pattern, one can observe that the process
leading to the diagonal line in the top-left quadrant can easily
be parametrized as

|k0〉 → |�R〉 |�〉 |k0 − �R − �〉 with � ∈ [0 : k0 − �R],

which basically expresses the conservation of energy between
the input and the output. Note that in the on-resonant situation
(or for a drive at frequency below �R), all emitted photons
present energies below the qubit frequency.

The next section investigates how the complete inelastic
emission spectra compare with the standard RWA prediction
in quantum optics. This comparison will provide not only
a benchmark of our simulations, but also several physical
signatures that cannot be captured without the inclusion of
particle production processes.

IV. SUCCESS AND FAILURE OF THE RWA
FOR NONLINEAR EMISSION

A. RWA inelastic conversion

To highlight particle production that arises at ultrastrong
coupling, we now compare our MCS simulations to a direct
treatment within the RWA, an approximation which conserves
the number of excitations. Transport under the RWA is ob-
tained in the framework of input-output theory. Within the
RWA, it is convenient to work in the basis that diagonalizes
the qubit. After applying the rotating-wave approximation to
the Hamiltonian (1) and assuming a frequency-independent
coupling constant gk = √

α�R , one finds that the system is
described by the Hamiltonian

H = 1

2
�σ z +

∫
dω

g

2
[σ+(rω + lω ) + H.c.]

+
∫

dω ω(r†ωrω − l†ωlω ), (21)

where σ+ is the raising operator of the qubit and rω(lω )
is the annihilation operator for the right-going (left-going)
mode of frequency ω. We adapt standard input-output the-
ory for a monochromatic input [60–63] to our case of an
incoming wave packet with finite energy resolution. The
input-output relation remains the usual one, rout(t ) = rin(t ) −
i
√

π/2 g σ−(t ) and similarly for the left-going field lin/out.
This allows one to find the properties of the outgoing field
from a master equation for the qubit. In this way, the power
spectrum is calculated through the first-order correlation func-
tion G(1)(t1, t2) = 〈a†

out(t1)aout(t2)〉 by a Fourier transform

S[ω] = 1

2π

∫ T

0
dt1

∫ T

0
dt2 G(1)(t1, t2)eiω(t2−t1 ). (22)

We assume that the qubit is located at x = 0 while the
input and output ends are located at x = −T/2 and T/2
respectively (c = 1). From the definition (13), we can write
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1×10−3

2k0 − ΔR

ΔR

FIG. 6. Left panel: probability distribution of the two-photon states |αk1,k2 |2/dk2 corresponding to the two-photon curve in Fig. 3. The clear
inelastic sidebands correspond to frequency exchange between two photons. Right panel: probability density distribution |αk1,k2,k3=�R

|2/dk3

of the three-photon states in which one photon is at the resonance frequency k3 ≈ �R , corresponding to the three-photon curve in Fig. 3. The
emission continuum associated to particle production is revealed by the diamond-shaped line.

the wave packet in frequency as

z(ω) = √
n̄

(
1

2πσ 2

) 1
4

e
− (ω−k0 )2

4σ2 ei(ω−k0 )T/2, (23)

through which the input coherent state is defined as |z+〉 =
exp [

∫
dk z(ω) r

†
in(ω) − H.c.] |0〉, where r

†
in(ω) is the stan-

dard monochromatic input operator [60–63] of input-output
theory. The input operator describing our wave packet then
satisfies

rin(t ) |z+〉 = 1√
2π

A(t )e−ik0t |z+〉 and lin(t ) |z+〉 = 0, (24)

where A(t ) = Ãe−σ 2(t−T/2)2
with Ã = √

2n̄σ (2π )1/4 is the
change of driving amplitude on the qubit with time as the
Gaussian wave packet passes by.

A master equation for the qubit density matrix ρs is then
obtained by transforming to the Schrödinger picture,

∂

∂t
ρs = −i

[
δ

2
σ z + gA(t )σ+ + H.c. , ρs

]

+πg2

(
σ−ρsσ+ − 1

2
{ρs, σ+σ−}

)
, (25)

where a rotating frame given by k0σ
z/2 has been used. Note

that decay rate is � = πg2 = πα�R. For the reflected light,
the power spectrum can be shown to be

SL[ω] = g2
∫ T

0
dt

∫ T −t

−t

dτ 〈σ+(t )σ−(t + τ )〉 ei(ω−k0 )τ ;

(26)

two additional interference terms appear in the power spec-
trum for the transmitted light and are not given here. The de-
sired correlation function 〈σ+(t )σ−(t + τ )〉 can be calculated
through the master equation (25) and the quantum regression
theorem [64].

Comparisons to the RWA power spectrum in the off-
resonant and resonant cases are shown in the upper and lower
panels of Fig. 7 respectively. In making this comparison, we

used as input to the RWA calculation the numerically found
renormalized level spacing and width, �R and �R = πα�R ,
as this is essential to get the elastic peak correctly. The domi-

FIG. 7. Comparison of MCS simulations to RWA input-output
theory with regard to frequency conversion spectra for the off-
resonant case (upper panel) and on-resonant case (lower panel). The
parameters are the same as in Figs. 3 and 12. This confirms the
previous interpretation that RWA inelastic processes dominate only
on resonance and miss the main contributions to the off-resonant
signal.
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nant inelastic process within the RWA is the scattering of two
incoming photons into two outgoing photons; see Fig. 4(a).
One sees that this process explains most of the total scattered
spectrum in the resonant case. Indeed, the lower panel in Fig. 7
shows that the RWA and numerical MCS results are nearly
identical on the scale shown. In particular, both the overall
width and shape of the inelastic power spectrum agree well.
However, it is clear that the RWA prediction is only a small
fraction of the total inelastic scattering in the off-resonant
case (upper panel in Fig. 7), as particle production leads to
qualitatively different and much larger cross sections. Thus,
for these parameters, the RWA fails badly, even though the
coupling constant α = 0.1 is not very large.

B. Temporal correlations associated to particle production

It is interesting to study photon number temporal cor-
relations, a standard measure of nonlinearities, but now in
light of the large inelastic effects that we uncovered in the
ultra-strong-coupling regime. We have computed the photon-
number autocorrelation function g2(τ ) of the reflected signal
(x < 0, k < 0), defined by

g2(τ ) = 〈a†
xa

†
x+τ ax+τ ax〉

〈a†
x+τ ax+τ 〉 〈a†

xax〉
, (27)

where x is a point within the left-going wave packet, such
that both x and x + τ are within the wave packet. In principle,
g2(τ ) also depends on x, but this dependence is weak provided
the wave packet is almost monochromatic, and the location x

is taken deep within the outgoing photon wave packet. Details
of the computation in the context of an MCS expansion are
given in Appendix A 7.

We find that temporal correlations are a very sensitive
measure of ultra-strong-coupling effects. In the resonant case
(see the top panel of Fig. 8), the correlations are typical of
single-photon emission. The comparison to the RWA is glob-
ally quantitative, as expected from the previous agreement
in the inelastic spectrum on resonance [small oscillations
at long time in g2(τ ) reflect the improper convergence of
our MCS numerics near the edges of the outgoing wave
packet]. In disagreement with the RWA however, we notice
that the numerical data shows partial antibunching at zero
delay, g2(0) > 0, signaling the production of particles, as was
revealed by the low energy spectrum in Fig. 12. Thus particle
production leads to physical effects that are potentially
observable experimentally even when on resonance. This
offset, which is zero in the RWA, is found to increase with α

(see the upper middle of Fig. 8 for k0 = �R). The incomplete
cancellation here can be readily interpreted as a probability
of emitting many-photon states due to frequency down
conversion. Even more striking is the appearance of a large
bunching signal at intermediate times in the off-resonant
case (see the middle panel of Fig. 8 for k0 = 1.2�R), which
was not reported to our knowledge for the radiation of a
single level qubit (bunching can be observed in spontaneous
emission from multilevel atoms [65], due to a simpler cascade
effect [66], or from multiqubit systems [67–69]). Here, bunch-
ing originates from the single-shot emission of three photons
by the two-level system, a property that is only allowed at
ultrastrong coupling. The bunching signal becomes sizable in

FIG. 8. Second-order correlation function g2(τ ) in reflection,
at α = 0.1 (upper panel) and α = 0.2 (middle panel). The dip at
τ = 0 is a standard signature of antibunching, but multiple photon
emission seen in Fig. 3 at ultrastrong coupling leads to an incom-
plete cancellation, g2(0) > 0. In the off-resonant case (k0 = 1.2�R),
particle production is enhanced relative to the single-photon reflec-
tion, resulting in a stronger bunching (g2(τ ) > 1) than predicted
in the RWA. The MCS simulations were performed with the same
parameters as in Fig. 12, except for the stronger coupling α = 0.2,
σ = 0.004ωc and a hard cutoff that was used (see Appendix A 7).
Bottom panel: Real-space probability distribution of the two-photon
states |αx1,x2 |2/dx2 at the initial (left panel) and final (right panel)
times of the simulation. One remarks the absence of reflection for
two photons arriving at the same time on the qubit, as seen by the dip
within the probability distribution located in the bottom left quadrant
of the right panel.

the off-resonant case, even though the particle production is
comparable to that in the resonant case, because the reflection
amplitude for single-photon emission is reduced.

As a nice illustration of the partitioning of the incoming
beam by the two-level system, we show in the bottom panels
of Fig. 8 the real space probability distribution of the two-
photon states |αx1,x2 |2/dx2 at the beginning and at the end
of the time evolution. These results were obtained in the
on-resonant case with α = 0.1, by Fourier transforming to real
space the k-space displacements. One can clearly see within
the reflected signal (bottom left quadrant in the right panel)
a deep trench on the diagonal x1 = x2 < 0 with vanishing
photon content (the incoming coherent state is shown in the
bottom left panel for comparison). Two photons impinging
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simultaneously on the qubit have thus very low likelihood of
both being reflected. This provides a direct visualization of
photon antibunching, which arises because a single emitter
can only reflect one photon at a time.

V. CONCLUSION AND PERSPECTIVES

In this work, we have developed a powerful methodol-
ogy, namely the MCS technique, based on multimode and
multiconfiguration coherent-state wave functions, to address
many-body scattering properties of a two-level system that is
embedded in a waveguide in the regime of ultrastrong cou-
pling. This problem is intrinsically nonperturbative in nature
due to the large production of particles and cannot be reliably
addressed by standard methods in quantum optics.

Our main finding is that excitation-preserving processes,
described by the rotating-wave approximation (RWA), dom-
inate the inelastic spectrum only in the resonant situation.
In contrast, when the frequency of the incoming photons is
larger than the renormalized transition frequency of the two-
level system, particle production becomes very favorable and
dominates the inelastic signal.

We have been able to characterize precisely the output field
by decomposing the reflected and transmitted photon wave
packets into Fock states and also by computing temporal cor-
relations. The main results are as follows: (i) The process by
which one photon is absorbed and three photons are emitted
dominates in the off-resonant low-power limit and leads to a
broad spectrum of emission extending from zero frequency
to the renormalized qubit frequency. (ii) Even in the resonant
case, while the dominant inelastic emission near the resonant
frequency is captured by the rotating-wave approximation,
there is still a broad spectrum of weak inelastic transmission
produced by the counter-rotating terms. (iii) The correlation
function g2(τ ) in reflection is a sensitive measure of ultra-
strong-coupling physics. In particular, particle production im-
plies that it needs not vanish at zero delay, g2(0) > 0, and
that it shows a strong bunching effect at a delay of order the
inverse lifetime. (iv) Finally, we have found that perturbative
predictions for the inelastic response [32] cannot be used
simply by renormalizing the bare qubit resonance frequency
and linewidth when the coupling becomes ultrastrong. A
more consistent theory including self-energy effects should be
developed for the future.

All our quantitive predictions have relevance for the on-
going experimental effort in pushing waveguide quantum
electrodynamics to the ultra-strong-coupling regime. The con-
nection to future experiments opens in addition various re-
search directions. One important issue is that superconducting
qubits are rarely operated as truly perfect two-level systems.
Reducing the nonlinearity of the qubit is typically important to
minimize the effect of random noise from the circuit, but this
strongly diminishes, of course, the amplitude of the interesting
nonlinear signals. Thus, extending our methodology to fully
realistic superconducting quantum circuits will be crucial to
address whether particle production can be sizable in practice.

The ability of the multi-coherent-state method to deal
naturally with coherent state pulses and open environments
is also relevant for the large interest in quantum manipulation
within complex architectures. It would thus be very useful to

adapt techniques from signal treatment in order to numerically
optimize the quantum evolution of the displacements that are
used to simulate the Schrödinger dynamics of the complete
system. Such developments will certainly be useful, because
the description of strongly driven open quantum systems is a
very important topic currently. Based on the physical artifacts
that we can observe in our simulations of the scattering
problem when the wave function is far from being converged,
we suggest that the description of nonlinear effects in quantum
circuits for arbitrary pulse sequences is a very delicate subject
that has to be examined with advanced and reliable many-
body techniques.
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APPENDIX A: TECHNICAL ASPECTS
OF THE SIMULATIONS

1. Dynamics of the MCS state vector

The multimode coherent-state decomposition (7) leads to
compact Euler-Lagrange equations (10) that determine the full
quantum dynamics the spin-boson model (1):

Pj =
∑
m

(
ṗm − 1

2
pmκmj

)
Mjm, (A1)

Fk
j =

∑
m

[
pmḟk,m +

(
ṗm − 1

2
pmκmj

)
fk,m

]
Mjm, (A2)

κij =
∑

k

(ḟk,mf 

k,m + ḟ 


k,mfk,m − 2f 

k,j ḟk,m). (A3)

Here, Mij = 〈fi |fj 〉 = e− 1
2

∑
k[|fk,i |2+|fk,j |2−2f ∗

k,ifk,j ]

corresponds to the overlap between two multimode
coherent states and arises in the equations because of the
overcompleteness of the coherent-state basis. Identical
equations (up to a minus sign in all terms containing
gk) are obtained for the variables qn and hk,n. We have
denoted respectively in Eqs. (A1) and (A2) Pj = −i ∂E

∂p

j

and

Fk
j = −i ∂E

∂f 
k
j

− i
2 ( ∂E

∂p

j

p

j + ∂E

∂pj
pj )f k

j , with E = 〈�|H |�〉
being the average energy, which reads explicitly

E = �

2

∑
n,m

(p∗
nqm〈fn|hm〉 + pmq∗

n〈hn|fm〉)

+
∑
n,m

(p∗
npm〈fn|fm〉Wf

nm + q∗
nqm〈hn|hm〉Wh

nm)

− 1

2

∑
n,m

(
p∗

npm〈fn|fm〉Lf
nm − q∗

nqm〈hn|hm〉Lh
nm

)
, (A4)
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where we have defined W
f
nm = ∑

k>0 ωkf
∗
k,nfk,m, Wh

nm =∑
k>0 ωkh

∗
k,nhk,m, L

f
nm = ∑

k>0 gk (f ∗
k,n + fk,m), and Lh

nm =∑
k>0 gk (h∗

k,n + hk,m). We now proceed with the implementa-
tion of a new and efficient numerical solution of the dynamical
equations.

2. New integration algorithm

One can note that the dynamical equation (A2) for the
displacement field fk,m(t ) is not yet in the proper form where
a unique time derivative ḟk,m(t ) is extracted on one side of the
set of equations. Achieving such a decomposition is required
for efficient time integration, but considering that the system
under study will require Nmodes � 1000 (for accurate spectral
resolution) and Ncs � 40 (for convergence of the quantum
many-body state), a brute force inversion of Eqs. (A1) and
(A2) would scale prohibitively as (Ncs × Nmodes)3 operations
for each time step. A more efficient algorithm allowing us to
cope with a few hundred modes was proposed in Ref. [39]
and used an inversion technique with only (Ncs)6 operations,
which is favorable provided Ncs � Nmodes. We present here
an improved version of this algorithm, which enables us to
reach the realistic situation of several thousands of modes.

The first step is to multiply Eq. (A1) by M−1, with M the
overlap matrix Mij = 〈fi |fj 〉:

∑
j

M−1
nj Pj = ṗn − 1

2

∑
mj

pmκmjM
−1
mj Mjn (A5)

= ṗn − 1

2
pn

∑
q

(ḟq,mf 

q,m + ḟ 


q,mfq,m)

+
∑
mjq

pmM−1
nj Mjmf 


q,j ḟq,m, (A6)

and similarly for Eq. (A2)∑
j

M−1
nj F k

j = pnḟk,n + ṗnfk,n

− 1

2
pnfk,n

∑
q

(ḟq,nf


q,n + ḟ 


q,nfq,n)

+
∑
jmq

pmM−1
nj Mjmfk,mf 


q,j ḟq,m. (A7)

We now substitute Eq. (A5) in Eq. (A7):

pnḟk,n =
∑

j

(
M−1

nj F k
j − fk,nM

−1
nj Pj

) −
∑
mjq

M−1
nj Mjm

×pmf 

q,j ḟq,m(fk,m − fk,n), (A8)

which allowed us to eliminate the complex conjugate time
derivative ḟ 


q,m. Equation (A8) is not yet in explicit form since
time derivatives of all possible displacement fields appear in
the right-hand side. We define the mode-independent quanti-
ties ain = pn

∑
k f 


k,i ḟk,n and bin = ∑
k f 


k,ifk,n and solve for
ain by inserting Eq. (A8) in its expression

ain +
∑
mj

ajmM−1
nj Mjm(bim − bin) = Ain, (A9)

with Ain = ∑
jk f 


k,i (M
−1
nj F k

j − fk,nM
−1
nj Pj ).

After solving the linear system (A9) with the (Ncs)2 un-
known parameters ain, the evolution equation for each dis-
placement field is then cast into explicit form:

pnḟk,n =
∑
jk

(
M−1

nj F k
j − fk,nM

−1
nj Pj

) −
∑
mj

M−1
nj

×Mjmajm(fk,m − fk,n), (A10)

which can be integrated numerically using an RK4 method.
The numerical inversion of the system (A9) can be sped up be-
low the naive (Ncs)6 cost by defining din = ∑

j M−1
nj Mjmajm

and αinm = ∑
l M

−1
in Mln(blm − bln), so that we can solve a

linear system for din,∑
mj

(δij δnm + αinmδnj )dmj =
∑

j

M−1
nj MjmAjm, (A11)

which assumes a sparse form suitable for Krylov-based meth-
ods (provided a good preconditioner can be found).

3. Incoming and outgoing many-body states

Combining the incoming coherent state, described by the
displacement zk in Eq. (13), with the static polarization cloud
wave function Eq. (11) can be done by transforming the
incoming signal in the even-odd basis (see Sec. II C). For the
spin-up projection of the wave function, we readily find that

|�↑〉 = D(ze )D(zo) |�GS
↑ 〉 = e

∑
k>0 ze

ka
e†
k −c.c.

×
NGS

cs∑
m

pGS
m e

∑
k>0 f GS

k,ma
e†
k −c.c. |0〉e |zo〉o , (A12)

which can be recombined using the standard relation eAeB =
eA+Be

1
2 [A,B], valid as the commutator here is only a number.

The initial state associated to the ↑ qubit state thus reads

|�↑〉 =
NGS

cs∑
m

pGS
m e

1
2

∑
k>0 (ze

kf
GS∗
k,m −ze∗

k f GS
k,m)

× e
∑

k>0[(f GS
k,m+ze

k )ae†
k −(f GS

k,m+ze
k )∗ae

k ] |0〉e |zo〉o . (A13)

For the spin-down projection, one simply replaces f GS
k,m by

−f GS
k,m without changing the sign of ze

k , so that our total initial
wave function is given by Eq. (17).

The outgoing wave packet is constructed in a similar spirit:

|�OUT〉 =
NOUT

cs∑
m=1

pOUT
m e

1
2

∑
x>0(f OUT

x,m a
†
x−f OUT∗

x,m ax ) |0〉 , (A14)

where we have written the displacements of the outgoing state
in real space because they have no spatial overlap with the
real-space modes that populate the many-body ground state
(working in momentum space would complicate the analysis).
This decoupling occurs in fact when the wave packet reaches
distances away from the qubit that are larger than the inverse
Kondo energy [37], or said otherwise, that are larger than the
entanglement cloud around the qubit. Clearly the quantum
many-body character of the scattering process is encoded in
the sum over more than a unique coherent state, in contrast to
the incoming wave packet (16) that is characterized by a single
coherent state (namely a classical-like signal). Contrarily to
the driven dynamics for an isolated few-level quantum system,
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this long-time equilibration between the many-body ground
state and the wave packet is physically expected because the
waveguide acts as a bath for the dressed two-level system
and thus provides a natural pathway for relaxation, even in
a many-body system.

Extracting the wave-packet contribution (A14) from the
long-time wave function (18) can be performed as follows.
The complete set of displacements {f e

k,n(T ), he
k,n(T )} in the

even sector at a fixed long time T for the full wave function (7)
are first Fourier transformed to real space using (12). The
local photon density n(x) associated to these displacements
is sketched in Fig. 1: Photons are either bound statically
near the qubit (associated to the dressed vacuum) or travel
in the outgoing wave packets. The displacements are then
simply set to zero in the region surrounding the qubit and
Fourier transformed back to the momentum basis. Because of
factorization (18), the outgoing wave function is recovered, up
to a normalization factor, which is supplemented accordingly.
The even modes thus obtained and the trivial odd-mode wave
functions are finally combined together in the case of the
incoming wave packet, allowing reconstruction of the full
outgoing wave function for the physical waveguide.

4. Convergence properties

Assessing the good convergence of the numerical results is
important to gain confidence in the time-dependent variational
MCS technique. Indeed, we find that using too few variational
parameters imposes strong constraints on the dynamics, which
may result in unphysical behavior and numerical artifacts.
One delicate test is the strong power saturation spectrum
shown in Fig. 2 of the main text. Indeed, the calculations
that use only a single coherent state, as done in a previous
publication [34], are found to be problematic in the strong
power regime. This behavior is illustrated in the top panel of
Fig. 9, showing the power reflection spectrum as a function
of incoming frequency at a strong input power (n̄ = 2) for
three different values of the number of coherent states Ncs =
1, 4, 16. The computation with Ncs = 1 is indeed quite noisy
and imprecise, and a smooth and converged curve is only
obtained at Ncs = 16. We find that the inelastic spectra shown
in Fig. 3 are also delicate to compute, because they consist of a
tiny fraction of the total signal, and encode complex quantum
states. A relatively large number of coherent states is also
necessary here for success, even at small input power.

An unbiased criterion for the convergence of our algorithm
for this nonequilibrium many-body dynamics is also shown in
the lower panel of Fig. 9. Here we demonstrate that the error
with respect to the exact Schrödinger dynamics vanishes with
the number of coherent states. The error is defined [39] by the
squared norm

Err(t ) ≡ 〈�(t )|�(t )〉 (A15)

of the auxiliary state |�(t )〉 ≡ (i∂t − H )|�(t )〉. Indeed, this
error decreases steadily and scales as [Ncs]−2. For the off-
resonant case of Fig. 3 (see bottom curve in the lower panel of
Fig. 9) we managed to reach an error of the order of 10−7.

FIG. 9. Top panel: Power reflection spectrum shown for different
number of coherent states Ncs = 1, 4, 16 included in the MCS wave-
function (7), with the same parameters as in Fig. 2 in the case of
n̄ = 2 photons in the incoming beam. Bottom panel: Convergence of
the error defined in the text at the final time Tfinal of the simulations, as
a function of coherent state number in the wavefunction for various
incoming momenta and power.

5. Protocol for adding coherent states during the time evolution

Because the coherent state basis is overcomplete, all the co-
herent states required for good convergence (typically Ncs >

16) cannot be initialized simultaneously at the initial time.
Indeed, two coherent states with identical displacements will
result in a singularity in the matrices to be inverted for solving
the dynamics, due to a vanishing determinant. During the
initial stage of the dynamics, this is not an issue, as only a
small number of coherent states (typically 6 to 10) is needed
to describe the static many-body cloud and the incoming
coherent state. After some time however, the wave packet
starts to interact with the dressed qubit, which would increase
the error should the number of coherent states remain the
same. Therefore, to account for the emerging complexity
of the many-body scattered state, we progressively increase
the number of coherent states Ncs in the MCS state vector
[Eq. (7)], initializing the newly added coherent states in a
bosonic vacuum configuration with zero weight. Thus, the
addition of a new set of variational displacement does not
immediately affect the dynamics, but provides the necessary
freedom to our variational algorithm for maintaining a mini-
mal error at later times. This procedure is illustrated in Fig. 10.
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FIG. 10. Number of used coherent states in the MCS wave func-
tion defined in Eq. (7) as a function of time, for the off-resonant k0 =
0.16ωc simulation. The initial six coherent states present are those
required for describing the dressed ground state of the spin-boson
model as well as the incoming wave packet. Subsequent additions
of coherent states start only as the wave packet starts to impinge on
the qubit. The addition process stops as the wave packets exit the
interaction region.

The right time for a coherent state to be added is found by
monitoring the error, which was defined by Eq. (A15), and by
defining an error increment Errmax at which the coherent state
should be added. Whenever Err(t ) − Errref > Errmax during
the time evolution, where Errref is the error right after the
previous coherent state was added, one simply adds a coher-
ent state with displacement f k

m = hk
m = 0 and weights pm =

qm � 10−6 in Eq. (7). The near-zero amplitude ensures that
this new coherent state only changes the wave function negli-
gibly at the time it is added. Empirically, we find the value
of Errmax = 10−7 to be adequate. The system, through the
variational principle, will subsequently have the possibility to
increase the displacements and weights according to the re-
quirements of the quantum trajectory. As an example, a plot of
the number of coherent states as a function of time for the off-
resonant k0 = 0.16ωc simulation in Fig. 3 is given in Fig. 10.

6. Calculation of number-resolved spectra

To assess the nature of particle production in the scattering
process, we analyze the inelastic spectrum in terms of Fock
states |N〉. First, consider the general expansion of the multi-
mode outgoing wave function (19) in terms of number states:

|�OUT〉 = γ |0〉 +
∑

k

αka
†
k |0〉 +

∑
k1,k2

αk1,k2a
†
k1

a
†
k2

|0〉

+
∑

k1,k2,k3

αk1,k2,k3a
†
k1

a
†
k2

a
†
k3

|0〉 + · · ·. (A16)

It can then easily be verified that the one-photon amplitude is
given by

αk = 〈0| ak |�OUT〉 =
∑

n

pnfk,n 〈0|fn〉 (A17)

and that the scattering amplitude for a generic N -photon state
is

αk1,...,kN
= 1

N !
〈0| ak1 . . . akN

|�OUT〉 , (A18)

which can be obtained straightforwardly from the algebraic
identities of coherent states. For the sake of clarity, we have
dropped the OUT labels on pn and fn,k . From the multiphoton
amplitudes, we can then compute the probability distribution
for finding a photon in a given k mode, according to the
various Fock contents of the total wave function:

〈nk〉1photon = |αk|2, 〈nk〉2photon = 4
∑
k1

|αk,k1|2,

〈nk〉3photon = 18
∑
k2,k3

|αk,k2,k3|2. (A19)

These Fock-resolved inelastic contributions 〈nk〉Nphoton with
N = 2, 3, 4 are displayed as full lines in Fig. 3 (note that the
outgoing N = 1 process is purely elastic and is not shown).

7. Calculation of g2(τ )

In this appendix, we give some details on the calculation of
the correlation function g2(τ ) when using the MCS approach.
First, since we take the speed of light c = 1, τ is just the
distance traveled by radiation in time τ . Inserting the MCS
expansion Eq. (7) into definition (27), we obtain a compact
expression for the autocorrelation function in terms of the
real-space displacements f x

n :

g2(τ ) =
∑

m,n p∗
npm

(
f x

n

)∗(
f x+τ

n

)∗
f x+τ

m f x
m 〈fn|fm〉

〈n(x)〉 〈n(x + τ )〉 , (A20)

with the local photon number

〈n(x)〉 = 〈a†
xax〉 =

∑
m,n

p∗
npm

(
f x

n

)∗
f x

m 〈fn|fm〉 . (A21)

In the simulations performed to compute this quantity, we
used a sharp cutoff �(ωc − ω) for the dispersion relation
instead of the exponential cutoff e−ω/ωc which we defined in
Eq. (5). Note that using the hard cutoff results in a slightly
lower value of the renormalized qubit energy �R than with
the exponential cutoff. This allowed us to decrease the nu-
merical cost and therefore attain a higher number of coherent
states, Ncs = 40, which was necessary because second-order
correlations are more challenging to converge than average
photon numbers. The simulations were stopped at a time scale
T = 1250/ωc long enough that the wave packet is located far
away from the dressed qubit, and we chose the spacial point
x = −681 in Eq. (27), so as to keep the range of the function
near the center of the wave packet. We finally note that
spurious effects associated with the finite spatial extension of
the wave packet (due to σ �= 0) lead to the small oscillations
seen in Fig. 8 at longer times.

APPENDIX B: FURTHER ANALYSIS
OF NONLINEAR EMISSION

1. Detailed off-resonant conversion spectra

We proceed here with a systematic study of particle pro-
duction spectra in the off-resonant case, as a function of
incoming momentum k0 (see Fig. 11). A weak coupling cal-
culation of the one-photon to three-photon conversion process
(see Fig. 4) was given in the α → 0 limit in Ref. [32]. We have
found that this theory can quantitatively account for our data
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at small α upon two important modifications. First, as already
seen by the frequency shift in the reflection spectrum in Fig. 2,
one must replace the bare qubit frequency � by the renor-
malized quantity �R within the analytical results given by
the perturbative approach. Second, the golden rule value for
the qubit linewidth appearing in the transmission lineshape,
given by � = πα� at small α, cannot be used. For the elastic
response, one can use reliably �R = πα�R up to moderate
values of α. However, we find that the renormalized broaden-
ing parameter γ inel

R entering the inelastic response function for

fixed value of the incoming momentum k0 is not given by �R ,
but rather displays a strong momentum dependence, γ inel

R =
γR (k0). This is not completely unexpected, since a consistent
calculation should include the full momentum variation of
the self-energy, and we found that the theory of Ref. [32] is
very sensitive to the way the inelastic regularization is im-
plemented. For the present purpose, we will only use a phe-
nomelogical model that uses (as fitting parameters) only two
renormalized quantities �R and γR (k0) within the perturbative
formula:

〈nk〉3photon = α4

8
�2

R

∫ k0−k

0
dk1 kk0k1k2

∣∣∣∣k0kk1k2 − k2
�

(
k2 + k2

1 + k2
2 + kk1 + kk2 + k1k2

) + 3k4
�(

k2 − k2
�

)(
k2

0 − k2
�

)(
k2

1 − k2
�

)(
k2

2 − k2
�

)
∣∣∣∣
2

, (B1)

with k2 = k0 − k1 − k and k� = �R + iγR (k0), with �R be-
ing the renormalized qubit frequency and γR (k0) being the
linewidth describing the inelastic spectrum, which is fitted
from our numerical data. The resulting comparison is shown
in Fig. 11, with excellent quantitative agreement.

2. Detailed on-resonant conversion spectra

We consider here the detailed photonic content of the emis-
sion spectra in the resonant case where the incoming photon
energy k0 = �R matches the renormalized atomic transition
energy. Figure 12 shows the total transmitted signal as well as
its decomposition in terms of number states with N = 1, 2, 3
photons. Not surprisingly, the two-photon amplitude in this
regime is strongly enhanced with respect to the off-resonant
situation of Fig. 3. One-photon contributions are also observed
as two sidebands away from the resonance �R , which are due
to the finite width of the incoming wave-packet. The resonant
one-photon states (at exactly k = k0) are completely reflected,
as expected. In the resonant case, 2 → 2 RWA frequency
conversion gives rise to the broader wings (extending clearly
beyond the linewidth σ of the pump), as seen in the N = 2

FIG. 11. Low-energy inelastic spectrum for several off-resonant
values of the incoming momentum k0 = 0.16, 0.20, 0.25ωc obtained
using the MCS technique (with the same parameters as in Fig. 3),
together with a comparison to the analytical formula (B1), using a
fitted and momentum-dependent linewidth γR (k0).

curve of Fig. 12. As in the off-resonant case, the resonant
scattered spectrum also presents a three-photon low-energy
continuum, as can be seen from the inset. The shape, how-
ever, does not present any sharply peaked feature, since this
time the continuum does not contain the resonant frequency
k = �R at which the qubit spontaneously re-emits. Instead,
the spectrum is more flat, implying the single photon splits
more uniformly into all the possible (k1, k2, k3) allowed by the
1 → 3 process of Fig. 4. Interestingly, the magnitude of this
three-photon continuum is of the same order of magnitude as
in the off-resonant case of Fig. 3, since nonlinear processes are
here intensified by having an on-resonant input, which com-
pensates for the absence of an enhancing resonant frequency
in the output below k0. Again, this particle production process
dominates the RWA contribution, here only away from the
probe frequency.

FIG. 12. On-resonance transmission spectrum for an incoming
photon energy that matches the renormalized qubit excitation, k0 =
0.08ωc = �R . The simulation required 2500 modes with the use
of 34 coherent states (all other parameters are identical to the
ones in Fig. 3). The black dashed curve corresponds to the nearly
monochromatic incoming wave packet. Because of the wave-packet
finite linewidth σ , a small fraction of one-photon states is still
transmitted (dot-dashed line), despite being on resonance. The two-
photon contribution (top full line) presents wider inelastic wings
that extend beyond the width σ and that are parametrically larger
in amplitude than the off-resonant signal of Fig. 3. The three-photon
continuum is magnified in the inset.
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