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Quantum-state reconstruction of a mechanical mirror in a hybrid system
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We introduce a scheme to reconstruct the quantum state of a mechanical mirror in a hybrid optomechanical
system. The scheme involves sending a beam of two-level atoms to interact with a quantized cavity field which
is weakly coupled to the mechanical mirror. We show that the measured data of the excited-state probability of
the atoms can be used directly to reconstruct the initial state of the mechanical mirror. If the mechanical mirror
is initially a pure quantum state, we can reconstruct both the probability and the phase of the mechanical state. If
it is initially a mixed state, we can reconstruct all the diagonal matrix elements and the first two diagonals above
and below them.

DOI: 10.1103/PhysRevA.98.043815

I. INTRODUCTION

Cavity optomechanics is a rapidly developing area of re-
search [1] which explores the interaction between electromag-
netic fields and mechanical states of motion via radiation-
pressure forces [2–4]. Numerous research studies in cavity
optomechanics cover a wide variety of problems such as
ground-state cooling [5–13], generation of macroscopic quan-
tum superposition in optomechancial systems [14–17], and
creation and verification of quantum entanglement [18–31].

Quantum-state reconstruction of the mechanical states of
motion plays a very crucial role in revealing and under-
standing various nonclassical properties and aspects in dif-
ferent cavity optomechanical systems [32]. Recently, several
reconstruction schemes have been introduced to reconstruct
motional mechanical states in cavity optomechanics. A me-
chanical state tomography scheme [33] is based on sending
short optical pulse to enter an optomechanical cavity. The
accumulated phase of the output pulse is measured to obtain
information about the oscillator quadratures. Mechanical state
tomography based on a back-action-evading interaction has
been experimentally demonstrated to accurately measure the
position of the mechanical oscillator [34].

Another interesting reconstruction scheme was introduced
in which an optomechanical cavity is coupled to an outside
continuous field [35]. Detection of a single photon emission
and scattering spectrum [36] is used to measure the quantum
state of the mechanical mirror in the system. Due to the
coupling between the cavity field and the mechanical mirror,
the mechanical motion can strongly modify the emission and
scattering spectra of the photon. Therefore, the initial state
of the mechanical mirror can be extracted from the emission
or scattering spectrum. In this scheme, they can in principle
reconstruct the whole information of a general quantum state.
However, this method works well only when the optomechan-
ical coupling strength is ultrastrong, which is not a common
case [37]. In most cases, the optomechanical coupling strength
is in the weak-coupling regime [1].

A number of studies investigate using atoms as a measure-
ment tool for the quantum states of cavity fields [38–50]. A
measurement scheme [39] was introduced to reconstruct the
quantum state of a light field using a beam of two-level atoms
initially prepared in a coherent superposition of their excited
and ground states. In this scheme, a beam of two-level atoms
is sent in an optical cavity to interact with a quantized elec-
tromagnetic field inside and the probability of detecting the
atoms in the excited states is measured after the atoms exit the
cavity. By controlling the phase difference between the two
states of the atom and varying the interaction time, the com-
plete quantum state of the cavity field can be reconstructed by
solving a system of linear equations. Similarily, using atom
as a detector, one can also measure the quantum state of a
nanomechanical oscillator in an optomichanical system [51].
The atom is coupled to an optical field via a Raman transition
and to the nanomechanical oscillator via a magnetic-sublevel-
phonon interaction [51]. Since the atom is directly coupled to
the nanomechanical oscillator, measurement of the probability
of the atom to be in its ground state directly gives the Wigner
function of the nanomechanical oscillator. This method is an
interesting extension of the idea of nonlinear atom homodyne
[40], which was developed to measure the quantum state of a
single mode field.

In this paper, we propose a scheme to detect the quantum
state of a mechanical oscillator in a hybrid optomechanical
system. Our method is also based on the use of a beam of
two-level atoms as detector for the state of the mechancial
oscillator. Instead of using direct magnetic-sublevel-phonon
coupling as in Ref. [51], the atoms can indirectly couple to
the mechanical mirror in our system via the polariton-phonon
coupling. In our method, the atom is initially prepared in the
excited state and the cavity field is in the vacuum state. We
show that by measuring the probability of the atoms being in
the excited state for different interaction times after passing
through the cavity, it is possible to reconstruct the initial state
of the mechanical mirror by inverting a simple system of
linear equations. Although stronger optomechanical coupling
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FIG. 1. Quantum-state reconstruction using atom as detector in
the hybrid optomechanical system.

strength can have better reconstruction quality, our method
does not require the coupling strength to be ultrastrong.

This paper is organized as follows. In Sec. II, we introduce
the suggested model to measure the state of the mechanical
mirror. In Sec. III, we derive the excited-state probability of
the atom when the atom passes through the optomechanical
cavity. In Sec. IV, we show how to measure the quantum state
of the mechanical mirror. Finally, we summarize the results.

II. MODEL

We consider an optomechanical system consisting of an
optical cavity with a fixed mirror on one side and a mechanical
mirror on the other side of the cavity. The position of the
mechanical mirror is described by x = x0(b + b†), where x0

is the zero point position of the mechanical mirror and it
is given by x0 = √

h̄/2mωm. Here b(b†) is the mechanical
mirror annihilation (creation) operator and m and ωm are the
mass and frequency of the mechanical mirror, respectively.
The cavity field is weakly coupled to the mechanical mirror
via the radiation pressure coupling. To detect the quantum
state of the mechanical mirror, we consider a beam of two-
level atoms entering the cavity to interact with the quantized
field inside the cavity and the probability of finding the atom
in the excited state is measured for different interaction times.

The total Hamiltonian describing the system depicted in
Fig. 1 is

H = H0 + HI , (1)

where H0 and HI are the free and interaction parts of
the system’s Hamiltonian, respectively. The free part of the
Hamiltonian can be written as

H0 = h̄ωcc
†c + h̄

ωa

2
σz + h̄ωmb†b, (2)

where the first term in Eq. (2) describes the Hamiltonian
of the cavity field with frequency ωc. The second and third
terms in Eq. (2) represent the Hamiltonian of the two-level
atom with transition frequency ωa and the mechanical mirror
with fundamental oscillation frequency ωm, respectively. Here
c(c†) is the annihilation (creation) operator of the cavity field.
The interaction part of the Hamiltonian in Eq. (1) is given by
[52,53]

HI = −ih̄gc(σ+c − c†σ−) − h̄gmc†c(b† + b). (3)

The first term in Eq. (3) describes the interaction between the
two-level atom and the cavity field. The second term describes
the interaction between the cavity field and the mechanical
mirror via the radiation pressure coupling. The coefficients gc

and gm are the coupling strengths of the atom-field and the
cavity field–mechanical mirror interaction, respectively. The
coefficient gm is defined as gm = (ωc/L)

√
h̄/2mωm, where L

is the length of the cavity and σ+ = |e〉 〈g| and σ− = |g〉 〈e|
are the atomic raising and lowering operators, respectively.

In the weak mechanical coupling limit, the Hamilto-
nian of the system can be simplified in such a way
that the mechanical mirror is coupled to a specific po-
lariton state |±, n〉 in a Jaynes-Cummings (JC)-like cou-
pling where |+, n〉 = cos(αn/2)|e, n〉 + i sin(αn/2)|g, n +
1〉 and |−, n〉 = sin(αn/2)|e, n〉 − i cos(αn/2)|g, n + 1〉 with
tan αn = 2gc

√
n + 1/δ and δ = ωa − ωc being the detuning

between the atomic transition frequency and the cavity field
frequency. The rotating-wave approximation under the con-
dition ωm + �n � gpn � |ωm − �n| can be applied. This
condition can be justified since ωm can be in the range from
kHz to GHz, while gc is usually in the range from kHz to
MHz. Since β is usually much less than 1, then the condition
gpn � ωm + �n is not difficult to satisfy. To satisfy the other
condition gpn � |ωm − �n|, we can find a system where the
atom-field coupling strength gc is not far away from ωm and
then choose a suitable photon number n such that ωm is
very close to �n. Under the rotating-wave approximation,
the transformed Hamiltonian in the linear approximation is
reduced to [52,53]

HT =
∞∑

n=1

[
h̄

�n

2
σ (n)

z + h̄gpn

(
σ

(n)
− b† + σ

(n)
+ b

)] + h̄ωmb†b,

(4)

where �n = √
δ2 + 4g2

c (n + 1) describes the energy of the
polariton with photon number n and gpn = βgc

√
n + 1 is the

effective coupling between the polariton and the mechanical
mirror. σ (n)

z and σ
(n)
∓ are the polariton Pauli matrices for the

polariton states |±, n〉. It is clearly seen that in the dressed-
state picture the polariton effectively couples to the phonons.
Using the effective Hamiltonian shown in Eq. (4), we can
solve the dynamics of the system using the time-dependent
Schrödinger’s equation

|ψ̇T 〉 = − i

h̄
HT |ψT 〉 , (5)

where |ψT 〉 = T |ψs〉 is the transformed state of the total sys-
tem with T = e−βc†c(b†−b) and |ψs〉 the untransformed state of
the system. By solving Eq. (5), we can obtain the population
dynamics of the atom which encodes the information of the
mechanical mirror. Therefore, it is possible to reconstruct the
quantum state of the mechanical mirror by measuring the
atomic population.

III. EXCITED-STATE PROBABILITY

When the atoms pass through the cavity, the population
in the excited state can be modified by the cavity field and
the mechanical mirror phonon. It is therefore possible to
measure the quantum state of the mechanical mirror from the
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atomic excited-state probability. In this section, we calculate
the evolution of the excited-state probability and show how
we can measure the quantum state of the mechanical mirror.

We assume that the mechanical mirror is in an unknown
superposition state |ψmirror〉 = ∑∞

l=0 ul|l〉, where ul is an
unknown amplitude to be determined and it satisfies that∑∞

l=0 |ul|2 = 1. We first consider the general case where the
two-level atom is initially in a superposition of the excited
state |e〉 and the ground state |g〉, i.e., |ψatom(0)〉 = ce |e〉 +
cg |g〉 with |cg|2 + |ce|2 = 1, and the cavity field is in the state

|ψcavity(0)〉 = ∑∞
n=0 wn|n〉 with

∑∞
n=0 |wn|2 = 1. The initial

state of the total system can then be written as

|ψs (0)〉 =
∞∑

n=0

∞∑
l=0

wnul (ce |e, n〉 + cg |g, n〉) |l〉 . (6)

The initial state (6) in the transformed picture is given as
|ψT (0)〉 = e−βn (b†−b) |ψs (0)〉. For βn � 1, the initial state
|ψT (0)〉 ≈ |ψs (0)〉. Using the dressed-state bases of the atom-
field subsystem, the system’s initial state can be rewritten as

|ψ (0)〉 = w0cg

∞∑
l=0

ul |g, 0〉 |l〉 +
∞∑

n=0

∞∑
l=0

ul

[(
cewn cos

(
αn

2

)
− icgwn+1 sin

(
αn

2

))
|+, n〉 +

(
cewn sin

(
αn

2

)

+ icgwn+1 cos

(
αn

2

))
|−, n〉

]
|l〉 . (7)

It is clear that the effective Hamiltonian (4) can lead to transitions such that |+, n〉 |l〉 ←→ |−, n〉 |l + 1〉. The state of the system
at time t is therefore given by

|ψ (t )〉 =
∞∑
l=0

C
g

0,l (t ) |g, 0〉 |l〉 +
∞∑

n=0

C
−
n,0(t ) |−, n〉 |0〉 +

∞∑
n=0

∞∑
l=0

[C
+
n,l (t ) |+, n〉 |l〉 + C

−
n,l+1(t ) |−, n〉 |l + 1〉], (8)

where C
g

0,l (t ) is the probability amplitude that the atom is in the ground state and the field is in the vacuum state with the

mechanical mirror being in the state |l〉, and C
+
n,l (t ) [C

−
n,l (t )] is the probability amplitude that the polariton is in the state |+, n〉

(|−, n〉) and the mechanical mirror is in the state |l〉. The equations of motion for the probability amplitudes can be derived from
the time-dependent Schrödinger’s equation. A solution of these coupled equations can give the following expressions:

C
g

0,l (t ) = 0, (9a)

C+
n,l (t ) = e−iωm(l+ 1

2 )t

[
C+

n,l (0) cos

(
ωnl

2
t

)
− i

�n

ωnl

C+
n,l (0) sin

(
ωnl

2
t

)
− 2i

gpn

√
l + 1

ωnl

C−
n,l+1(0) sin

(
ωnl

2
t

)]
, (9b)

C−
n,l+1(t ) = e−iωm(l+ 1

2 )t

[
C−

n,l+1(0) cos

(
ωnl

2
t

)
+ i

�n

ωnl

C−
n,l+1(0) sin

(
ωnl

2
t

)
− 2i

gpn

√
l + 1

ωnl

C+
n,l (0) sin

(
ωnl

2
t

)]
, (9c)

C−
n,0(t ) = e

i�n
2 tC−

n,0(0), (9d)

where �n = �n − ωm and ωnl =
√

�2
n + 4g2

pn(l + 1). For resonant atom-field interaction (δ = 0), sin (αn/2) = cos (αn/2) =
1/

√
2. In this case, the probability for the atom to be in the excited state can be calculated from the following equation:

Pe(t ) = 1

2

∞∑
n=0

∞∑
l=0

|C+
n,l (t ) + C

−
n,l (t )|2. (10)

We consider the atom to be initially prepared in the excited state, i.e., ce = 1 and cg = 0, and the cavity field is in the vacuum
state, i.e., w0 = 1 and wn = 0 for n �= 0. The atomic population inversion defined by W (t ) = 2Pe(t ) − 1 follows directly by
substituting the solutions of the probability amplitudes from Eqs. (8 a)–(8 d) into Eq. (10). The resulting expression for W (t ) is

W (t ) =
∞∑
l=0

[cos(gp0

√
lt ) cos(gp0

√
l + 1t ) cos(ωmt ) al

+ sin(gp0

√
l + 1t ) sin(gp0

√
l + 2t )(Re (bl ) cos(ωmt ) − Im (bl ) sin(ωmt ))

+ g(cos(gp0

√
l + 2t ) − cos(gp0

√
lt )) sin(gp0

√
l + 1t )(Re (cl ) sin(ωmt ) + Im (cl ) cos(ωmt ))], (11)

where, for simplicity’s sake, we considered �0 = 2gc = ωm. The coefficients al , bl , and cl are given by

al = ∣∣ul

∣∣2
, bl = ulu

∗
l+2, cl = ulu

∗
l+1. (12)
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The coefficient al gives the probability distribution of the
initial state of the mechanical mirror, while the phase infor-
mation of the mirror’s state is contained in either bl or cl

depending on what the mirror’s initial state is. In the next
section, we show how the initial state of the mechanical mirror
can be reconstructed using Eq. (11).

IV. QUANTUM-STATE RECONSTRUCTION
OF THE MECHANICAL MIRROR

In order to reconstruct the initial state of the mechanical
mirror, we need to find the coefficients al , bl , and cl in
Eq. (11). From Eq. (11), we see that we have an infinite
number of the coefficients al , bl , and cl . We can truncate the
infinite summation over the number of phonons l in Eq. (11)
to a maximum number lmax such that lmax � l̄, where l̄ is the
average number of phonons. Since al is a real number but
both bl and cl are complex numbers, the unknown variable
for each l is 5 (al, Re[bl], Im[bl], Re[cl], Im[cl]). For a cutoff
lmax, the total number of unknown variables is 5(lmax + 1).
Therefore, to determine all the unknown variables, we need
to measure W (t ) for at least 5(lmax + 1) interaction times. For
each value of tk [k = 1, 2, . . . , 5(lmax + 1)], the expression for
the inversion is given by

W (tk ) =
lmax∑
l=0

[Al (tk ) al + Bl (tk ) Re (bl ) + Cl (tk ) Im (bl )

+ Dl (tk ) Re (cl ) + El (tk ) Im (cl )], (13)

where al, Re[bl], Im[bl], Re[cl], Im[cl] are unknown variables
to be determined and

Al (tk ) = cos(gp0

√
ltk ) cos(gp0

√
l + 1tk ) cos(ωmtk ),

(14a)

Bl (tk ) = sin(gp0

√
l + 1tk ) sin(gp0

√
l + 2tk ) cos(ωmtk ),

(14b)

Cl (tk ) = − sin(gp0

√
l + 1tk ) sin(gp0

√
l + 2tk ) sin(ωmtk ),

(14c)

Dl (tk ) = [cos(gp0

√
l + 2tk ) − cos(gp0

√
ltk )]

× sin(gp0

√
l + 1tk ) sin(ωmtk ), (14d)

El (tk ) = [cos(gp0

√
l + 2tk ) − cos(gp0

√
ltk )]

× sin(gp0

√
l + 1tk ) cos(ωmtk ). (14e)

Equation (12) can be further written as the matrix form

W = M X, (15)

where W is a 5(lmax + 1)-dimensional vector which con-
tains the experimental data of the population inversion, i.e.,
W = [W (t1),W (t2), . . . ,W (t5(lmax+1))]T . The vector X con-
tains the unknown coefficients which need to be determined
to reconstruct the initial state of the mechanical mirror
and it is defined as X ≡ (X0, X1, . . . , X5(lmax+1))T with Xl =
(al, Re (bl ), Im (bl ), Re (cl ), Im (cl))T . The matrix M is pre-
known and it is given by

Mk l = Al (tk ) + Bl (tk ) + Cl (tk ) + Dl (tk ) + El (tk ), (16)

where the elements of this matrix are defined in Eqs. (13 a)–
(13 d), and k, l = 1, 2, . . . , 5(lmax + 1). Having W and M
we can either use matrix inversion or least-square fitting
method to obtain the solutions for X, which contains both the
probability and phase information of the mirror’s state.

Extracting the values of al from the vector X directly yields
the phonon probability distribution of the mechanical mirror.
The phase of the mechanical mirror can be obtained from
other elements of the vector X. In what follows we explain
the procedure of reconstructing the phase of the mirror’s state.
When we look at Eq. (12), we see that it contains terms of
the product of different amplitudes, i.e., ulu

∗
l+1 and ulu

∗
l+2.

These terms contain the phase of the amplitude from which
we can reconstruct the phase of the quantum state of the
mechanical mirror. Since al = |ul|2 and cl = ulu

∗
l+1, we have

cl = √
alal+1e

−i(ϕl+1−ϕl ), where the amplitude ul = |ul|eiφl .
Therefore, the phase difference between the probability am-
plitude ul and its first neighbor ul+1 is given by

�ϕl+1 = ϕl+1 − ϕl = arctan

[−Im(cl )

Re(cl )

]
. (17)

Hence the phase can be determined from cl . In certain cases
some elements may be missing and the phase difference
between neighboring elements is undefined. For example, in
the squeezed vacuum, only even photon number has nonzero
amplitude. In this case, cl = 0 and the phase cannot be recon-
structed. Fortunately, we can use al and bl to determine the
phase difference between the next-nearest-neighbor elements.
We have bl = ulu

∗
l+2 = √

alal+2e
−i(ϕl+2−ϕl ). Then the phase

difference between two neighboring bases is given by

�ϕl+2 = ϕl+2 − ϕl = arctan

[−Im(bl )

Re(bl )

]
. (18)

By solving bl , one can reconstruct the phase of squeezed
vacuum.

In the following, we apply our scheme to three examples
of the mechanical state and examine different conditions in
which this scheme can work to reconstruct the initial state of
the mechanical mirror.

A. Coherent state

Suppose that the initial state of the mechanical mirror is a
coherent state and it can be written as

|ψmirror (0)〉 = e−l̄/2
∞∑
l=0

l̄
l/2

√
l!

|l〉 , (19)

where l̄ is the average phonon number. The exact probability
distribution of phonons is given by

P (l) = l̄
l

e−l̄

l!
, (20)

which is a Poisson distribution.
From Eq. (18), we know that ul = e−l̄/2 l̄

l/2
/
√

l! and the
population inversion can be calculated from Eq. (11) for
an arbitrary time. To reconstruct the quantum state of the
mechanical mirror, we need to choose a value of the cutoff
lmax and measure W (t ) for 5(lmax + 1) discrete times. Then
we use the least-square method to fit the unknown variables
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FIG. 2. Reconstruction of initial mechanical coherent state.
(a) Comparison between the exact and reconstructed probability
distribution of phonons for two different values of lmax with gm/ωm =
0.07. (b) Comparison between the exact and reconstructed probabil-
ity distribution of phonons for two different coupling strengths with
lmax = 12. Mean number of phonons l̄ = 3.

X from Eq. (14). In Fig. 2(a), we compare the reconstructed
probability distribution of phonons with the exact distribution
Eq. (20) with l̄ = 3 for two different cutoffs (lmax = 8 and 15).
In this example, we fix the coupling ratio to be gm/ωm = 0.07.
The solid curve represents the exact probability distribution of
phonons, the triangles correspond to the reconstructed proba-
bility distribution when lmax = 8, and the points correspond
to the reconstructed probability distribution when lmax = 15.
It is clearly seen that in both cases (lmax = 8 and 15) the
reconstructed results of the probability distribution of phonons
are close to the exact distribution. More importantly, when
the cutoff lmax is increased, the quality of reconstruction
apparently improves. In pratice, the cutoff lmax is chosen such
that the phonon distribution is negligible when l > lmax.

Figure 2(b) shows the effect of increasing the optome-
chanical coupling strength gm on the quality of reconstruction
while lmax is fixed. Here, the average phonon number is
l̄ = 3 and lmax is set to be 12. When gm/ωm = 0.06, the
reconstructed probability distribution is close to the exact
distribution but most points are still deviating from the exact
probability distribution (the solid curve). However, when the
optomechanical coupling strength is increased to gm/ωm =
0.09, the result of reconstruction is clearly approaching the
exact probability distribution. Therefore, increasing the op-
tomechanical coupling strength leads to extracting more ac-
curate information about the initial state of the mechanical
mirror. We should emphasize that the optomechanical cou-
pling strengths in the considered examples are in the weak-

coupling regime. This is different from the method presented
in [35], where strong optomechanical coupling is needed to
reconstruct the initial state of the mechanical mirror, i.e.,
gm/ωm > 1.

B. Pure quantum state with phase

In the previous subsection, we considered that the initial
state has real amplitudes. In this subsection we show how to
reconstruct a general quantum state when both probability and
phase are included. A general quantum state can be expanded
as a superposition of Fock state. Here, as an example, we
consider that the initial state of the mechanical mirror is a
superposition of four Fock states |0〉, |1〉, |2〉, and |3〉, with
a phase difference between neighboring Fock states:

|ψmirror (0)〉 = 1√
10

(
√

3 |0〉 + eiπ/5 |1〉 +
√

5 eiπ/3 |2〉

+ eiπ/4 |3〉). (21)

In order to extract the quantum state of the mechanical
mirror, we solve Eq. (14) for a truncated maximum num-
ber of phonons lmax. In this example, we chose lmax = 4,
which means the atomic population inversion is measured for
5(lmax + 1) = 25 discrete interaction times. From Eq. (14), we
can construct a linear system of equations using the measured
data of the atomic population inversion W (tk ) along with Eqs.
(13 a)–(13 d). We solve this system of linear equations by
simple matrix inversion to reconstruct the initial state of the
mechanical mirror. The values of al which are contained in
the vector X yield the probability of the mirror’s quantum
state, while the real and imaginary parts of cl can be used
to reconstruct the phase difference between the neighboring
Fock states.

In Fig. 3(a), we compare the exact values of the
phonon number distribution of the initial state of the mirror
1/10(3, 1, 5, 1)T with the reconstructed values for two differ-
ent values of the ratio between the optomechanical coupling
and the oscillation frequency of the mechanical mirror, i.e.,
gm/ωm = 0.02 and 0.05. The reconstructed values of the
probability clearly converge to the exact values as gm/ωm

increases. This is similar to the reconstruction of the coherent
state and it is because stronger coupling strength can project
more information from the mechanical mirror to the atom.
The phase reconstruction is shown in Fig. 3(b), where we
can see that the reconstructed values of the phase difference
between two successive phonon numbers agree very well with
the exact values for both coupling strengths. This indicates
that the reconstruction of phase is not very sensitive to the
fluctuation.

C. Squeezed vacuum state

The reconstruction method for the phase shown in subsec-
tion B fails when certain coefficients vanish. For example,
in the squeezed vacuum state only the coefficients with even
Fock number are nonzero. Then cl = ulu

∗
l+1 is always zero

and the reconstruction of phase is impossible. Fortunately, in
our reconstruction method, we have the terms like bl = ulu

∗
l+2

in addition to cl [see Eq. (11)]. In the squeezed vacuum state,
although cl is zero, bl is not equal to zero from which we
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(a)

(b)

FIG. 3. Comparison between the exact and reconstructed proba-
bility distribution of phonons (a) and the phase difference �ϕl+1 (b)
where the initial state of the mechanical mirror is given by Eq. (21)
for two different ratios between the optomechanical coupling gm and
the mechanical frequency ωm.

can still extract the phase information of the squeezed vacuum
state.

The initial state of the mechanical mirror in a squeezed
vacuum state can be written as

|ψmirror (0)〉 =
∞∑
l=0

C2l |2l〉 , (22)

where the coefficients C2 l are given by [54]

C2l = (−1)l√
cosh r

√
(2l)!

2l l!
(eiϕ tanh r )l , (23)

with r being the squeezing parameter. By solving al and bl

in Eq. (11), we can in principle reconstruct both the phonon
number distribution and the phase of the squeezed vacuum
state.

In Fig. 4(a), we plot the exact probability distribution of
the mechanical mirror P (2l) = |C2l|2 along with the recon-
structed distributions using two different values of gm/ωm.
The reconstruction values are very close to the exact values
and the quality of the probability distribution reconstruction
improves as the mechanical coupling strength gm is larger as
in the previous example. In Fig. 4(b), we compare the exact
phase differences �ϕl+2 with the reconstructed ones using
Eq. (17). Different from the phase reconstruction based on
cl , the reconstruction based on bl is more sensitive to the

(a)

(b)

FIG. 4. Comparison between the exact and reconstructed proba-
bility distribution of phonons (a) and the phase difference �ϕl+2 (b)
when the initial state of the mechanical mirror is squeezed vacuum
for two different ratios between the optomechanical coupling gm and
the mechanical frequency ωm. r = 2 and ϕ = π/8.

coupling strength. Stronger coupling strength can give better
phase reconstruction.

D. Velocity fluctuation

In the previous subsections, we assume that interaction
times are precisely determined. However, in practice the in-
teraction times can vary a bit due to the uncertainty in the
velocity of atoms. In this subsection, we show that even if
the interaction times have small fluctuations, our method still
works very well.

Suppose that each interaction time has an uncertainty. To
reconstruct the quantum state of the mechanical mirror, we
measure W (tk ) for Nruns times for each tk and their average
W (tk ) is treated as W (tk ) in Eq. (14). Then we reconstruct
the quantum state of the mechanical mirror by using the
same method presented in the previous section. We consider
the case when the mechanical mirror is initially prepared
in a coherent state with average number of phonons l̄ = 3
and each atom velocity has 4% uncertainty. In the numerical
simulation, the sampling time is randomly chosen between
tk − 0.02�t and tk + 0.02�t for each tk and �t is the gap
between two successive interaction times (i.e., �t = tk+1 −
tk). Using the least-square fitting method with 10−3 tolerance,
we can obtain a solution for X. The reconstructed results
for two different iteration times are shown in Fig. 5, where
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FIG. 5. Reconstruction of the initial state of the mechanical mir-
ror when fluctuation in the interaction times between the atoms and
the cavity field is considered. (a) Number of iterations is Nruns = 10.
(b) Number of iterations is Nruns = 30. The average phonon number
is l̄ = 3, gm/ωm = 0.9, and the fluctuation in the interaction times is
±2%.

Fig. 5(a) is the result of reconstruction using Nruns = 10, while
Fig. 5(b) is the result of reconstruction using Nruns = 30. We
see from both figures that, when Nruns = 10, the reconstructed
probability distribution of phonons deviates significantly from
the exact distribution of phonons. However, when the iteration
times are increased to Nruns = 30, the reconstructed probabil-
ity distribution of phonons converges to the exact distribution
very well.

E. Reconstruction of thermal state

So far we considered quantum-state reconstruction of pure
states of the mirror. Next we address the question about the

reconstruction of mixed states. It turns out that, for arbitrary
mixed states described by a density operator ρ, our proposed
method can be applied to reconstruct only the diagonal ele-
ments ρll and the off diagonal elements ρl,l+1 and ρl,l+2. It
can be shown that, for mixed states, Eq. (11) can be obtained
with al , bl , and cl replaced by ρll , ρl,l+2, and ρl,l+1, respec-
tively. We can then use the reconstruction method discussed
in previous sections to obtain the partial information of the
density matrix of the mechanical mirror.

One important state of the mirror that we can reconstruct
using our method is the thermal state for which only the
diagonal density matrix elements are nonvanishing. The state
is given by

ρm(0) =
∞∑
l=0

ρll |l〉 〈l| , (24)

where ρll = l̄l

(l̄+1)l+1 is the phonon-number distribution with l̄

being the average number of phonons. Since the thermal state
has only the diagonal terms, the coefficients shown in Eq. (11)
are al = ρll and bl = cl = 0. Therefore, the population inver-
sion W (t ) for the thermal state is given by

W (t ) =
∞∑
l=0

cos(gp0

√
lt ) cos(gp0

√
l + 1t ) cos(ωmt )ρll .

(25)

Using the same method discussed above, we can reconstruct
the phonon distribution for the thermal state.

The numerical results are shown in Fig. 6 where we assume
the average phonon number l̄ = 2. In Fig. 6(a) we compare the
reconstruction results for two different cutoffs with the exact
thermal distribution. We can see that, when lmax is not large
enough, the reconstruction deviates from the exact distribution
significantly. However, if we increase the cutoff lmax, the
reconstruction result matches the exact thermal distribution
very well. In Fig. 6(b), we show the reconstruction results
for two different coupling strengths. It shows that a larger
coupling strength can give a better reconstruction result. In
Fig. 6(c), we consider the case when the velocity of the
atoms has certain uncertainty. In the figure, we compare the
reconstruction results for two different velocity uncertainties,
i.e., 2% and 4%. It is shown that smaller uncertainty can have

FIG. 6. Comparison between the exact and reconstructed phonon-number distributions for initially mechanical thermal state. (a) The
comparison is made using lmax = 6 and lmax = 10 with gm/ωm = 0.07. (b) The comparison is made for two different coupling strengths
(gm/ωm = 0.05 and 0.09) with lmax = 10. (c) The comparison is made using two different values for the fluctuation in the interaction time, 4%
and 2% with gm/ωm = 0.09 and lmax = 10. Mean number of phonons is l̄ = 2.
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FIG. 7. Possible experimental realization with 85Rb atoms. The
transverse velocity of the atoms are collimated by a pinhole and
optical molasses. The longitudinal velocity can be controlled by a
velocity selector. The population in the excited state can be detected
by the field-ionization technique.

better reconstruction results. Even if the uncertainty is 4%,
the reconstructed phonon distribution cans still be very close
to the exact thermal phonon distribution.

V. POSSIBLE EXPERIMENTAL REALIZATION

A possible experimental realization of our scheme is shown
in Fig. 7, where the detection atom is the Rydberg Rubidium-
85 (85Rb) atom. Here, three energy levels of the 85Rb atoms
are involved, i.e., 5S1/2 (|s〉), 63P3/2 (|e〉), and 61D5/2 (|g〉).
The 85Rb atoms are ejected from the oven and they are
collimated by a pinhole and an optical molasses. After the
collimation, a velocity selector can be used to choose the
atoms with certain longitudinal velocity to pass through [55–
57]. Then a pumping field is applied to pump the atoms from
the ground state 5S1/2 to the Rydberg excited state 63P3/2.
Here, we can also use the Doppler pumping technique [58,59]
to excite the atoms with special longitudinal velocity from the
state 5S1/2 to the state 63P3/2 instead of using the velocity
selector and a pumping field. The Rydberg atoms then pass
through the optomechanical cavity and interact with the cavity
field which is initally in the vacuum state. The transition
63P3/2 ↔ 61D5/2 has a transition frequency ωa

∼= 2π × 21.5
GHz [56], which is resonant with the cavity field frequency.
The single photon coupling strength gc can be about 44 kHz as
in [56]. Since the longitudinal velocity is fixed, the interaction
time is also fixed. After the interaction, the standard field-
ionization technique can be applied to detect the atom in the
state |e〉 or the state |g〉.

The experiment can then be repeated with the same
interaction time tk0 for a number of times to obtain the
population inversion W (tk0 ). The above procedure can be
repeated for different interaction times by controlling the

velocity selector and obtain a set of values of W (tk ) with
k = 1, 2, . . . , 5(lmax + 1). Finally, we use the method dis-
cussed in previous sections to reconstruct the quantum state
of the mechanical resonator. Here, one should note that the
measurement in our method is an ensemble measurement [60].
A single detection does not yield useful information about the
state of the mirror. Instead, we have to prepare the system
identically for each detection and repeat the measurement
many times to obtain useful information for quantum-state
reconstruction which is similar to Ref. [51]. The number of
measurements depends on the required accuracy.

In this experimental proposal, the energy of the polari-
ton with zero photon number is �0 = 2gc = 88 kHz. We
assume that the optomechanical system is in the weak-
coupling regime such that β = 0.1. Then we have the effective
coupling strength between the polariton and the mechani-
cal mirror gp0 = βgc = 4.4 kHz. To satisfy the condition
for the rotating-wave approximation, we should have ωm +
�0 � gp0 � |ωm − �0|. Thus the fundamental oscillation
frequency of the mechanical mirror ωm should be very close to
�0, which is about 88 kHz. This is realistic because the typical
oscillation frequency of a mechanical mirror can range from
kHz to GHz [1].

VI. CONCLUSION

In this paper, we proposed a scheme to detect the quantum
state of the mechanical mirror. In this scheme, a beam of
two-level atoms initially prepared in the excited state are sent
through an optomechanical cavity to interact with the cavity
field. The polariton formed by the atom and the cavity field
can effectively couple to the phonon of the mechanical mirror.
From this coupling, the quantum state of the mechanical
mirror can imprint to the dynamics of the atom. By measuring
the probability of the atoms to be in the excited state when
exciting the optomechanical cavity, it is possible to recon-
struct the quantum state of the mechanical mirror including
both the phonon number distribution and the phase, even if
the interaction times have a certain amount of uncertainty. We
also show that a mechanical thermal state can be reconstructed
with high fidelity. Our method does not require a strong
optomechanical coupling and it may provide a useful tool in
the quantum information processing based on optomechanical
systems.
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