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Multiphoton Raman transitions and Rabi oscillations in driven spin systems
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In the framework of the nonsecular perturbation theory based on the Bogoliubov averaging method, the
coherent dynamics of multiphoton Raman transitions in a two-level spin system driven by an amplitude-
modulated microwave field is studied. Closed-form expressions for the Rabi frequencies of these transitions
are obtained beyond the rotating-wave approximation for the low-frequency driving component. It is shown that
spin states dressed by the high-frequency component of the driving field are shifted due to the Bloch-Siegert-like
effect caused by antiresonant interactions with the strong low-frequency driving. We predict that with increasing
the order of the Raman transition, the Rabi frequency decreases and the contribution of the Bloch-Siegert shift
to this frequency becomes dominant. It is found that the amplitude and phase of the Rabi oscillations strongly
depend on the initial phase of the low-frequency field as well as on detuning from multiphoton resonance. The
recent experimental data for the second- and third-order Raman transitions observed for the nitrogen-vacancy
center in diamond (Z. Shu et al., arXiv:1804.10492) are well described in the frame of our approach. Our results
may provide new possibilities for coherent control of quantum systems.
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I. INTRODUCTION

The coherent dynamics of two-level quantum systems
(qubits) driven by electromagnetic fields is successfully used
for studying and control of a wide range of physical objects
including, among others, spins [1], atoms [2], artificial atoms
such as quantum dots [3], and superconducting qubits [4]. In
particular, this dynamics is extremely important for quantum
information processing [1,5], quantum sensing [6], and the
realization of new exotic phases, such as topological Floquet
insulators [7] and time crystals [8,9]. Rabi oscillations are
the cyclic behavior of the probability of finding the two-
level system in the excited state and represent the basic
phenomenon used for coherent manipulation of quantum
states. The coherent dynamics of qubits can be described in
terms of dressed states [10]. The dressing of qubits by the
electromagnetic field gives rise to new energy levels of the
coupled field-qubit system. The splitting of each bare level
is characterized by the Rabi frequency. Stimulated transitions
between the dressed states open an additional tool for coherent
quantum manipulation and control [11]. In particular, such
transitions are effectively excited by the second field with
the frequency closed to the Rabi frequency determining the
splitting between the dressed states of the driven two-level
system. This so-called Rabi resonance has been observed for
spin ensembles [12,13] and a single spin [14] in electron
paramagnetic resonance, NMR [15–18], and atoms in the
optical range [19–21]. Additional resonances occur at the
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subharmonics of the Rabi frequency [17–19,22]. The coherent
dynamics of the dressed-state transitions has been studied
directly in time-resolved experiments by recording the Rabi
oscillations between the dressed states [12–14,16,18,20,21].
Since the strength of the driving field inducing transitions
between the dressed states is often comparable to the Rabi
frequency, the rotating-wave approximation (RWA) is broken
and the contribution of the antiresonant (non-RWA) terms
to the coupling Hamiltonian must be taken into account to
explain fully the experimental observations [13,14,23]. In
these papers the Rabi resonance has been observed when
the first driving field was in resonance with the spin system.
Aiming to illustrate the effects of the non-RWA terms of the
transverse field in the strongly driven two-level system under
the low-frequency modulation, the counterrotating-hybridized
rotating-wave method has been developed [24] and the fluo-
rescence spectrum of such system has been obtained [25].

Recently, so-called Floquet Raman transitions have been
observed in the driven solid-state spin system of the nitrogen-
vacancy center in diamond [26]. The system was driven
by the microwave field with its low-frequency amplitude
modulation. The microwave frequency was detuned from the
resonant frequency of the two-level system. Raman transitions
between dressed spin states were excited by the low-frequency
field when multiphoton resonances (termed also Floquet res-
onances [27]) were realized. To describe the Rabi frequencies
of these transitions, in the frame of Floquet theory, the ef-
fective Hamiltonian for the two-level system has been found
and the analytical expressions for the corresponding Rabi
frequencies have been obtained in the RWA [26]. However,
the calculated Rabi frequencies of the Raman transitions were
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significantly smaller than those measured. The correct values
of the observed frequencies were obtained by numerical sim-
ulation. Nonresonant interactions of the low-frequency field
with the dressed spin states, which were neglected in the
used effective Floquet Hamiltonian, may cause the difference
between the analytical estimates and the experimental data.
These interactions can be significant when the low-frequency
driving strength becomes comparable to the splitting between
the dressed states. Such interactions shift the dressed energy
levels and renormalize the interaction strength characterized
by the Rabi frequency of the Raman transition.

In the present paper we propose a theoretical descrip-
tion of multiphoton Raman transitions in a two-level spin
system driven by an amplitude-modulated microwave field.
The description is obtained beyond the rotating-wave ap-
proximation for the low-frequency driving component. We
demonstrate that the construction of the effective Hamiltonian
in the framework of the nonsecular perturbation theory based
on the Bogoliubov averaging method allows us to take into
account the nonresonant processes up to the third order of
the perturbation. The effective Hamiltonian for multiphoton
Raman transitions is introduced in Sec. II. The analytical
description of the dynamics of Raman transitions is presented
in Sec. III. Here the effective strength of Raman transitions is
given, taking into account the Bloch-Siegert-like effect. The
third-order correction to the Rabi frequency is considered in
the Appendix. The effects of the initial phase of the low-
frequency field and detuning of its frequency from multipho-
ton resonances are considered. We test our calculations using
the recent experimental data for the nitrogen-vacancy (NV)
center in diamond [26]. The obtained analytical description of
multiphoton Raman transitions is in good agreement with the
experimental results and demonstrates the significant contri-
bution of the Bloch-Siegert-like effect to the observed Rabi
frequencies.

II. THE EFFECTIVE HAMILTONIAN FOR MULTIPHOTON
RAMAN TRANSITIONS

To observe Raman transitions between Floquet dressed
states of an initially two-level spin system, a microwave field
described by V (t ) = �x cos(ωdt ) + 2A cos(ωdt ) sin(ωt +
ψ ) is synthesized [26]. Here cos(ωdt ) describes the high-
frequency component of the field, sin(ωt + ψ ) represents
the low-frequency component with the initial phase ψ ,
and �x, A � ωd . In particular, for the NV center an ef-
fective two-level system is realized when the microwave
field excites transitions between the spin sublevels |0〉
and |−1〉 of this center, while the level |+1〉 is far de-
tuned. The Hamiltonian of the two-level system at such
driving can be written as Hlab = �E

2 σ z + �x cos(ωdt )σx +
2A cos(ωdt ) sin(ωt + ψ )σx , where �E is the transition en-
ergy between the levels |0〉 and |−1〉, and σ z and σx are Pauli
operators. We use the frame rotating with the driving field
frequency ωd and the RWA for this field (since the conditions
ω,�x, A � ωd are fulfilled). The obtained Hamiltonian for
an analysis of Raman transitions is

H = �z

2
σ z + �x

2
σx + A sin(ωt + ψ )σx, (1)

where �z = �E − ωd . The dynamics of the system un-
der study is described by the Liouville equation for
the density matrix ρ: i∂ρ/∂t = Hρ (in the follow-
ing we take h̄ = 1). Rotating the frame around the
y axis by an angle of θ [ρ → ρ1 = U

†
1ρU1, U1 =

e−iθσ y/2, and σy = (σ+ − σ−)/i], we obtain the same
equation with the Hamiltonian H1 = U

†
1HU1 = ω0

2 σ z +
A cos θ sin(ωt + ψ )σx + A sin θ sin(ωt + ψ )σ z, where ω0 =√

�2
z + �2

x , sin θ = �x/ω0, and cos θ = �z/ω0. After the

second canonical transformation ρ1 → ρ2 = U
†
2ρ1U2 with

U2 = exp{−i[ω0t − 2A sin θ
ω

cos(ωt + ψ )] σ z

2 }, we obtain the
Liouville equation for ρ2 with the Hamiltonian

H2 = U
†
2H1U2 − iU

†
2

∂U2

∂t

= A

2i
cos θ

[
σ+

∞∑
n=−∞

Jn(a)e−inπ/2(ei(n+1)ωtei(n+1)ψ

− ei(n−1)ωt ei(n−1)ψ )eiω0t + H.c.

]
, (2)

where Jn(a) is the Bessel function of the first kind and a =
2A sin θ/ω.

Now we consider multiphoton Raman transitions when
the resonance condition ω0/k = ω − δ is fulfilled for k =
1, 2, 3, . . ., where detuning δ from the exact resonance is
introduced and |δ| � ω. The Hamiltonian H2 contains an
infinite sum of oscillating harmonics with frequencies which
are integer multiples of the frequency ω. There are no oscil-
lations for n = −k + 1 and n = −k − 1. Therefore, the terms
of the sum with these n give the largest contribution. These
terms correspond to the RWA. However, the other oscillating
terms can be significant if the strong-coupling condition 0.1 <

A/ω < 1 is fulfilled. The contribution of such oscillating
terms can be taken into account using the Bogoliubov aver-
aging method [28]. This method allows us to construct, in the
framework of the nonsecular perturbation theory, some time-
independent effective Hamiltonian. The averaging procedure
up to the second order in A cos θ/ω (see [28,29]) gives the
effective Hamiltonian H2 → Heff = H

(1)
2 + H

(2)
2 , where

H
(1)
2 = 〈H2(t )〉,

(3)

H
(2)
2 = i

2

〈[ ∫ t

dτ [H2(τ ) − 〈H2(τ )〉],H2(t )

]〉
.

Here the symbol 〈· · · 〉 denotes time averaging over rapid
oscillations of the type exp(±imωt ) given by 〈O(t )〉 =
ω

2π

∫ 2π/ω

0 O(t )dt . The upper limit t of the indefinite integral
indicates the variable on which the result of the integration
depends and the large square brackets denote the commutation
operation.

Calculations based on Eq. (3) give

H
(1)
2 (k) = (−1)k+1 �k

2
(σ+e−ik(ψ−π/2)e−ikδt + H.c.),

(4)

H
(2)
2 (k) = ωBS

k

2
σ z,
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where

�k = 2k
Jk (a)

a
A cos θ,

ωBS
k = A2 cos2 θ

2ω

{ ∑
n�=−k−1

J 2
n + JnJn+2

n + k + 1

+
∑

n�=−k+1

J 2
n + JnJn−2

n + k − 1

}
. (5)

Here �k is the Rabi frequency of the kth-order Raman tran-
sition in the RWA, ωBS

k is the Bloch-Siegert-like frequency
shift for the kth-order transition, and all Bessel functions are
evaluated at point a. This shift is caused by the nonresonant
terms in the Hamiltonian (2). The Bessel functions Jn(a) in
Eq. (5) for �k appear due to taking into account virtual multi-
photon transitions, in which the number of absorbed (emitted)
photons exceeds by |k| the number of emitted (absorbed)

photons. Below we consider the total effective Hamiltonian
Heff (k), which is the sum of the Hamiltonians H

(1)
2 (k) and

H
(2)
2 (k) over every possible value of k.

III. THE DYNAMICS OF RAMAN TRANSITIONS

For the kth-order Raman transition the dynamics of
the system under study is described by the Liouville
equation for the density matrix ρ

(k)
3 : i∂ρ

(k)
3 /∂t = H̃eff (k)ρ (k)

3 ,
where H̃eff (k) = H̃

(1)
2 (k) + H

(2)
2 (k) − kδσ z/2, H̃

(1)
2 (k) =

(−1)k+1(�k/2)(σ+e−ik(ψ−π/2) + H.c.), ρ
(k)
3 = U

†
3ρ2U3, and

U3 = e−ikδσ z/2. The density matrix in the interaction
representation in the laboratory frame is written as
ρ (k)(t ) = U1U2U3e

−iH̃eff (k)tU
†
1ρ(0)U1e

iH̃eff (k)tU
†
3U

†
2U

†
1 . We

assume that the system is initially in the ground state |0〉.
Using the equation for ρ (k)(t ), we obtain the probability to
find the system in some moment again in the ground state
P

(k)
|0〉 (t ) = 〈0|ρ (k)(t )|0〉,

P
(k)
|0〉 (t ) = 1

2
+ 1

2
cos2 θ −

(
�k

�∗
k

)2

cos2 θ sin2 �∗
k

2
t + (−1)k+1 �k

4�∗
k

sin

[
k

(
ψ − π

2

)
− a cos ψ

]
sin 2θ sin �∗

kt −

− (−1)k+1

(
ωBS

k − kδ
)
�k

2�∗2
k

cos

[
k

(
ψ − π

2

)
− a cos ψ

]
sin 2θ sin2 �∗

k

2
t

+ 1

2
sin θ

{
−

[
(−1)k+1 �k

�∗
k

sin

(
kψ − kπ

2

)
cos θ + ωBS

k − kδ

�∗
k

sin θ sin(a cos ψ )

]
sin �∗

kt

+
[

�2
k

�∗2
k

cos(2kψ − kπ − a cos ψ ) sin θ −
(

ωBS
k − kδ

�∗
k

)2

sin θ cos(a cos ψ )

− (−1)k+1 2�k

(
ωBS

k − kδ
)

�∗2
k

cos

(
kψ − kπ

2

)
cos θ

]
sin2 �∗

k

2
t

+ sin θ cos(a cos ψ ) cos2 �∗
k

2
t

}
cos[kωt − a cos(ωt + ψ )]

+ 1

2
sin θ

{
−

[
(−1)k+1 �k

�∗
k

cos

(
kψ − kπ

2

)
cos θ + ωBS

k − kδ

�∗
k

sin θ cos(a cos ψ )

]
sin �∗

kt

+
[

�2
k

�∗2
k

sin(a cos ψ − 2kψ + kπ ) sin θ +
(

ωBS
k − kδ

�∗
k

)2

sin θ sin(a cos ψ )

+ (−1)k+1 2�k

(
ωBS

k − kδ
)

�∗2
k

sin

(
kψ − kπ

2

)
cos θ

]
sin2 �∗

k

2
t

− sin θ sin(a cos ψ ) cos2 �∗
k

2
t

}
sin[kωt − a cos(ωt + ψ )], (6)

where

�∗
k =

√
�2

k + (
ωBS

k − kδ
)2

(7)

is the Rabi frequency in the non-RWA which takes into
account the Bloch-Siegert-like shift.

Thus, the state population P
(k)
|0〉 of the qubit level |0〉 for the

kth-order Raman transition oscillates slowly at the non-RWA
Rabi frequency �∗

k [the third, fourth, and fifth terms in Eq. (6)]
and quickly at the frequencies which are integer multiples of

the frequency ω [the other terms in Eq. (6)]. The amplitudes of
the fast oscillations change slowly with the frequency �∗

k . The
fast multiphoton oscillations are caused by the longitudinal
interaction ∼sin(ωt + ψ )σ z in the Hamiltonian H1. The non-
RWA frequency �∗

k replaces the standard Rabi frequency,
yielding a more precise value for the oscillation frequency of
P

(k)
|0〉 . Equation (7) shows that even at strong driving the non-

RWA frequency �∗
k can be equal to the standard RWA Rabi

frequency �k when the Bloch-Siegert shift is compensated by
the corresponding detuning δ (see Sec. III B).
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FIG. 1. State population of the spin level |0〉 as a function of
the evolution time for different Raman transitions. The strength
of the low-frequency field is A/2π = 2.22 MHz and its frequency
ω = ω0/k, ω0/2π = 14.17 MHz, �x/2π = 10.12 MHz, �z/2π =
9.92 MHz, and ψ = 0. The slow oscillations at the non-RWA fre-
quency and the fast oscillations at the frequencies which are integer
multiples of the frequency ω are shown by red and green lines,
respectively. The system is initially in the ground state |0〉.

A. Effective strength of Raman transitions

Figure 1 depicts the oscillations of the ground-state pop-
ulation of the driven two-level spin system. The oscillations
were calculated from Eq. (6) with the Raman transitions
with k = 1, 2, 3, 4, assuming that the phase of low-frequency
field ψ = 0. The slow oscillations (red lines) at the non-
RWA frequency �∗

k are accompanied by the fast oscillations
(green lines) at frequencies which are integer multiples of
the frequency ω. The values of �∗

k characterize the effective
strength of the spin-field coupling for Raman transitions and
strongly decrease with increasing k.

B. Bloch-Siegert-like shift

Figure 2(a) shows the dependences of the values of the
non-RWA Rabi frequency �∗

2, the RWA Rabi frequency �2,
and the Bloch-Siegert-like shift ωBS

2 on the strength of the low-
frequency driving. They were calculated from Eqs. (5) and (7)
for the second-order Raman transition [ω0 = 2(ω − δ)]. The
parameters of the driving field are the same as those used in
the experiment [26]. We also compare our calculations with
the experimental data from Ref. [26] and find that the calcu-
lated dependence of �∗

2(A) well approximates these data. One
can see that it is impossible to obtain quantitative agreement
between the theoretical and experimental results using only
�2(A) without taking into account the Bloch-Siegert shift.
At such driving the Bloch-Siegert shift is comparable to the

-

FIG. 2. Dependence of the RWA Rabi frequency �k , the non-
RWA Rabi frequency �∗

k (and �̃∗
2), and the Bloch-Siegert-like shift

ωBS
k on the amplitude of the driving field for different Raman tran-

sitions. The parameters are ω = ω0/k + δ, ω0/2π = 14.17 MHz,
�x/2π = 10.12 MHz, �z/2π = 9.92 MHz, and ψ = 0. (a) Second-
order Raman transition, with δ/2π = 0.005 MHz. The open circles
show the experimental data from Ref. [26]. (b) Second-, third-, and
fourth-order Raman transitions, with δ = 0.

value of the RWA Rabi frequency �2 value. The third-order
correction ��2 in �2 is presented in the Appendix [see
formula (A2)]. The dependence �̃∗

2(A) with the third-order
correction given by Eq. (A3) is shown in Fig. 2(a) by the
dashed line. The effect of such a correction is small for the
used values of A and ω. The non-RWA Rabi frequencies for
the second-, third-, and fourth-order Raman transitions are
compared in Fig. 2(b). Unlike the second-order transition,
for the Raman transition with k = 3 and k = 4 the Bloch-
Siegert frequency shift gives the dominant contribution to the
non-RWA Rabi frequencies. The presented results obviously
demonstrate that the driving field applied in the experiment
[26] cannot be considered as the weak one because A/ω is
about 0.3. Consequently, the obtained experimental results
must be described beyond the RWA, taking into account the
antiresonant terms in the Hamiltonian (2). In fact, such a de-
scription was realized in Ref. [26] by numerical calculations.
Note that the strong-driving regime can easily be achieved
for the dressed spin transitions. It is much more difficult to
realize such a regime for the bare spin transitions excited
by the monochromatic field because the driving strength is
usually much weaker than the spin resonant frequency. In this
case the strong driving of superconducting artificial atoms is
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FIG. 3. Dependence of the non-RWA Rabi frequency �∗
k on

detuning δ = ω − ω0/k for the kth Raman transition.

commonly studied [30]. Note that the curve for the non-RWA
Rabi frequency calculated with the third-order correction is
still outside the error bars of the experimental points [Fig.
2(a)]. Because the least-squares fit of the results is also outside
the error bars of two experimental points, it is difficult to
expect that higher-order corrections would make the curve
lie inside the error bars. Additional studies, including new
experiments, are needed to find a reason for this discrepancy.

The obtained dependence of the non-RWA Rabi frequency

�∗
k =

√
�2

k + (ωBS
k − kδ)2 on detuning δ = ω − ω0/k allows

us to find directly the Rabi frequency in the RWA �k for the
kth Raman transition and the corresponding Bloch-Siegert-
like shift using the position of the maximum of the function
�∗

k (δ) (Fig. 3). The minimum frequency corresponding to the
RWA Rabi frequency is obtained when the Bloch-Siegert-like
shift is compensated by the positive value of δ.

Figure 4 shows the state population of the spin level |0〉 as a
function of the evolution time for the second- and third-order
Raman transitions calculated from Eq. (6) with the parameters
used in the experiment [26]. For the second-order Raman
transition there is good agreement between the theoretical
and experimental results [Fig. 4(a)]. In this case the Bloch-
Siegert-like shift ωBS

2 /2π = 0.27 MHz is 7 times larger than
the detuning 2δ/2π = 0.038 MHz. In accord with Eq. (7), the
observed oscillation is characterized by the non-RWA Rabi
frequency �∗

2/2π = 0.455 MHz, which differs from the RWA
Rabi frequency �2/2π = 0.394 MHz. Another situation is
realized for the third-order Raman transition [Fig. 4(b)]. At
the detuning 3δ/2π = 0.19 MHz, given in Ref. [26], the
calculated frequency of the Rabi oscillation (the red dashed
line) is something larger than the measured one. However, an
increase of the detuning by 0.05 MHz up to the value equaled
to ωBS

3 /2π = 0.24 MHz compensates for the Bloch-Siegert
effect and the oscillation (the red solid line) occurs at the RWA
Rabi frequency coinciding with the observed one.

C. Effects of the initial phase of the low-frequency field

Features of the Rabi oscillations for Raman transitions
strongly depend on the initial phase of the low-frequency field
(Fig. 5). An increase of the phase of the driving field from 0
to 90◦ decreases the amplitude of the Rabi oscillations and
changes their phase. The case of the random phase, when the
phase is stochastic and uniformly distributed from 0 to 2π , is
also presented. The detailed phase dependences are presented
in Fig. 6 for two amplitudes of the driving field. The amplitude
and the phase of the Rabi oscillation for each k shows periodic
changes with a period 2π . These changes weakly depend on
the driving strength and are most visible for k = 3 and k = 4.

FIG. 4. State population of the spin level |0〉 for the second- and
third-order Raman transitions as a function of the evolution time. The
decaying Rabi oscillations (blue lines) are a fit to the experimental
data from [26] represented by the open circles. The undamped
sinusoids (red lines) show our calculations of the Rabi oscillations
accompanied by the fast oscillations. The strength and phase of the
driving field are A/2π = 2.37 MHz and ψ = 0, respectively. (a)
Second-order Raman transition at ω/2π = 6.985 MHz, �x/2π =
9.67 MHz, �z/2π = 10.03 MHz, and 2δ/2π = 0.038 MHz. (b)
Third-order Raman transition at �x/2π = 9.67 MHz and �z/2π =
9.82 MHz. The red solid and dashed lines are the Rabi oscillations
calculated at 3δ/2π = 0.24 MHz and ω/2π = 4.674 and at 3δ/2π =
0.19 MHz, ω/2π = 4.657 MHz, respectively. The system is initially
in the ground state |0〉.

The dependence of P
(k)
|0〉 (t ) on the phase of the driving field

gives additional possibilities for coherent control of a quantum
system and can be used in dressed-state engineering.

D. Amplitudes of Rabi oscillations for multiphoton
resonances versus detuning

The dependences of the amplitudes of the Rabi oscillations
on detuning δ = ω − ω0/k for different Raman transitions are
presented in Fig. 7. Due to the Bloch-Siegert effect the reso-
nant frequencies are shifted from ω0/k. As mentioned above,
the Bloch-Siegert shift can be compensated by the positive
value of detuning δ. This value does not exceed the half-width
of the resonance lines presented in Fig. 7. At such detuning
the non-RWA Rabi frequency �∗

k coincides with the RWA
Rabi frequency �k [see Eq. (7)]. The multiphoton resonances
become sharper with increasing order of the Raman transition.
To obtain the intensive Rabi oscillation, the resonant condition
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FIG. 5. State population of the spin level |0〉 for the second-order
Raman transition as a function of the evolution time at different
values of the phase ψ of low-frequency field. The probability was
calculated from Eq. (6). The open circles at ψ = 0 show the experi-
mental data from [26]. The strength and frequency of the driving field
are A/2π = 2.22 MHz and ω/2π = 7.09 MHz, respectively. The
other parameters are �x/2π = 10.12 MHz, �z/2π = 9.92 MHz,
and δ/2π = 0.005 MHz. The system is initially in the ground
state |0〉.

must be fulfilled more precisely for the higher-order Raman
transitions.

The presented closed-form expressions and their applica-
tions for describing the coherent dynamics of Raman transi-
tions in the driven solid-state spin system of the NV center in
diamond demonstrate that the Bloch-Siegert frequency shift
gives a significant contribution to the frequency of multipho-
ton Rabi oscillations for k = 2 and becomes dominant for
k = 3 and k = 4. That is because the value of the coupling
between the low-frequency driving field and the spin system is
compared to the driving frequency. At such strong interaction
the nonresonant processes of emission and absorption of
photons become significant. As a result, the dressed states of
the spin system are considerably shifted and the nonresonant
processes essentially determine the values of multiphoton
Rabi frequencies.

IV. CONCLUSION

We have studied the coherent dynamics of multiphoton
Raman transitions between dressed states in a two-level solid-

(a
rb

. u
ni

ts
)

FIG. 6. (a) Amplitude and (b) phase of Rabi oscillation for
different order Raman transitions versus the phase ψ of the low-
frequency driving field. The strengths of the driving field are
A/2π = 1.79 MHz (solid lines) and A/2π = 2.22 MHz (dashed
lines); ω = ω0/k, ω0/2π = 14.17 MHz, �x/2π = 10.12 MHz, and
�z/2π = 9.92 MHz.

state spin system driven by an amplitude-modulated mi-
crowave field. In the framework of the nonsecular perturbation
theory based on the Bogoliubov averaging method, closed-
form expressions for the Rabi frequencies of these transitions
have been obtained beyond the RWA for the low-frequency
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FIG. 7. Amplitude of Rabi oscillation for different Raman
transitions versus detuning δ=ω−ω0/k, with A/2π =2.22 MHz,
�x/2π =10.12 MHz, �z/2π =9.92 MHz, and ω0/2π =14.17 MHz.

driving component. We have found the contribution of the
Bloch-Siegert-like shift to the Rabi frequency and shown that
for the high-order Raman transitions this shift can dominate.
We predicted the strong dependence of the amplitude and
phase of the Rabi oscillations on the initial phase of the
modulation field as well as on detuning from multiphoton
resonance. The obtained results are in good agreement with
the recent experimental data for the nitrogen-vacancy center
in diamond [26]. The demonstrated multiphoton dynamics

extends coherent quantum control in dressed-state engineer-
ing by using the strong low-frequency driving.
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APPENDIX

For k = 2, the contribution of the third order in the pa-
rameter A cos θ/ω to the effective Hamiltonian of the nonsec-
ular perturbation theory based on the Bogoliubov averaging
method is written as (see [28,29])

H
(3)
2 = −1

3

〈[[[ ∫ t

dτ [H2(τ ) − 〈H2(τ )〉],
[ ∫ t

dτ [H2(τ )

−〈H2(τ )〉], [H2(t ) + 1
2 〈H2(t )〉]

]]]]〉
.

Then we obtain

H
(3)
2 = ��2

2
(σ+e−i2ψ + H.c.), (A1)

where

��2 = A3 cos3 θ

6ω2

{ ∑
n �=−3
m�=−3

JnJm

(n + 3)(m + 3)
(Jn+m+3 + Jn+m+5 + J−n+m−3 + J−n+m−1)

+
∑
n �=−3
m�=−1

JnJm

(n + 3)(m + 1)
(Jn+m+1 + Jn+m+3 + J−n+m−5 + J−n+m−3)

+
∑
n �=−1
m�=−3

JnJm

(n + 1)(m + 3)
(Jn+m+1 + Jn+m+3 + J−n+m−1 + J−n+m+1)

+
∑
n �=−1
m�=−1

JnJm

(n + 1)(m + 1)
(Jn+m−1 + Jn+m+1 + J−n+m−3 + J−n+m−1)

−2J2

a

∑
n�=−3

Jn

(n + 3)2
(Jn + Jn+2 − J−n−4 − J−n−6)

− 2J2

a

∑
n�=−1

Jn

(n + 1)2
(Jn + Jn−2 − J−n−4 − J−n−2)

}
(A2)

and ��2 is the third-order correction in �2. To simplify the
notation of the formula, we omit the argument a of the Bessel
functions Jk . The non-RWA Rabi frequency with the third-
order correction is rewritten as

�̃∗
2 =

√
(�2 + ��2)2 + (

ωBS
2 − kδ

)2
. (A3)

Since the third order of the perturbation theory gives the
small correction, the contribution of H

(3)
2 (k) can be neglected.

Then the non-RWA Rabi frequency of the kth-order Raman
transition can be expressed in the approximate form

�∗
k ≈

√
�2

k + (
ωBS

k − kδ
)2

. (A4)
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