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An open question in experimental physics is the characterization of gravitational effects in quantum regimes.
We propose an experimental setup that uses well-tested techniques in cavity optomechanics to observe the effects
of the gravitational interaction between two micromechanical oscillators on the interference of the cavity photons
through the shifts in the visibility of interfering photons. The gravitational coupling leads to a shift in the
period and magnitude of the visibility whose observability is within reach of current technology. We discuss
the feasibility of the setup as well as the effects on entanglement due to gravitational interaction.
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I. INTRODUCTION

One of the biggest difficulties in constructing a theory of
quantum gravity is the lack of experimental data. Unavail-
ability of clean data from regimes where both quantum and
gravitational effects are present have cast a long shadow on the
fundamental conceptual problems that a theory of quantum
gravity is expected to solve [1,2]. Although both theories
have been successfully tested to extremely high degrees in
their respective domains of validity, the disparities between
them (i.e., large distances and massive bodies for general
relativity versus short distances and small masses for quan-
tum mechanics), which stem from the weakness of gravity
and the decoherence of quantum states, have led to the yet-
unsurmounted task of designing experiments that can access
regimes where both theories predict effects of comparable
degrees of observability.

These experiments are of two types: (1) those where the
goal is only to construct a measurement apparatus sensitive
enough to provide information about cosmological and as-
trophysical phenomena, or (2) those experiments where both
the source of observations and the measurement apparatus
need to be constructed. The former include observations of
the primordial cosmic microwave background (CMB) for
information about the very early universe (i.e., a rare example
of a natural quantum gravity regime) and sensitive detection
of gravitational waves from black hole mergers as a possible
source of information about the quantum degrees of freedom
inside black holes [3]. The latter approach was first proposed
by Feynman [4], where he suggested putting a massive object
in superposition to test whether its gravitational field can also
be put in superposition (i.e., is quantum in nature) or whether
a “gravitational collapse” would prevent this from happening.

Advances in optomechanics [5] and atom interferometry
[6] have made the possibility of measuring the effects of
gravity in table-top quantum systems closer than ever. Another
promising route exploits advanced satellite technologies that
will allow quantum protocols to be tested over large length

scales where the effects of gravity and spacetime curvature
are expected to be nontrivial [7].

Proposals to observe the effects of models of gravity that
modify quantum mechanics, such as gravitational decoher-
ence and semiclassical gravity, in optomechanical settings
have been considered before [8]. Experiments to date have
also been able to demonstrate the effect of Earth’s (classical)
background gravitational field on quantum particles, whether
as single states [9,10] or in superposition [11].

What is lacking are experiments that probe the mutual
gravitational interaction between two quantum systems. In
this paper, we address this by considering the effect of the
gravitational interaction between two quantum systems in an
optomechanical setting. In particular, we investigate the ques-
tion, given the Newtonian gravitational interaction between
two quantized systems, how can we experimentally observe
the effects of this interaction? To this end we propose an
optomechanical setup to observe the effect of the gravitational
interaction between two quantum micromechanical oscilla-
tors. A setup involving superposing mirrors of order 1014

atoms was proposed in [12], and its application in observing
the effects of gravitational decoherence models was consid-
ered in [13]. Here we assume that the gravitational interaction
is Newtonian gravity GMm/|r̂1 − r̂2|, where r̂1 and r̂2 are
position operators of the gravitating masses, and calculate its
effect on the visibility pattern of interfering photons in an
optomechanical setup perturbatively. We find that the gravi-
tational coupling leads to an observable shift in the period and
magnitude of the visibility of photons that is within reach of
today’s technologies.

Our paper is organized as follows. We first discuss the
setup to be used to search for the model’s signatures and
the parameters that will optimize between their strength and
experimental feasibility. The nature and magnitude of the
signatures is then discussed, as well as the requirements to
deal with environmental decoherence and systematic errors.
We sum up our results in a concluding section.
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FIG. 1. The proposed setup consists of two freely moving angular oscillators suspended with vertical displacement h between them and
moving angularly in the horizontal plane to which they are fixed. At the center of each oscillator is a mirror that forms the oscillating part
of a cavity system, whose other part is a fixed mirror at distance d away. A focusing lens is used to reduce leakage of cavity photons due to
reflections from angularly oscillating mirrors. Photons with high radiation pressure are put in a superposition of either entering the cavity with
the movable end mirror or an empty cavity with the same unperturbed length. The beams exiting each cavity are then recombined and the
resulting visibility pattern analyzed, as in shown in (a).

II. EXPERIMENTAL PROPOSAL

Figure 1 shows the experimental setup. It consists of a
mechanical component [Fig. 2(b)] formed by two oscillating
rods with end masses, as well as an optical component [Fig.
2(a)]. For the mechanical component, two microrods of length
2L each are suspended from their center with a relative
vertical separation h. Masses of mass M and m, respectively,
are fixed at the ends of each rod and mirrors are attached to
the center of each of the rods. The mirrors will form the end
mirrors, which act as mechanical oscillators, of high-finesse
optical cavities.

The optical component of the experiment has two similar
parts, one for each of the oscillating mirrors. Each part follows
the scheme of Ref. [14], which makes use of a Michelson
interferometer to prepare a microscopic oscillator in a super-
posed state. For each part, an input pulse will be generated us-
ing a high-radiation-pressure photon source. The input pulse
will be split using a beam splitter into two paths, one going
into the cavity with the movable end mirror attached to the
oscillating rod while the other passes through an empty cavity.
A lens will be placed in the cavity to focus the incoming beam
onto an edge of the mirror, so that the time needed to cross the
length d of the empty cavity is much smaller than the period of
the rod. Individually, the visibility pattern of the photon from
each part of the setup can reveal that the associated mirror is
in a superposed state, as explained in Ref. [14]. However, the
gravitational interaction between the two oscillating rods will
lead to a shift in the visibility patterns observed.

The Hamiltonian describing the interaction between the
cavity modes with the mirrors is given by [15]

H1 = h̄ωc(c†1c1 + c
†
2c2)+h̄�aa

†a − �mh̄�ac
†
1c1(a† + a)

+ h̄ωd (d†
1d1 + d

†
2d2)+h̄�bb

†b−�Mh̄�bd
†
1d1(b† + b),

(1)

where a and a† (respectively b and b†) are the creation and
annihilation operators of the mechanical modes of rod m

(M), c1 and c
†
1 (d1 and d

†
1) are the creation and annihilation

operators of photons in the path entering the cavity containing
the mirror attached on rod m (M), while c2 and c

†
2 (d2 and

d
†
2) are those of photons in the path not entering the cavity.

In addition, ωc and ωd are the frequencies of the two input
pulses, �a and �b are the natural frequencies of the two rods
of masses m and M , respectively, and

�m = ωc

2d �a

√
h̄

m�a

, �M = ωd

2d �b

√
h̄

M�b

(2)

are the optomechanical coupling constants [14]. The rods are
assumed initially to be in coherent oscillatory states

|βj 〉 =
∞∑

n=0

βn
j√
n!

|n〉 , j ∈ {m,M}, (3)

where |n〉 are the Fock eigenstates of the harmonic oscillator.
The initial state of the total system is

|ψ (0)〉 = 1√
2

(|0, 1〉c + |1, 0〉c ) |βm〉

× ⊗ 1√
2

(|0, 1〉d + |1, 0〉d ) |βM〉 , (4)

where |1, 0〉χ = χ
†
1 |0〉, |0, 1〉χ = χ

†
2 |0〉 for χ = c, d and

where |0〉 is the vacuum state of the cavity modes. Under the
action of H1, this state evolves to [16]

|ψ (t )〉 = e−iH1t |ψ (0)〉

= e−iωct

√
2

(|0, 1〉c |�0,m(t )〉 + eiφm(t ) |1, 0〉c |�1,m(t )〉)

⊗e−iωd t

√
2

(|0, 1〉d |�0,M (t )〉 + eiφM (t ) |1, 0〉d |�1,M (t )〉),

(5)
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FIG. 2. (a) The visibility pattern of the photon field in the cavity system of rod m before coupling it to rod M , showing periodic
behavior whose period is determined by that of the oscillator T ′ = 2π/�a , and the strength of its drop at every half-period depends on the
optomechanical coupling between the rod and the photon field. (b) The shift in the magnitude of visibility from the case with no gravitational
coupling as a function of time due to the combined effect of the modified period of the oscillator, 2π/�a → 2π/ωa = T , and the action of the
coupled Hamiltonian on the state of the system and calculated perturbatively in Eq. (19).

where

�0,j (t ) = βje
−i�k t

�1,j (t ) = βje
−i�k t + �j (1 − e−i�k t )

φj (t ) = �2
j (�kt − sin �kt ) + �j Im[βj (1 − e−i�k t )] (6)

for (j, k) ∈ {(m, a), (M,b)}. The interferometric visibility
pattern is directly measurable from the statistics of photon
detection and, therefore, it provides an important source of
information about the cavity system. If the system evolves
only according to H1, then the visibility pattern on the photons
of the two cavities will be

V0,c(t ) = e−�2
m(1−cos �a t )

V0,d (t ) = e−�2
M (1−cos �bt ), (7)

which shows the independence of each cavity system from
the other and that the timescale of oscillation of the visibility
pattern is set by the frequency of the oscillating rod. In this
case, the visibility is given by twice the absolute value of one
of the off-diagonal terms in the photon density matrix so that,
for instance, if ρc is the reduced density matrix of the photon
coupled to rod m, then V0,c(t ) = 2| Tr[ρ0,c(t ) |0, 1〉c 〈1, 0|c]|.

Our setup is designed so as to maximize the effect of the
gravitational interaction between the two oscillators. Assum-
ing Newtonian gravity, the total quantized Hamiltonian of the
system of interacting oscillators, up to a constant term, is (see
Appendix A)

H = h̄ωc(c†1c1 + c
†
2c2) + h̄ωaa

†a − λmh̄ωac
†
1c1(a† + a)

+ h̄ωd (d†
1d1 + d

†
2d2) + h̄ωbb

†b − λMh̄ωbd
†
1d1(b† + b)

+ h̄γ (a† + a)(b† + b). (8)

We will denote

Hg := h̄γ (a† + a)(b† + b), (9)

where

γ := − G

2h3

√
Mm

ωaωb

(10)

is the gravitational coupling constant between the two oscil-
lators. We note also that the frequencies of the oscillators and
the optomechanical coupling constant is modified from the old
Hamiltonian in Eq. (1) according to

�a → ωa =
√

�2
a + GM

h3
, �b → ωb =

√
�2

b + Gm

h3
,

(11)

�m → λm = ωc

2ωad

√
h̄

mωa

, �M → λM = ωd

2ωbd

√
h̄

Mωb

.

(12)

The visibility pattern of photons in the coupled system will be
different from that of the uncoupled system given in Eq. (8).
To calculate this shift, we switch to the interaction picture in
which the density matrix of the total system is

ρI (t ) = U (t )ρI (0)U †(t ), (13)

where ρI (0) = |ψ (0)〉 〈ψ (0)|,

U (t ) = T exp

[
− i

h̄

∫ t

0
dt ′HI (t ′)

]
, (14)

with T being the time-ordering operator, and

HI (t ) = eiH0t/h̄Hge
−iH0t/h̄

= h̄γ [a†eiωat + ae−iωa t + 2λmc
†
1c1(1 − cos ωat )]

× [b†eiωbt + be−iωbt + 2λMd
†
1d1(1 − cos ωbt )], (15)

(see Appendix B) where H0 is comprised of the first two
lines of Eq. (8). The expectation value of any operator O

is independent of the picture used to calculate it. In the
interaction picture, this is equal to

〈O(t )〉 = Tr[ρI (t )OI (t )]

= Tr[U (t )ρI (0)U †(t )eiH0t/h̄OSe
−iH0t/h̄]

= Tr[e−iH0t/h̄U (t )ρI (0)U †(t )eiH0t/h̄OS], (16)

where OS is the operator in the Schrödinger picture.
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The visibility of photons in the cavity of rod m due to the
full Hamiltonian is therefore

V1,c(t ) = 2| Tr[ρ1,c(t ) |0, 1〉c 〈1, 0|c]|, (17)

where

ρ1,c(t ) = Trm,M,d [e−iH0t/h̄U (t )ρI (0)U †(t )eiH0t/h̄] (18)

is the partial state of the photons in the cavity of rod m in
the Schrödinger picture after tracing out the two oscillators
and the photons in the cavity of rod M . The visibility (17) of
photons in the cavity of rod m is

V1,c(t ) ≈ e−λ2
m(1−cos ωat )

×
∣∣∣∣1 + i2γ

∫ t

0
dt ′λm[1 − cos ωa (t ′ − t )]

× [2βM cos ωbt
′ + λM (1 − cos ωbt

′)]
∣∣∣∣

= e−λ2
m(1−cos ωat ) ×

∣∣∣∣1 + i2γ λm

[
(2βM − λM )

×
(

sin ωbt

ωb

− ωa sin ωat − ωb sin ωbt

ω2
a − ω2

b

)

+ λM

(
t − sin ωat

ωa

)]∣∣∣∣ (19)

to first order in γ (see Appendix C).
Quantum optomechanics allows coherent quantum con-

trol over massive mechanical objects ranging from nano-
sized devices of 10−20 kg, to micromechanical structures of
masses 10−11 kg, up to centimeter-sized suspended mirrors
of several kilograms in mass for gravitational wave detectors
[5]. The first breakthroughs in quantum optomechanics were
with 10−16-kg masses [17,18], followed recently by room-
temperature regimes with masses around 10−12 kg [19], and
proposals for future experiments reaching 10−6-kg masses
[20]. We assume the masses attached to the end of the rods to
be micromechanical structures with masses M = m = 10−13

kg and to be separated by a vertical distance h = 10−8 m, each
mounted on an oscillator with frequencies �a = 3 × 103 Hz,
and �b = α�a for α = 0.9. The oscillators are assumed to be
cooled down to near their ground states so that βM = βm = 1.
We propose to use light of frequency ωc = ωd = 450 × 1012

Hz in both cavities, each with cavity length d = 10 cm.
The precoupling visibility pattern, V0,c(t ), and the shift in

visibility induced by the gravitational interaction, V1,c(t ) −
V0,c(t ), for photons of the cavity system of m are both shown
in Fig. 2. In Fig. 2(a), we see that the visibility pattern of
cavity photons in the noninteracting system has the same pe-
riod 2π/�a as the oscillator, and at half that period it reaches
its minimum point at e−2�2

m . The drop in visibility in the
middle of the period is because oscillations of the rod contain
which-path information about the position of the superposed
photons, dependent on the coupling strength λm between the
photon field and the oscillator. When the oscillator returns
to its original position after a full period of oscillation, this

which-path information is deleted and the visibility is restored
to its original value.

Figure 2(b) shows the shift in visibility as a function of
time when the two oscillators are coupled to each other via
Newtonian gravity. The sources of this shift are twofold.
The first is due to the difference in frequencies between the
coupled oscillators and their idealized uncoupled state. This
is observable as a shift in the frequency of the visibility
pattern of photons of magnitude ωk − �k ≈ GMm

2jh3�k
∼ O(γ ),

for (j, k) ∈ {(m, a), (M,b)}. The second kind of shift is
due to the second term in Eq. (19), which oscillates around
(γ λmλM )2t2 ∼ O(γ 2) and is observable as a growing vari-
ation in the shape of the visibility pattern from the one in
e−λ2

m(1−cos ωat ). Recall also that λM is the coupling parameter
between the mirror in the cavity of rod M and its cavity mode.
From Eq. (19), we see that when this coupling is turned off
(λM = 0), the shift in visibility is still that of Fig. 2(b) for
small times. However, the effect of the coupling is an increase
in the shift with time due to the λM (t − sin(ωat )

ωa
) term. The

linear behavior of the shift in visibility with t is predicted from
perturbation theory for timescales below γ −1 ∼ 853 s for the
parameters used above. Maintaining the coherence of the state
for long enough times will therefore lead to more observable
effects.

III. DISCUSSION

Reminiscent of the experiment done by Cavendish [21]
using suspended masses to measure the gravitational interac-
tion between them, a quantum Cavendish experiment is one
that uses suspended masses in a quantized state to detect
and measure gravitational effects in quantum regimes so
that the effects of Earth’s gravity cancel out. Such types of
experiments have been used before in sensitive verification
of Newton’s inverse-square law at scales below the dark-
energy length scale [22], and have been first incorporated
in an optomechanical setup to approach the quantum limit
of mechanical sensing in [23]. Recently, such a setup was
used to measure the gravitational force of milligram masses
[20], and proposals have considered its application in testing
gravitational decoherence models [24] and its implementation
using optically levitated nanodumbbells [25]. Quantization of
suspended linearly moving mirrors whose dynamics is dom-
inated by the radiation pressure of cavity photons has been
achieved with masses ranging from 40 kg [26] to milligrams
[27].

Our setup requires forming coherent states of torsional
mirrors of nanogram masses by cooling them to their ground
states, surpassing the standard quantum limit of detection
[28]. The suspended masses are coupled to a cavity field
inside an optomechanical setup, and the effect of the mutual
gravitational interaction between the masses is calculated on
the visibility pattern of cavity photons, whose observation is
based on robust and well-tested experimental techniques.

We found that the effects on the visibility are of two types:
a shift in the period of revival by an amount δT = 2π

�a
− 2π

ωa
,

and a change in the shape of the visibility pattern from
the functional form e−λ2

m(1−cos ωat ) that is of order O(γ 2) for
timescale t � γ −1. In practice, it is easier to detect δT , which
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corresponds to δT ≈ 0.78 ns for the parameters used above,
than the shift in vertical magnitude that is of order 10−6 in
Fig. 2(b).

To illustrate, suppose that the visibility at some time t

is drawn from an a priori Gaussian distribution of variance
σ 2. Then the error on the estimate of the visibility at time t

obtained by averaging over N data points is σerror = σ√
N

. If

σerror ∼ 10−6, then N ∼ 1012σ 2, which is difficult to achieve.
On the other hand, the accuracy of measuring δT is dependent
only on the time resolution available.

In practice, an oscillator in a coherent state |β〉 〈β| will be
in a thermal mixture

1

πn̄

∫
d2βe−|β|2/n̄ |β〉 〈β| , (20)

where n̄ = (eh̄ωa/kBT − 1)
−1

is the mean thermal number of
phonon excitations at temperature T . This will modify the
visibility according to [12]

e−λ2
m(1−cos ωat ) → e−λ2

m(2n̄+1)(1−cos ωat ), (21)

which causes a fast decay in visibility that is revived only after
a full period. The width of the visibility’s revived peak scales
according to ∼ 1

λm

√
4kB T

h̄ωa
+2

. Increasing this width constitutes

one of the main experimental challenges to realize this pro-
posal and requires a method to cool down the center-of-mass
mode of the oscillator to very near their ground state [29].
Another experimental challenge is due to decoherence from
the mechanical damping of the oscillator and from dephasing
with the environment, which lowers the revived peak of
visibility. In order to observe the shift in the period of the
oscillators, we need at least to be able to resolve one full
period of the oscillation. If the environment is modeled as an
Ohmic thermal bath of harmonic oscillators and the damping
rate of oscillators is �a , then the dephasing rate due to the
environment at temperature T is �D = �akBT m(�x)2/h̄2,

where �x ∼
√

h̄
mωa

is the uncertainty in position of the os-

cillator [30]. The condition for observing the shift in period
mentioned above is then �D � ωa , which corresponds to

Q � kBT

h̄ωa

∼ n̄, (22)

where Q := ωa/�a is the quality factor of the oscillator. Val-
ues of Q ∼ 107 have been achieved for suspended nanoparti-
cles [31], which corresponds to T � 0.23 K for the parameters
of the setup considered here.

Another source of systematic errors in the setup proposed
is the effect of gravitational interaction with surrounding
objects in the laboratory. If the rods are in a plane at half
the height of a cylinder with all surrounding objects having
a mass distribution of cylindrical symmetry, then the overall
contribution would be a constant to the Hamiltonian that
does not affect the dynamics described above. Earth’s gravity
would give an overall phase to the states of the oscillators that
does not affect their visibility patterns. If we suppose that
an inhomogeneity in the mass distribution surrounding the
oscillators was due to a mass M located at distance �R from
the center of the two rods, then this adds terms of the form
2GMm

| �R−�ra | + 2GMM

| �R−�rb | to the classical Hamiltonian of the system,

FIG. 3. Plot of linear entropy S against t/T .

where �ra and �rb are the position vectors of the masses from the
center. Expanding these terms to first order and quantizing,

this will add to the quantized Hamiltonian −GM
R2

√
h̄m
ωa

(a† +
a) − GM

R2

√
h̄M
ωb

(b† + b) up to constant terms. Comparing with

terms proportional to (a† + a) and (b† + b) in Eq. (8), we see
that the condition for this inhomogeneity to have negligible ef-

fects on the dynamics is to have Naλah̄ωa 
 GM
R2

√
h̄m
ωa

, where

Na is the number of photons in cavity of mass m, and similarly
for M . For the parameters of our setup, this corresponds
to M

NaR2 � 2.2 × 105 kg m−2. Satisfying this condition means
that the systematic errors due to surrounding mass distribution
is negligible.

As mentioned in the Introduction, the main feature of our
proposed scheme is the observation of effects arising from
gravitationally interacting quantum systems (whereas most
previous studies are for a quantum test mass in the back-
ground gravitational field of the Earth). It is also interesting
to note that entanglement, albeit quite weak, is generated
due to this gravitational interaction. Denoting for convenience
the system associated with m system 1 (consisting of the
oscillating mirror and the cavity modes) and that of M as
system 2, we see that the initial state |ψ (0)〉 〈ψ (0)| in Eq. (4)
is separable between the two systems. Since the only coupling
between systems 1 and 2 in the proposed scheme is gravity,
any resulting entanglement between the two systems can be
attributed to the gravitational force. To quantify the amount
of entanglement, we can use the linear entropy, defined as
S = 1 − Tr(ρ2

1 ), where ρ1 is the partial state of system 1. The
calculation of linear entropy is carried out using the same
set of parameters above to second order in γ and is given
in Appendix D. Figure 3 shows the result. Even though the
amount of entanglement generated for the period shown is
small, we observe an increase with time, similar to the shift
in the visibility pattern. Since the visibility is related to how
much which-path information the position of the oscillator
can reveal, which in turn is dependent on the amount of
entanglement between the oscillator and the cavity photons,
the increase in the amount of entanglement due to gravity
shown in Fig. 3 means that, by monogamy of entanglement,
the correlations between the oscillator and the cavity photons
will correspondingly decay. This causes the visibility pattern
to have a growth term as given in Eq. (19). We expect that an
exact calculation will give a linear entropy and visibility that
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are bounded from above. Given the recent interest in observ-
ing entanglement due to gravity [32,33], it will be desirable to
obtain an entanglement witness that can experimentally verify
the entanglement generated for this scheme. One may also
consider whether observable steady-state entanglement due
to gravity may be obtained similar to other optomechanical
settings, for example, in [34].
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APPENDIX A: TOTAL HAMILTONIAN
WITH NEWTONIAN GRAVITY

Two classical harmonic oscillators will couple via gravity
according to

H = p2
m

2m
+ 1

2
Im�2

aθ
2
m + p2

M

2M
+ 1

2
IM�2

bθ
2
M + Hg, (A1)

where Im = 2mL2 and IM = 2ML2 are the two moments
of inertia for the two rods. For two angular oscillators with
masses at each end of a rod of length L and suspended with
vertical displacement h, the classical gravitational interaction
will be

Hg = 2
−GMm(

h2 + [
2L sin

(
θM−θm

2

)]2)1/2

≈ 2
−GMm

h(1 + [L(θM − θm)/h]2)
1/2

≈ 2
−GMm

h

[
1 − 1

2

(
L(θM − θm)

h

)2
]

= −2GMm

h
+ GMm

h3
[L(θM − θm)]2

= −2GMm

h
+ GMmL2

h3

(
θ2
M + θ2

m − θMθm − θmθM

)
.

(A2)

Therefore, up to a constant term, the total Hamiltonian can be
written as

H = p2
m

2m
+ 1

2
mω2

aθ
2
m + p2

M

2M

+ 1

2
Mω2

bθ
2
M − 2GMmL2

h3
θmθM, (A3)

where ωa =
√

�2
a + GM

h3 and ωb =
√

�2
b + Gm

h3 . The fre-
quency of a photon inside a cavity of length d is

ωc = 2π
nc

2d
= nπc

d
, (A4)

where n = 1, 2, 3, . . . and c is the speed of light. When it
couples to an angular oscillator with displacement θ , the

length of the cavity varies d → d + δ for δ << d, so that

ωc = nπc

d + δ
= nπc

d(1 + δ/d )
≈ nπc

d
(1 − δ/d ). (A5)

In our case, δ = L sin θ ≈ Lθ . So,

ωc → ωc − ωc

Lθ

d
. (A6)

Introducing the annihilation operators for the two oscillators,

a =
√

Imωa

2h̄

(
θm + i

Imωa

pm

)
, (A7)

b =
√

IMωb

2h̄

(
θM + i

IMωb

pM

)
, (A8)

and substituting back in the total Hamiltonian to rewrite it in
terms of the creation and/or annihilation operators, including
the photon cavity terms, gives the quantized Hamiltonian of
the total system as

H = h̄ωc(c†1c1 + c
†
2c2) + h̄ωaa

†a − λmh̄ωac
†
1c1(a† + a)

+ h̄ωd (d†
1d1 + d

†
2d2) + h̄ωbb

†b − λMh̄ωbd
†
1d1(b† + b)

+ h̄γ (a† + a)(b† + b), (A9)

exactly as given in Eq. (8).

APPENDIX B: INTERACTION HAMILTONIAN

We will derive here the expression in Eq. (16) for the inter-
action Hamiltonian HI (t ) = eiH0t/h̄Hge

−iH0t/h̄. Given opera-
tors A and B, the Baker-Campbell-Hausdorff (BCH) formula
is

eABe−A = B + [A,B] + 1
2 [A, [A,B]] + · · · . (B1)

The operator e−iH0t/h̄ was calculated to be [35]

e−iH0t/h̄ = e−iωct (c
+
1 c1+c+

2 c2 )ei(λmc+
1 c1 )

2
(ωat−sin(ωat ))

× eλmc+
1 c1(a+α−aα∗ )e−iωa ta

+a × [M], (B2)

where α = (1 − e−iωat ), and [M] here and below denotes the
same part of the term as on its left but under the isomorphic
transformations

(.)a,c,m → (.)b,d,M

a, c → b, d.

Using the BCH formula, the interaction Hamiltonian can be
written as

HI (t ) = eiH0t/h̄h̄γ (a† + a)(b† + b)e−iH0t/h̄

= h̄γ eiωata
†aeλmc

†
1c1(aα∗−a†α)(a† + a)

× e−λmc
†
1c1(aα∗−a†α)e−iωa ta

†a × [M]

= h̄γ eiωata
†a[a† + a + λmc

†
1c1(α + α∗)]e−iωata

†a × [M]

= h̄γ [a†eiωat + ae−iωa t + λmc
†
1c1(α + α∗)] × [M]

= h̄γ [a†eiωat + ae−iωa t+2λmc
†
1c1(1 − cos ωat )]×[M],

(B3)

which is Eq. (16).
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APPENDIX C: VISIBILITY IN THE COUPLED SYSTEM

To calculate the visibility from Eq. (18), we need to know what the action of e−iH0t h̄U (t ) on ρI (0) is. First, note that

e−iH0t/h̄a† = e−iH0t/h̄a†eiH0t/h̄e−iH0t/h̄

= e−λmc
†
1c1(aα∗−a†α)e−iωata

†aa†eiωata
†aeλmc

†
1c1(aα∗−a†α)e−iH0t/h̄

= e−λmc
†
1c1(aα∗−a†α)a†e−iωat eλmc

†
1c1(aα∗−a†α)e−iH0t/h̄

= (a† − λmc
†
1c1α

∗)e−iωa t e−iH0t/h̄, (C1)

and similarly,

e−iH0t/h̄a = (a − λmc
†
1c1α)eiωat e−iH0t/h̄. (C2)

This allows us to write, using the BCH formula, up to first order

e−iH0t/h̄U (t ) ≈ e−iH0t/h̄

(
1 − i

h̄

∫ t

0
dt ′HI (t ′)

)
= e−iH0t/h̄

(
1 − iγ

∫ t

0
dt ′[a†eiωat

′+ae−iωa t
′ + 2λmc

†
1c1(1 − cos ωat

′)] × [M]

)

= e−iH0t/h̄ − iγ

h̄

∫ t

0
dt ′[(a† − λmc

†
1c1α

∗)eiωa (t ′−t ) + (a − λmc
†
1c1α)e−iωa (t ′−t )

+ 2λmc
†
1c1(1 − cos ωat

′)] × [M]e−iH0t/h̄

= 1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + ae−iωa (t ′−t ) + λmc

†
1c1(2 − 2 cos ωat

′ − α∗eiωa (t ′−t ) − αe−iωa (t ′−t ) )] × [M]e−iH0t/h̄

= 1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + ae−iωa (t ′−t ) + λmc

†
1c1(2 − 2 cos ωat

′ − 2 cos ωa (t ′−t ) + 2 cos ωat
′)]×[M]e−iH0t/h̄

= 1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + ae−iωa (t ′−t ) + 2λmc

†
1c1(1 − cos ωa (t ′ − t ))] × [M]e−iH0t/h̄. (C3)

Using this relation, we can calculate the action of this operator on the initial state |ψ (0)〉I of the total system given in Eq. (5)
perturbatively to be

e−iH0t/h̄U (t ) |ψ (0)〉I = |ψ (t )〉 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + ae−iωa (t ′−t ) + 2λmc

†
1c1(1 − cos ωa (t ′ − t ))] × [M] |ψ (t )〉

= |ψ (t )〉 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + ae−iωa (t ′−t ) + 2λmc

†
1c1(1 − cos ωa (t ′ − t ))]

× [b†eiωb (t ′−t ) + be−iωb (t ′−t ) + 2λMd
†
1d1(1 − cos ωb(t ′ − t ))] |ψ (t )〉

= e−iωct−iωd t

2

[(
1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + �0,m(t )e−iωa (t ′−t )][b†eiωb (t ′−t ) + �0,M (t )e−iωb (t ′−t )]

)

× |0, 1〉c |0, 1〉d |�0,m〉 |�0,M〉 +
(

1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + �0,m(t )e−iωa (t ′−t )]

× [b†eiωb (t ′−t ) + �1,M (t )e−iωb (t ′−t ) + 2λM (1 − cos ωb(t ′ − t ))]
)

eiφM (t ) |0, 1〉c |1, 0〉d |�0,m〉 |�1,M〉

+
(

1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + �1,m(t ) + 2λm(1 − cos ωa (t ′ − t ))][b†eiωb (t ′−t ) + �0,M (t )e−iωb (t ′−t )]

)

× eiφm(t ) |1, 0〉c |0, 1〉d |�1,m〉 |�0,M〉 +
(

1 − iγ

h̄

∫ t

0
dt ′[a†eiωa (t ′−t ) + �1,m(t )e−iωa (t ′−t )+2λm(1−cos ωa (t ′−t ))]

× [b†eiωb (t ′−t ) + �1,M (t )e−iωb (t ′−t ) + 2λM (1 − cos ωb(t ′ − t ))]
)

eiφm(t )eiφM (t ) |1, 0〉c |1, 0〉d |�1,m〉 |�1,M〉
]
. (C4)

Tracing out the two oscillators and the photons in the cavity of rod M from the density matrix formed by this state, keeping terms
only of order O(γ ), and calculating twice the absolute value of one of the off-diagonal terms will give the expression V1,c(t ) in
Eq. (19).
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APPENDIX D: LINEAR ENTROPY

If we define A := −1
γ h̄

∫ t

0 dt ′e−iH0t/h̄HI (t ′)eiH0t/h̄, then we
note that it is Hermitian, and from Eqs. (C1) and (36) that it
can be written as A = −1

γ h̄

∫ t

0 dt ′HI (t ′ − t ). The density matrix
of the two systems: system 1 for oscillator of mass m with
its cavity photons and system 2 for oscillator of mass M

with its cavity photons, can be written as a separable pure
bipartite state ρ = ρ1 ⊗ ρ2 =: |ψ1〉 〈ψ1| ⊗ |ψ2〉 〈ψ2| so that
|ψ1〉 |ψ2〉 = |ψ (t )〉, as given in Eq. (5). Further defining

A1
2 := (〈ψ2| A |ψ2〉)2, (D1)

A2
1 := 〈ψ2| A2 |ψ2〉 , (D2)

if we use the BCH formula in Eq. (B1) and calculate up to
second order in γ , then under the action of the unitary U =
eiγA, the state in the Schrödinger picture evolves according to

ρ ′ = UρU †

= eiγAρe−iγA

= ρ + iγ [A, ρ] + 1

2
[iγA, [iγA, ρ]] + · · ·

= ρ + iγ [A, ρ] − γ 2

2
(A2ρ + ρA2 − 2AρA). (D3)

Tracing out system 2 will give

ρ ′
1 = ρ1 + iγ [A1, ρ1] − γ 2

2

(
A2

1ρ1 + ρ1A
2
1 − 2A1ρ1A1

)
.

(D4)

Squaring this and keeping terms only up to second order in γ

will give

ρ ′2
1 = ρ2

1 + iγ
[
A1, ρ

2
1

] − γ 2

2

(
2A1ρ1A1ρ1

+ 2ρ1A1ρ1A1 − 2A1ρ
2
1A1 − 2ρ1A

2
1ρ1

+ ρ1A
2
1ρ1 + ρ2

1A2
1 − 2ρ1A1ρ1A1

+A2
1ρ

2
1 + ρ1A

2
1ρ1 − 2A1ρ1A1ρ1

)
. (D5)

Finally, taking the trace of this gives

Tr ρ ′2
1 = 1 − γ 2

2

[
4 Tr

(
A2

1ρ1
) − 4 Tr

(
A2

1ρ1
)]

= 1 − 2γ 2[ Tr
(
A2

1ρ1
) − Tr

(
A2

1ρ1
)]

, (D6)

so that the linear entropy will now be

S := 1 − Tr ρ ′2
1

= 2γ 2
[

Tr
(
A2

1ρ1
) − Tr

(
A2

1ρ1
)]

. (D7)
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