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Photons in the presence of parabolic mirrors
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We present a vectorial analysis of the behavior of the electromagnetic field in the presence of boundaries
with parabolic geometry. The relevance of the use of symmetries to find explicit closed expressions for the
electromagnetic fields is emphasized. Polarization and phase related angular momenta of light have an essential
role in the proper definition of the generator A3 of a symmetry transformation that distinguishes the parabolic
geometry. Quantization of the electromagnetic field in terms of the resulting elementary modes is performed.
The important case of a boundary defined by an ideal parabolic mirror is explicitly worked out. The presence
of the mirror restricts the eigenvalues of A3 available to the electric and magnetic fields of a given mode via
compact expressions. Modes previously reported in the literature are particular cases of those described in this
work.
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I. INTRODUCTION

Due to its focusing properties, the parabola of revolution
has been considered an optimal geometry to build mirrors and
lenses since classical antiquity. Parabolic mirrors are usually
designed under conditions that allow a ray description of the
relevant electromagnetic (em) modes. Recently, there have
been attempts to make a detailed description beyond this ap-
proximation, introducing vectorial classical [1] and quantum
[2] properties of the electromagnetic field in the presence of
parabolic boundaries; a motivation being the possibility of
optimizing the coupling of single atoms to single photons.
The basic idea behind this optimization is that the processes
of elastic scattering [3,4] and absorption [5,6] of a photon by
a single atom increase their efficiencies for incident light that
spatially resembles the natural mode of the atomic transition,
which usually corresponds to an electric dipole wave. It has
been shown that a deep parabolic mirror can focus a radially
polarized doughnut mode to a field that is nearly linearly
polarized along the optical axis and, close to the focus of
the parabola, is similar to the dipole field [7–9]. Experiments
working on this direction have led to a better understanding
of the interaction between photons and atomic systems under
controlled conditions with remarkable results [10–12].

Previous analysis of the em field in the presence of
parabolic boundaries, however, have been limited by math-
ematical difficulties in finding a complete set of elementary
modes that fulfill both Maxwell equations and the adequate
boundary conditions. As a consequence, important properties
like space dependencies of the polarization are not fully
understood. Nevertheless, these works have shown that par-
ticular em modes in the presence of ideal parabolic mirrors
would exhibit several interesting properties. For instance, a
WKB study of the dynamics within a parabolic cavity indicate
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that the waves without optical vortices should be robust with
respect to small geometrical deformations of the cavity, while
those exhibiting optical vortices could be unstable and even
give rise to optical chaos [1].

In this work, we present a detailed description of the
electromagnetic vectorial field in parabolic geometries that
surpasses the problems mentioned above. We construct a com-
plete set of modes that satisfy Maxwell equations and incorpo-
rate the underlying symmetries explicitly. These modes could
allow a clearer description of experimental arrays involving
parabolic boundaries, since they can be used to explore prop-
erties that cannot be accessed through previous descriptions.
We also make a proper quantization of the em field in terms
of the classical Maxwell modes; this provides an extended
framework for the studies mentioned above regarding the
interaction between light and matter under controlled condi-
tions. We illustrate the relevance of this approach by working
out in detail the paradigmatic configuration of the em field in
the presence of an ideal parabolic mirror.

In the next section we revisit the characteristics of scalar
waves in parabolic coordinates. Following Boyer et al. [13],
the generators of the natural symmetries are identified, as
well as the angular spectrum of the scalar modes. In Sec. III,
we obtain the solutions of the Maxwell equations. The em
modes are written in terms of vector Hertz potentials π with
components that are, in turn, written in terms of the scalar
modes. The π modes are chosen to yield electric E and
magnetic B fields that are eigenvectors of the generators of the
mentioned symmetries with the same eigenvalues; a key point
is that the generators of the adequate transformations act now
on the vector em fields. Intrinsic and orbital angular momenta
of light have an essential role in the proper definition of the
generator Â3 of a symmetry transformation that distinguishes
the parabolic geometry. The effect of an ideal parabolic mirror
over the em field is considered in Sec. IV. The boundary re-
stricts the eigenvalues of Â3 available to the E and B of a given
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FIG. 1. Parabolic coordinates {ζ, η, ϕ}. Surfaces of constant ζ

(η) correspond to downward (upward) paraboloids of revolution
about the x3 axis with ϕ the azimuth angle. The foci of the
paraboloids are located at the origin. The focal length of each
downward (upward) paraboloid is twice the coordinate ζ (η).

mode via compact expressions. The modes that were worked
out before are contained within the set of modes we get in this
paper. The elementary modes we find are orthogonal and can
be normalized according to the Einstein prescription. In this
way the quantum em field operators are constructed.

II. SCALAR PARABOLIC MODES

The parabolic coordinates are defined by

x1 =
√

ζη cos ϕ, x2 =
√

ζη sin ϕ, x3 = 1
2 (ζ − η) (1)

with

0 � ζ < ∞, 0 � η < ∞, 0 � ϕ < 2π ; (2)

they are displayed in Fig. 1. In Appendix A, explicit expres-
sions for the scale factors hζ , hη, and hϕ , as well as the unitary
parabolic vectors eζ , eη, and eϕ in terms of the Cartesian basis
{e1, e2, e3} are given.

In parabolic coordinates, the equation for a wave that
propagates with velocity c and frequency ω,

∇2�(ζ, η, ϕ) = ω2

c2
�(ζ, η, ϕ) (3)

= 4

ζ + η

[
∂

∂ζ
ζ

∂

∂ζ
+ ∂

∂η
η

∂

∂η

]
� + 1

ζη

∂2�

∂ϕ2
,

(4)

is separable. As a consequence, the expression of any scalar
wave can always be written as a linear combination of the
elementary solutions,

�(ζ, η, ϕ) = 1√
ζ̄ η̄

ϒ(ζ̄ )�(η̄)�(ϕ), ζ̄ = ζ
ω

c
,

η̄ = η
ω

c
, (5)

given by a product of three functions that satisfy the equations

�(ϕ) = 1√
2π

eimϕ, (6)

d2ϒ

dζ̄ 2
+

[
1

4
+ κ

ζ̄
+ 1/4 − (m/2)2

ζ̄ 2

]
ϒ = 0, (7)

d2�

dη̄2
+

[
1

4
− κ

η̄
+ 1/4 − (m/2)2

η̄2

]
� = 0, (8)

connected through the separation parameters m and κ . Ac-
cording to Eq. (6) for ϕ ∈ [0, 2π ), i.e., for a full paraboloid,
m must be an integer. Solutions of the latter two equations can
be written in terms of the Whittaker functions Miκ,μ and Wiκ,μ

of imaginary argument [14],

z−1/2Miκ,m/2(iz)

= cκ,mzm/2e−iz/2M[(m + 1)/2 − iκ, 1 + m, iz],

z−1/2Wiκ,m/2(iz)

= hκ,mzm/2e−iz/2U [(m + 1)/2 − iκ, 1 + m, iz]. (9)

The hypergeometric function M (a, b, z) is entire in a and
z, while U (a, b, z) has a branch point in z = 0; therefore,
in general, κ could take complex values with restrictions
determined by the physical system under consideration as will
be exemplified below.

For the interior problem, well-behaved solutions of Eqs. (7)
and (8) are given by Miκ,μ, so that the scalar wave solutions
take the form

�(ζ, η, ϕ) =
∑
κ,m

aκ,meimϕVκ,|m|(ωζ/c)V−κ,|m|(ωη/c), (10)

where the notation

Vκ,m(z) = z|m|/2e−iz/2M

( |m| + 1

2
− iκ, |m| + 1; iz

)
(11)

has been introduced. Notice that �(ζ, η, ϕ) will be even
(odd) under the parity transformation x3 → −x3—which cor-
responds to ζ ↔ η— if aκ,m = a−κ,m (aκ,m = −a−κ,m).

The functions Vκ,m satisfy the relations (valid in general for
m � 1)

√
zVκ,m−1(z) = d+Vκ−i/2,m(z) + d−Vκ+i/2,m(z), (12)

√
zVκ,m+1(z) = −i(m + 1)[Vκ+i/2,m(z) − Vκ−i/2,m(z)],

(13)

∂zVκ±i/2,m(z) =
(

± i

2
∓ iκ

z

)
Vκ±i/2,m(z)+m

z
d±Vκ∓i/2,m(z),

(14)[
2

m
∂z

√
z + 1√

z

]
Vκ,m+1(z)

= m + 1

m
[Vκ+i/2,m(z) + Vκ−i/2,m(z)], (15)[

2

m
∂z

√
z − 1√

z

]
Vκ,m−1(z)

= i

m
[d−Vκ+i/2,m(z) − d+Vκ−i/2,m(z)], (16)

with

d± = 1

2
± i

κ

m
. (17)

Using Kummer transformation,

M (a, b, z) = ezM (b − a, b,−z), (18)
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it can be directly shown that

Vκ−i/2,m(x) = V ∗
κ+i/2,m(x) (19)

for κ and x real variables.
In the case of κ a real number and m an odd natural number,

Vκ,m(z) = 2�(m + 1)eπκ/2∣∣�(
m+1

2 + iκ
)∣∣ 1√

z
F(m−1)/2

(
κ;

z

2

)
(20)

with F(m−1)/2 a real valued Coulomb function. These func-
tions are well studied due to their relevance in the context of
the Dirac wave function of an electron in a Coulomb potential
[14], and as such, provide a guideline for properties-e.g.,
limiting forms—that will be useful in forthcoming sections.

Symmetries, angular spectrum, and normalization
of the scalar modes

The symmetries behind the separability of the wave equa-
tion in parabolic coordinates [13] are induced by the generator
of rotations along the x3 axis,

L̂3, (21)

and the operator

1
2 [{L̂1, P̂2} − {L̂2, P̂1}], (22)

that results from the subtraction of the symmetrized product
of the generator of rotations along the x1 axis and translations
along the x2 axis, and the symmetrized product of the gener-
ator of rotations along the x2 axis and the translations along
the x1 axis; both generators act on the scalar wave field. The
latter operator is the third component of the operator obtained
from the product of the angular and linear momenta operators,
(L̂ × P̂ − P̂ × L̂)/2, which is the kinetic part of the well
studied Runge-Lenz vector that, in turn, is the generator of
a peculiar symmetry associated to a charged particle in the
presence of the Coulomb potential [15]; its connection to a
parabolic description of such a system is made explicit in
Ref. [16].

While in the coordinate representation the expression of
operator Eq. (22) is cumbersome, in the wave vector repre-
sentation it is quite simple, as can be directly derived from the
equations

c

ω
k = sin θk cos ϕke1 + sin θk sin ϕke2 + cos θke3,

−iL̂1 → + sin ϕk∂θk
+ cos ϕkctanθk∂ϕk

,

−iL̂2 → − cos ϕk∂θk
+ sin ϕkctanθk∂ϕk

,

−iL̂3 → −∂ϕk
. (23)

Notice that the structure of k is necessary for the fulfillment
of Helmholtz equation in the wave-vector space. This yields

1
2 [{L̂1, P̂2} − {L̂2, P̂1}] → i sin θk∂θk

+ i cos θk, (24)

when the unit of length |k|−1 = c/ω is taken for waves with
frequency ω. Notice that i sin θk∂θk

+ i cos θk = i∂θk
sin θk

measures variations on the angle θk of the scalar wave, taking
into account the scale factor that projects the wave vector to
its component perpendicular to the x3 axis. The normalized

eigenstates of both symmetry operators, Eqs. (21) and (24),

L̂3fκ,m = mfκ,m,

1
2 [({L̂1, P̂2} − {L̂2, P̂1})]fκ,m = 2κfκ,m, (25)

are given by the expression

fκ,m(θk, ϕk ) = [tan(θk/2)]−i2κ

sin θk

eimϕk

2π
. (26)

The parabolic symmetry operator, Eq. (24), is Hermitian in
the domain of fκ,m functions with κ a real number. These
functions satisfy the orthonormality condition∫
S(k)

2

f ∗
κ ′,m′ (θk, ϕk )fκ,m(θk, ϕk )d�k = δ(2κ ′ − 2κ )δm,m′ . (27)

Equations (25) give a geometric interpretation—and can in-
duce a dynamical interpretation—to the separation variables
m and κ . The eigenfunctions fκ,m yield the angular spectra of
the internal solutions of Helmoltz equations since

ψκ,m(r) ≡
∫
S(k)

2

ei(ω/c)(k̂·r)fκ,m(θk, ϕk )d�k (28)

= aκ,meimϕVκ,|m|(ζ̄ )V−κ,|m|(η̄) (29)

with

aκ,m = (i)|m| �
( |m|+1

2 + iκ
)
�

( |m|+1
2 − iκ

)
�2(|m| + 1)

, (30)

and S(k)
2 the surface of a sphere of radius c/ω in the k

space. The evaluation of aκ,m takes into account the integral
expression for Bessel functions [17],∫ π

0
epcosx[tan(x/2)]2νJ2μ(c sin x)dx

= 1

c

[
�(μ+ν + 1/2)

�(2μ + 1)

][
�(μ − ν+1/2)

�(2μ+1)

]
×Mν,μ(z+)Mν,μ(z−),

z± = p ±
√

p2 − c2, (31)

in terms of the Whittaker functions, Miκ,μ(−iη) =
±ie±μπiM−iκ,μ(iη); here, use was made of the equation [18]

z−1/2−μMλ,μ(z) = (−z)−1/2−μM−λ,μ(−z).

Equations (28) and (30) guarantee∫
R3

ψ∗
κ ′,m′ (r)ψκ,m(r)d3r = δ(2κ − 2κ ′)δm,m′ . (32)

III. ELECTRIC AND MAGNETIC FIELDS FOR SYSTEMS
WITH PARABOLIC SYMMETRY

Let us consider the vector Hertz potential [19]

� = πe−iωt

= [π1e1 + π2e2 + π3e3]e−iωt , (33)

with harmonic time dependence, and Cartesian components
π1,2,3 that are interior solutions of the wave equation

∇2πi = −(ω/c)2πi, i = 1, 2, 3.
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The frequency determines the natural unit of time [ω−1] and
the natural unit of length [c/ω].

The transverse character of the electromagnetic field in
the absence of charge sources (∇ · E = 0 = ∇ · B) as well
as the Faraday law [∇ × E = i(ω/c)B] and the Maxwell
displacement equation [∇ × B = −i(ω/c)E] are satisfied if
either

EE = ∇ × π , (34)

BE = −i
c

ω
∇ × EE , (35)

or

BB = ∇ × π , (36)

EB = i
c

ω
∇ × BB. (37)

The modes given by Eqs. (34) and (35) will be referred as
E modes, and those obtained from Eqs. (36) and (37) as B
modes.

A. Symmetrized elementary electromagnetic modes

Elementary modes are solutions of the electromagnetic
wave equations satisfying the boundary conditions derived
from the physical situation under consideration, and char-
acterized by a minimal set of elements of the labels that
determine the associated vector Hertz potentials �. For the
geometry under consideration, the most general expression of
the components of � are linear superpositions of solutions of
the wave equation with labels {ω,m, κ}. Here we show that
the symmetries exhibited by the wave equation in parabolic
coordinates can be used to define these elementary em modes
in the presence of boundaries with parabolic geometry. The
key point to define these modes corresponds to finding vector
Hertz potentials which give rise to electric and magnetic fields
that are eigenfunctions of the generators of the transforma-
tions associated to the symmetries mentioned in Sec. II A.
For em fields, these generators take into account the expected
vector behavior of E and B.

Consider first an infinitesimal rotation by an angle δϕ about
any one of the Cartesian axes. A vector field with components
φr is transformed under an infinitesimal rotation by an angle
δϕ according to the equation [20]

φ′
r = φr + δϕ

∑
s=1,2,3

M̂rsijφs, (38)

= φr + δϕ

[
L̂ijφr +

∑
s=1,2,3

Ŝrsij φs

]
, (39)

L̂ij = −i(xi∂j − xj∂i ), (40)

Ŝrsij = −i[δriδsj − δriδsj ], (41)

where the indices i, j are determined using the Levi-Civita
tensor εtij for rotations about the t axis. Here, L̂ij is the orbital
angular momentum tensor operator and Ŝrsij is the spin-1
tensor operator. That is, for vector fields orbital and intrinsic
factors must be incorporated in their transformation.

In the case of parabolic geometry—as mentioned above
for a scalar field—the symmetries are generated by rotations
about the x3 axis, and by the operator that results from the
subtraction of the symmetrized product of the generator of
rotations along the x1 axis and translations along the x2 axis,
and the symmetrized product of the the generator of rotations
along the x2 axis and the translations along the x1 axis. The
operators generating these symmetries are

Ĵ3φr = −i(x1∂2 − x2∂1)φr +
∑

s=1,2,3

Ŝrs12φs, (42)

Â3φr = 1
2 [{M̂rs23, P̂2} − {M̂rs31, P̂1}]φs. (43)

The symmetrized electromagnetic modes we are looking for
correspond to electric Ej,α and magnetic Bj,α fields which sat-
isfy Maxwell equations and are eigenvectors of the operators
Ĵ3 and Â3,

Ĵ3Ej,α = jEj,α, Ĵ3Bj,α = jBj,α, (44)

Â3Ej,α = αEj,α, Â3Bj,α = αBj,α. (45)

The coupling between the orbital and intrinsic angular
momenta of the em field can be easily implemented using the
circular basis

e± ≡ e1 ± ie2, e0 ≡ e3, (46)

to write the vector Hertz potential

π (m) = π
(m)
+ e+ + π

(m)
− e− + π

(m)
0 e0; (47a)

π
(m)
+ =

∑
κ

c(+)
κ,mei(m−1)ϕVκ,m−1(ζ̄ )V−κ,m−1(η̄), (47b)

π
(m)
− =

∑
κ

c(−)
κ,mei(m+1)ϕVκ,m+1(ζ̄ )V−κ,m+1(η̄), (47c)

π
(m)
0 =

∑
κ

c(0)
κ,meimϕVκ,m(ζ̄ )V−κ,m(η̄). (47d)

Note that we have chosen to work with circular basis
vectors normalized according to e± · e∓ = 2. By directly ap-
plying the Ĵ3 operator, it results that

Ĵ3π
(m) = mπ (m), (48)

with an analogous equation for the derived electric and mag-
netic fields,

Ĵ3Em = mEm, Ĵ3Bm = mBm. (49)

In search of an adequate structure of the vector Hertz potential
that also yields em fields satisfying Eq. (45) with a finite
number of terms in Eqs. (47) it is necessary to work out the
curl of π (m). Written in terms of the parabolic unit vectors and
scale factors,

π (m) =
[
P

(m)
+
hη

+ π
(m)
0

2hζ

]
eζ +

[
P

(m)
+
hζ

− π
(m)
0

2hη

]
eη − iP

(m)
− eϕ,

(50)

where

P
(m)
+ = eiϕπ

(m)
+ + e−iϕπ

(m)
−

2
, P

(m)
− = eiϕπ

(m)
+ − e−iϕπ

(m)
− .

(51)
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From these equations

∇ × π (m) = p
(m)
ζ

hηhϕ

eζ + p(m)
η

hζ hϕ

eη + p(m)
ϕ

hηhζ

eϕ,

∇ × (∇ × π (m) ) = eζ

hηhϕ

[
∂

∂η

[
hϕ

hηhζ

p(m)
ϕ

]
− im

hη

hζhϕ

p(m)
η

]
+ eη

hζ hϕ

[
∂

∂ζ

[
− hϕ

hηhζ

p(m)
ϕ

]
+ im

hζ

hηhϕ

p
(m)
ζ

]
+ eϕ

hζhη

[
∂

∂ζ

[
− hη

hζhϕ

p(m)
η

]
− ∂

∂η

[
− hζ

hηhϕ

p
(m)
ζ

]]
, (52)

with

p
(m)
ζ = i

∂hϕP
(m)
−

∂η
− im

[
hη

hζ

P
(m)
+ − π

(m)
0

2

]
,

p(m)
η = −i

∂hϕP
(m)
−

∂ζ
+ im

[
hζ

hη

P
(m)
+ + π

(m)
0

2

]
, (53)

p(m)
ϕ = ∂

∂ζ

[
hη

hζ

P
(m)
+ − π

(m)
0

2

]
− ∂

∂η

[
hζ

hη

P
(m)
+ + π

(m)
0

2

]
.

In the expressions for p
(m)
ζ,η,ϕ we observe the presence of the

differential operators

Ôz
± ≡ ∂z

√
z ± m

2
√

z
, z = η̄, ζ̄ , (54)

acting on the functions Vκ,m(z) contained in Eqs. (47). Also in
these expressions the product of Vκ,m(z) by

√
z is frequently

found. As a consequence of this and looking at Eqs. (12)–
(16), the functions Vκ±i/2(z) are expected to appear in the
expressions of the em fields obtained from π (m); we then make
the following compact ansatz for the vector Hertz potentials:

π
(m;κ )
+ = c(+)

κ,mei(m−1)ϕVκ,m−1(ζ̄ )V−κ,m−1(η̄), (55a)

π
(m;κ )
− = c(−)

κ,mei(m+1)ϕVκ,m+1(ζ̄ )V−κ,m+1(η̄), (55b)

π
(m;κ )
0 = c

(0)
κ+i/2,meimϕVκ+i/2,m(ζ̄ )V−(κ+i/2),m(η̄)

+ c
(0)
κ−i/2,meimϕVκ−i/2,m(ζ̄ )V−(κ−i/2),m(η̄), (55c)

while looking for symmetrized elementary em modes that
satisfy the eigenvalue Eq. (45). In the following paragraph the
relevance of this ansatz is demonstrated.

The generator of the parabolic symmetry transformation
for scalar fields was found to have a simple expression in
wave-vector space, Eq. (24). Something similar occurs for the
vector modes: in the wave-vector representation the generator
Â3 of the symmetry transformation for vector fields can be
written as

Â3φr = i(sin θk∂θk
+ cos θk )φr − i

∑
s=1,2,3

[(δr2δs3 − δr3δs2)k2

+ (δr1δs3 − δr3δs1)k1]φs. (56)

In the wave-vector space,

π̃ (m;κ ) = π̃
(m;κ )
+ e+ + π̃

(m;κ )
− e− + π̃

(m;κ )
0 e0, (57a)

π̃
(m;κ )
+ = c̃(+)

κ,mfκ,m−1, (57b)

π̃
(m;κ )
− = c̃(−)

κ,mfκ,m+1, (57c)

π̃
(m;κ )
0 = c̃

(0)
κ+i/2,mfκ+i/2,m + c̃

(0)
κ−i/2,mfκ−i/2,m, (57d)

with fκ,m(θk, ϕk ) given by Eq. (26).
Define the vector

Ã(E ) ≡ ik × ˜π (m;κ ) = Ã
(E )
+ e+ + Ã

(E )
− e− + Ã

(E )
3 e3, (58a)

Ã
(E )
± = 1

2

[
Ã

(E )
1 ∓ iÃ

(E )
2

]
= 1

2 [∓ sin θke
∓iϕπ̃

(m;κ )
0 ± 2 cos θkπ̃

(m;κ )
± ], (58b)

Ã
(E )
3 = − sin θk[eiϕπ̃

(m;κ )
+ − e−iϕπ̃

(m;κ )
− ], (58c)

proportional to the electric (magnetic) field of the E mode (B
mode) in this space. Using trigonometric identities it can be
shown that

sin θk tan(θk/2) = 1 − cos θk,

sin θk[tan(θk/2)]−1 = 1 + cos θk, (59)

and Ã(E ) is found to be an analytic function of θk . For Ã(E )

to be an eigenvector of Â3 with eigenvalue α = 2κ , the
coefficients {c̃κ,m} must satisfy the equation

c̃(+)
κ,m + c̃(−)

κ,m + c̃
(0)
κ+i/2,m − c̃

(0)
κ−i/2,m = 0. (60)

Demanding that the following vector

Ã(B) = −k̂ × (k̂ × π̃ (m;κ ) )

= Ã
(B)
+ e+ + Ã

(B)
− e− + Ã

(B)
3 e3, (61)

with

Ã
(B)
± = 1

2 [cos2 θkπ̃
(m;κ )
± − sin2 θke

∓i2ϕπ̃
(m;κ )
∓

− sin θk cos θkπ̃0], (62a)

Ã
(B)
3 = − sin θk cos θk[eiϕπ̃

(m;κ )
+ + e−iϕπ̃

(m;κ )
− ]

+ sin2 θkπ̃
(m;κ )
0 , (62b)

to be an eigenvector of Â3, leads to the same relationship,
Eq. (60), for the coefficients {c̃κ,m}.

Summarizing, the electric and magnetic fields obtained
from either Eqs. (34) and (35) or Eqs. (36) and (37) are
eigenvectors of the generator of Ĵ3 with eigenvalue m and
the generator Â3 with eigenvalue 2κ , whenever the Hertz
potentials in wave-vector space, Eqs. (57), involve coefficients
{c̃κ,m} satisfying Eq. (60). The operator Â3 is Hermitian if κ

is restricted to real values, in analogy to the results found for
the scalar field.

B. Scalar product for the electromagnetic modes. Field
quantization: photons with parabolic symmetries

The overlap of different em field modes can be estimated
via a scalar product. Let us consider a pair of monochromatic
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em modes with common frequency ω and properties labeled
by a, b. Their scalar product is defined by

〈a|b〉 = 1

4π

∫
R3

d3x[E∗
a (x) · Eb(x) + B∗

a (x) · Bb(x)]. (63)

In the case a = b, the integrand corresponds to the time
averaged em energy density,

ρem
Energy = 1

4π
[E∗

a (x) · Ea (x) + B∗
a (x) · Ba (x)]. (64)

For parabolic modes the involved integrals can be performed
directly when the electric and magnetic fields are expressed
in terms of their angular spectrum. The elementary modes in
the presence of parabolic boundaries involve Ea and Ba with
angular spectra derived from a Hertz potential

π (a) =
∫

d3kδ(|k| − ω/c)eik·r[π̃ (a)
+ e+ + π̃

(a)
− e− + π̃

(a)
0 e0

]
with the structure given by Eqs. (57a)–(57d). According to the
results we have shown, the indices summarized with the label
a include the frequency ω and the eigenvalues m and κ as well
as the procedure by which E and B were evaluated from the
Hertz potentials, Eqs. (34)–(37).

Two Hertz potentials will lead to the same em mode—up to
a normalization factor—if a linear combination of them can be
written as the gradient of a field. In such a case, the two Hertz
potentials are said to be related by a gauge transformation. In
wave vector space, the particular solution of Eq. (60),

c̃(+)
κ,m = c̃(−)

κ,m = −c̃
(0)
κ+i/2,m = c̃

(0)
κ−i/2,m, (65)

corresponds to

π̃gauge = 2k
[
eimϕk

2π

[tan(θk/2)]−2κi

sin2 θk

]
(66)

and satisfies k × π̃gauge = 0, so that π̃gauge induces a gauge
transformation. The scalar product Eq. (63) is gauge invariant.

A direct calculation shows that the electric fields Ea,b and
the magnetic fields Ba,b contribute equally to 〈a|b〉 whenever
they are obtained from vector Hertz potentials π (a,b) through
Eqs. (34) and (35) or Eqs. (36) and (37). Besides,

〈a|b〉 = (2π )2

(
ω

c

)2

δma,mb

[
δ

(a:b)
1 δ[2(κb − κa )]

+ δ
(a:b)
2

1

4 sinh(κb − κa )π

+ δ
(a:b)
3

[
δ[2(κb − κa )] − κb − κa

sinh(κb − κa )π

]]
with

δ
(a:b)
1 = (

c̃(+)∗
κa,m

− c̃(−)∗
κa,m

)(
c̃(+)
κb,m

− c̃(−)
κb,m

)
+ (

c̃
(0)∗
κa+i/2,m + c̃

(0)∗
κa−i/2,m

)(
c̃

(0)
κb+i/2,m + c̃

(0)
κb−i/2,m

)
,

δ
(a:b)
2 = (

c̃(+)∗
κa,m

+ c̃(−)∗
κa,m

+ c̃
(0)∗
κa+i/2,m − c̃

(0)∗
κa−i/2,m

)
× (

c̃(+)
κb,m

+ c̃−
κb,m

+ c̃0
κb+i/2,m − c̃

(0)
κb−i/2,m

)
,

δ
(a:b)
3 = 2

(
c̃

(0)∗
κa+i/2,mc̃

(0)
κb+i/2,m − c̃

(0)∗
κa−i/2,mc̃

(0)
κb−i/2,m

)
− (

c̃(+)∗
κa,m

+ c̃(−)∗
κa,m

)(
c

(0)
κb+i/2,m + c

(0)
κb−i/2,m

)
− (

c̃(+)
κb,m

+ c̃(−)
κb,m

)(
c

(0)∗
κa+i/2,m + c

(0)∗
κa−i/2,m

)
. (67)

Notice that Eq. (60) guarantees that for symmetrized ele-
mentary modes δ

(a:b)
2 = 0 = δ

(a:b)
3 , thus implying the orthogo-

nality between modes with different m or κ .
By demanding (

2πω

c

)2

δ
(a:b)
1 = h̄ω, (68)

the symmetrized modes can be used to define the electric-field
operator

Ê(x, t ) =
∫

dω
∑

a

(Ea (x)e−iωt âa,ω + E∗
a (x)eiωt â†a,ω ) (69)

and the magnetic field operator

B̂(x, t ) =
∫

dω
∑

a

(Ba (x)e−iωt âa,ω + B∗
a (x)eiωt â†a,ω ) (70)

by introducing the creation and annihilation operators

[âa,ω, â†a′,ω′ ] = δa,a′δ(ω − ω′). (71)

The dynamical variables of the electromagnetic field define
its mechanical identity. These variables can be interpreted
as properties of photons via the quantization of the em field
in terms of vectorial modes with the adequate space-time
dependence. For Cartesian symmetry the modes are properly
described by plane waves where the photon frequency ω,
wave vector k, and helicity σ (projection of the polarization
vector on the wave vector) determine the photon energy, linear
momentum, and intrinsic angular momentum, respectively.
For optical systems displaying circular cylinder symmetry,
Bessel modes are used to define photons with frequency
ω, transverse wave vector component k⊥, azymuthal phase
quantum number m, and helicity σ , and relate them to the
photon energy, transverse linear momentum, orbital, and in-
trinsic angular momentum respectively [21]. In general, via
the Noether theorem, the generator of a given symmetry of
a system leads to the identification of a dynamical variable
that is conserved even under interaction between subsystems.
The expected expression for the density of the electromag-
netic dynamical variable related to the parabolic symmetry
generator Â3 remains to be explored. It could be extrapolated
from previous results obtained for non-Cartesian geometries
such as circular [21], elliptic [22], and parabolic [23] cylinder
symmetries which, contrary to parabolic symmetry, exhibit
covariance under translations along the cylinder axis.

For a parabolic cylinder geometry the symmetry generators
are P̂3 and the operator (Ĵ3P̂2 + P̂2Ĵ3)/2, if e3 defines the
cylinder axis and e2 is parallel to the axes of symmetry of
the parabolas that define the corresponding coordinate. The
mechanical effects of em waves displaying parabolic cylinder
geometry have been experimentally studied as reported in
Ref. [24]. It was observed that coherent light in an elemen-
tary mode with such symmetry modifies the center-of-mass
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motion of ultracold atoms in a way naturally described by
the parabolic cylinder momentum (j3p2 + p2j3)/2 defined in
terms of the total angular j and linear momentum p of each
atom. In that work the transfer of that dynamical variable from
light to matter was quantified; the results were compatible
with a conservation law.

An analogous effect could be studied for parabolic sym-
metries, now concerning the Â3 operator. In fact, as already
mentioned, for a material particle (1/2)({j1, p2} − {j2, p1})
corresponds to the kinetic part of the Runge-Lenz vector
which plays an important role in the classical and quantum
study of the particle mechanical response to its coupling to
a central field. These ideas provide a motivation to study the
mechanical properties of the em field in parabolic symmetries
interacting with material particles for a better understanding
of the significance of the variable 2h̄κ which emerges as a
property of photons in optical systems with parabolic sym-
metry. Notice that such a study could also give a different
perspective on the dynamics of highly focused em waves in
three dimensions interacting with matter both in the classical
and quantum realms. Those waves could be generated by a
parabolic mirror.

IV. VECTORIAL MODES IN THE PRESENCE
OF A PARABOLIC MIRROR

The physical configuration at hand determines the natural
geometry to describe the em field. In the following section,
the effect of an ideal parabolic mirror over the elementary
modes is studied. An ideal reflecting mirror with parabolic
geometry is a paradigmatic optical system. The description
of its focusing properties in terms of rays has been known
for a long time. The electromagnetic system, however, admits
modes with interesting nontrivial configurations both linked
to the vector character of the field and the possibility of
singularities in its phase.

Consider an ideal parabolic mirror located at ζ = ζ0.
Boundary conditions imply that the magnetic-field component
normal to the mirror must vanish at its surface,

B · eζ |ζ=ζ0 = 0, (72)

as well as the tangential components of the electric field,

E · eη|ζ=ζ0 = 0, E · eϕ |ζ=ζ0 = 0. (73)

The general form of any em wave in the presence of the
parabolic mirror can be written as a linear combination of both
the modes {EE , BE } and {EB, BB} that satisfy the conditions
given by Eqs. (72) and (73). These three conditions are not
independent due to Maxwell equations that relate E and B. For
E modes this can be shown by writing the em field in terms
of the p

(m)
ζ,η,ϕ functions using Eqs. (52). A direct calculation

shows that the boundary conditions are fulfilled by demanding
two conditions only:

p(m)
η |ζ=ζ0 = 0, p(m)

ϕ |ζ=ζ0 = 0, (74)

for ζ = ζ0 and any η and ϕ. For B modes the bound-
ary conditions at the mirror surface translate to the three

equations:

p
(m)
ζ

∣∣
ζ=ζ0

= 0, (75)

∂

∂ζ

[
− hϕ

hηhζ

p(m)
ϕ

]
+ im

hζ

hηhϕ

p
(m)
ζ

∣∣∣∣
ζ=ζ0

= 0, (76)

∂

∂ζ

[
− hη

hζhϕ

p(m)
η

]
− ∂

∂η

[
− hζ

hηhϕ

p
(m)
ζ

]∣∣∣∣
ζ=ζ0

= 0. (77)

To show that Eqs. (75)–(77) are not independent and can
reduce to only two conditions is not as direct as for E modes.
However, the following general argument can be used. Since
for any well behaved vector Hertz potential π

∇ × (∇ × π ) = ∇(∇ · π ) − ∇2π = ∇(∇ · π ) + (ω/c)2π ,

demanding
eζ × (∇ × (∇ × π ))|ζ=ζ0 = 0 (78)

for ζ = ζ0 and any value of η and ϕ, guarantees that the
tangential derivatives of these quantities are also zero at ζ =
ζ0, and as a consequence

eζ · ∇ × π |ζ=ζ0 = (c/ω)2{eζ · ∇ × [∇ × (∇
×π ) − ∇(∇ · π )]}|ζ=ζ0 = 0.

Equation (78) can be expressed in terms of P
(m)
± and π

(m)
0

for the π (m) vector Hertz potentials. The resulting pair of
equations seems to be difficult to solve until it is noticed that
(i) they must be satisfied simultaneously for ζ = ζ0 and any
value of ϕ and η, and (ii)

√
ηV−κ,m(η) satisfies the Whittaker

equation. These facts lead to the simplified equations[
∂
√

ζ̄ η̄P
(m)
−

∂η̄
− m

η̄

√
ζ̄ η̄P

(m)
+ + m

π
(m)
0

2

]∣∣∣∣
ζ=ζ0

= 0, (79)[
∂
√

ζ̄ η̄P
(m)
+

∂ζ̄
+ ζ̄

∂π
(m)
0 /2

∂ζ̄

−
[

κ

m
+ m

4ζ̄
− ζ̄

4m

]√
ζ̄ η̄P

(m)
−

]∣∣∣∣
ζ=ζ0

= 0. (80)

A. Symmetrized modes in the presence of mirrors

The boundary conditions imposed by an ideal parabolic
mirror can be studied using the Hertz potentials π (m) given by
Eq. (47) as summations over terms containing the functions
Vκ,m. This gives rise to a hierarchy of equations described in
detail in Appendix B for the E modes. Two different scenarios
are identified. The first corresponds to modes with a null
eigenvalue of Ĵ3. In such a case, the indices of the functions
Vκ,m in the Hertz potentials are just m = 0, 1. The second
scenario corresponds to a nonzero eigenvalue of Ĵ3. Then, the
relevant m values in the Vκ,m are 3, |m − 1|, |m + 1|, and |m|.
The complexity of the equations for the coefficients of the
Vκ,m functions illustrates the consequences of working with
modes that are only partially symmetrized when ignoring the
relevance of the symmetry generated by the operator Â3.

In the following paragraphs we derive the closed expres-
sions of the fully symmetrized elementary modes in the pres-
ence of an ideal parabolic mirror. The corresponding {EE , BE }
and {EB, BB} modes are obtained from the vector Hertz po-
tentials π (m;κ ) with components given by Eqs. (55a)–(55c). In
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FIG. 2. Neuman mode with parameter κ = −0.040 937 and coefficient c̃0 = 1. This κ is the root with the smallest absolute value of the
Neuman boundary condition, Eq. (85), for a mirror surface at ζ0 = 35 700c/ω. (a),(b) Illustrative example of the em energy density at the
planes defined by (a) x1 = 0 and (b) x3 = 0. (c) Projection of the real part of the electric field into the plane x3 = 0. (d)–(f) Components of the
em field at the x3 = 0 plane: (d) |E × e3|2, (e) cylindrical radial component |Bρ |2, and (f) |B · e3|2; (g)–(i) components of the em field at the
x2 = 0 plane: (g) |E · e3|2, (h) |E × e3|2, and (i) |B|2.

order to simplify the notation we drop out these superscripts
in the expressions involving π from now on unless necessary.

1. Parabolic Neuman m = 0 em modes

For m = 0 we show here that the E modes can be derived
from a simple vector Hertz potential,

πm=0 = c0[e−iϕe+ − eiϕe−]Vκ0,1(ζ̄ )V−κ0,1(η̄), (81)

with coefficients c
(0)
κ±i/2,0 = 0 and c

(+)
κ,0 = −c

(−)
κ,0 = c0 satisfy-

ing Eq. (60). As a consequence, πm=0 yields em fields that are
eigenfunctions of the symmetry generators Ĵ3 and Â3.

The explicit expression for the electric field is

EN = ∇ × πm=0 = 2c0
eζ

hηhϕ

[√
ζVκ0,1(ζ̄ )

∂

∂η

√
ηV−κ0,1(η̄)

]
− 2c0

eη

hζ hϕ

[√
ηV−κ0,1(η̄)

∂

∂ζ

√
ζVκ0,1(ζ̄ )

]
, (82)
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while the accompanying magnetic field BN is

BN = 2c0Vκ0,1(ζ̄ )V−κ0,1(η̄)eϕ. (83)

Since eζ and eη are superpositions of the radial eρ =
cos ϕe1 + sin ϕe2 and e3 vectors, Eq. (A6) in Appendix A, the
boundary condition

EN · eϕ|ζ=ζ0 = 0

is directly satisfied. Meanwhile, the boundary condition

EN · eη|ζ=ζ0 = 0

is equivalent to the Neuman-like equation

∂

∂ζ̄

√
ζ̄ Vκ0,1

∣∣∣∣
ζ=ζ0

= 0. (84)

Using Eqs. (12)–(16), it can be shown that this equation can
also be written as

Wκ,0(ζ̄0) ≡ Vκ+i/2,0(ζ̄0)

Vκ−i/2,0(ζ̄0)
= −1. (85)

Parabolic Neuman modes were already studied in
Refs. [1,2]. The κ = 0 mode yields an electric field that
resembles that produced by an electric dipole.

In Fig. 2 we illustrate the properties of Neuman modes with
small values of κ . The em field is highly focused. Notice that
the contribution of the electric and magnetic field to the em
energy density, Eq. (64), is not balanced between those fields;
that is, contrary to a plane wave, |E(r, t )| may be different
to |B(r, t )|. An optical vortex is located at the origin for the
radial component of the electric field, and a high similarity to
a radial doughnut mode [25] near the focus of the mirror can
also be observed.

2. Parabolic Dirichlet m = 0 em modes

Consider now the B mode derived from the vector Hertz
potential given in Eq. (81). The resulting electric field

ED = ∇ × (∇ × πm=0)

has the explicit form

ED = −2c0Vκ0,1(ζ̄ )V−κ0,1(η̄)eϕ

so that

ED · eη = 0.

In order for the field to satisfy

ED · eϕ|ζ=ζ0 = 0,

the Dirichlet condition

Vκ0,1(ζ̄0) = 0 (86)

is necessary. Equation (86) is equivalent to

Wκ,0(ζ̄0) ≡ Vκ+i/2,0(ζ̄0)

Vκ−i/2,0(ζ̄0)
= 1. (87)

The polarization of the Dirichlet modes is orthogonal to that
of the Neuman modes.

In Fig. 3 the Dirichlet modes with small value of |κ| are
illustrated. We have chosen the same location of the parabolic
mirror as the one used in Fig. 2. Though the values of κ for
the illustrated Neuman and Dirichlet modes are similar, their
general structure and configurations for their E and B fields
are very different near the focus.

3. {EB, BB} symmetrized elementary modes for m > 0

We now consider the general structure of the vector Hertz
potential, given by Eqs. (55a)–(55c) in configuration space
and by Eqs. (57a)–(57d) in wave-vector space, to construct the
elementary B modes for m > 0. The boundary conditions for
B modes, Eqs. (79) and (80), are equivalent to a set of linear
equations for the coefficients {c̃(±)

κ,m, c̃
(0)
κ±i/2,m}B; in matricial

form these equations are

MBCB =:

⎛⎜⎜⎜⎝
d+ + d−Wκ,m Wκ,m − 1 −Wκ,m 0

1 Wκ,m −Wκ,m − 1 0

d+ + d−Wκ,m 1 − Wκ,m 0 1

d+ −d−Wκ,m 0 d+ − d−Wκ,m

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

c̃(+)
κ,m

c̃(−)
κ,m

c̃
(0)
κ+i/2,m

c̃
(0)
κ−i/2,m

⎞⎟⎟⎟⎟⎠ = 0, (88)

with

Wκ,m(ζ̄0) = Vκ+i/2,m(ζ̄0)

Vκ−i/2,m(ζ̄0)
. (89)

The existence of nontrivial solutions to this equation is condi-
tioned to the existence of κ values for which

DetMB = (
d+ + d−W2

κ,m

)(
d+Wκ,m − d−W2

κ,m − d+
) = 0.

(90)

Since |d+/d−| = 1 = |Wκ,m|, the condition

d+ + d−W2
κ,m = 0 ⇒ W2

κ,m = V 2
κ+i/2,m(ζ̄0)

V 2
κ−i/2,m(ζ̄0)

= −d+
d−

(91)

is feasible, while the condition

d+Wκ,m − d−W2
κ,m − d+ = 0 ⇒ 1 = |Wκ,m|

= 1

2

∣∣∣∣1 ±
√

1 − 4
d+
d−

∣∣∣∣ (92)
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FIG. 3. Dirichlet mode with parameter κ = −0.055 760 6 and coefficient c̃0 = 1. This κ is the root with the smallest absolute value of
the Dirichlet boundary condition, Eq. (86), for a mirror surface at ζ0 = 35 700c/ω. (a),(b) Illustrative example of the em energy density at
the planes defined by (a) x2 = 0 and (b) x3 = 0. (c) Electric-field projection into the plane x3 = 0. (d)–(f) Components of the em field at the
x3 = 0 plane: (d) |E × e3|2, (e) cylindrical radial component |Bρ |2, and (f) |B · e3|2.

is not. Notice that

d−
d+

Wκ,m + W∗
κ,m = 0

⇒ d−V 2
κ+i/2,m(ζ̄0) + d+V 2

κ−i/2,m(ζ̄0) = 0, (93)

which involves, from Eq. (19), just a real valued function on
the left-hand side since Vκ+i/2,m(ζ̄0) = V ∗

κ−i/2,m(ζ̄0) for real κ

and ζ0 and implies the relation W∗
κ,m = W−1

κ,m.
Two sets of solutions to Eq. (88) are

c̃(+)
κ,m = 0, (94a)

c̃
(0)
κ+i/2,m = (1 − W∗

κ,m)d+c̃(−)
κ,m, (94b)

c̃
(0)
κ−i/2,m = −(1 − Wκ,m)d−c̃(−)

κ,m, (94c)

and

c̃(−)
κ,m = 0, (95a)

c̃
(0)
κ+i/2,m = (d+W∗

κ,m + d−)c̃(+)
κ,m, (95b)

c̃
(0)
κ−i/2,m = −(d−Wκ,m + d+)c̃(+)

κ,m. (95c)

We emphasize that the boundary condition given in
Eq. (91) guarantees that the coefficients {c̃(±)

κ,m, c̃
(0)
κ±i/2,m}B

satisfy Eq. (60) and, as a consequence, EB and BB are
eigenvectors of Ĵ3 and Â3. Note also that the two sets of
solutions, Eqs. (94a)–(94c) and (95a)–(95c), lead to the same
electromagnetic mode since a linear combination of them can
be written as a gradient of a field with the form given in
Eqs. (65) and (66).

The B modes are illustrated for small values of κ in Fig. 4.
An optical vortex is observed for the x3 component of the
electric field at the XY plane. Notice that the components of
the electric field exemplified in Fig. 4(c) correspond to the real
part of Eq. (37), while Fig. 4(d) shows the modulus (E × e3) ·
(E∗ × e3). For the illustrated B mode, the em energy density
is of purely magnetic origin at the focus of the mirror.

4. {EE, BE} symmetrized elementary modes for m > 0

The structure of a vector Hertz potential for a symmetrized
em mode is the same as that used for the {EB, BB} modes. The
boundary conditions for E modes given in Eq. (74) leads to the
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FIG. 4. B mode with parameters m = 1, κ = 0.032 372 77 and coefficients c
(+)
κ,1 = 1, c

(−)
κ,1 = 0. This κ has the smallest absolute value

among the roots of the boundary condition Eq. (93) for a mirror surface at ζ0 = 35 700c/ω. (a),(b) Illustrative example of the em energy
density at the planes defined by (a) x2 = 0 and (b) x3 = 0. (c) Electric-field projection into the plane x3 = 0. (d)–(f) Components of the em
field at the x3 = 0 plane: (d) |E × e3|2, (e) |E · e3|2, and (f) |B × e3|2.

matricial equation

MECE =:

⎛⎜⎜⎜⎜⎝
1 −Wκ,m Wκ,m − 1 0

0 Wκ,m + d+
d−
W∗

κ,m −(Wκ,m + d+
d−
W∗

κ,m) 0

1 −W∗
κ,m 0 1 − W∗

κ,m

0 W∗
κ,m + d−

d+
Wκ,m 0 W∗

κ,m + d−
d+
Wκ,m

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

c̃(+)
κ,m

c̃(−)
κ,m

c̃
(0)
κ+i/2,m

c̃
(0)
κ−i/2,m

⎞⎟⎟⎟⎟⎠ = 0, (96)

for the {c̃(±)
κ,m, c̃

(0)
κ±i/2}E in the wave vector representation of the Hertz potential.

The consistency of these equations requires

DetME = −2

∣∣∣∣d−
d+

Wκ,m + W∗
κ,m

∣∣∣∣2

= 0, (97)

a condition, involving a real valued function of ζ0, that coin-
cides with that for B modes, Eq. (93).

Assuming the fulfillment of Eq. (97) is equivalent to just
two linear equations for the four coefficients

c̃(+)
κ,m − Wκ,mc̃(−)

κ,m − (1 − Wκ,m)c̃(0)
κ+i/2,m = 0, (98)

c̃(+)
κ,m − W∗

κ,mc̃(−)
κ,m + (1 − W∗

κ,m)c̃(0)
κ−i/2,m = 0. (99)

A complementary condition can be taken when symmetrized
E modes are used. This can be achieved in a similar way
to the one used for B modes. Two sets of coefficients

{c̃(±)
κ,m, c̃

(0)
κ±i/2,m}E that yield these conditions are

c̃(+)
κ,m = 0, (100a)

c̃
(0)
κ+i/2,m = 1

(W∗
κ,m − 1)

c̃(−)
κ,m, (100b)

c̃
(0)
κ−i/2,m = − 1

(Wκ,m − 1)
c̃(−)
κ,m, (100c)

and

c̃(−)
κ,m = 0, (101a)

c̃
(0)
κ+i/2,m = − 1

(Wκ,m − 1)
c̃(+)
κ,m, (101b)

c̃
(0)
κ−i/2,m = 1

(W∗
κ,m − 1)

c̃(+)
κ,m. (101c)
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FIG. 5. E mode with parameters m = 1, κ = 0.032 372 77 and coefficients c
(+)
κ,1 = 1, c(−)

κ,1 = 0. This κ has the smallest absolute value among
the roots of the boundary condition Eq. (93) for a mirror surface at ζ0 = 35 700c/ω. (a),(b) Illustrative example of the em energy density at
the planes defined by (a) x2 = 0 and (b) x3 = 0. (c) Electric-field projection into the plane x3 = 0. (d)–(f) Components of the em field at the
x3 = 0 plane: (d) |E × e3|2, (e) |E · e3|2, and (f) |B × e3|2.

Once again, both sets of coefficients lead to the same elec-
tromagnetic mode since a linear combination of them can be
found to satisfy Eq. (65).

The E modes are illustrated in Fig. 5. For the chosen E
mode, the em energy density is mostly of electric origin at the
focus of the mirror. Three optical vortices are observed for the
x3 component of the electric field at the x1 axis in Fig. 5(e).

5. {EB, BB} and {EE, BE} symmetrized elementary
modes for m < 0

The results shown for B modes and E modes in the previous
two sections relied on the identities given in Eqs. (12)–(16)
which are valid for m > 0. For the m < 0 modes, similar
results can be obtained by noticing that the solutions of the
wave equation for m < 0 have a dependence on the ζ and η

variables, analogous to that for m > 0 but interchanging the
role of the functions Vκ,m±1 in the components π+ and π− of
the corresponding Hertz potential.

B. Quantum em field in the presence of a parabolic mirror

The proper characterization of the em modes provides a
starting point for a quantum description of light. We have
given compact conditions to determine the available modes
sustained in the presence of an ideal parabolic mirror by

exploiting the symmetries of the em field in such a geometry.
From the knowledge of these modes, field quantization can be
performed following the prescription used in Sec. III, taking
care of the proper normalization of the elementary modes.

In the quantum realm, the electromagnetic field admits
the possibility of a plethora of configurations. Each one is
determined by the specification of the state of every ele-
mentary mode, both for pure and mixed states of the field.
In this scheme, the correlation functions characterizing the
quantum em field are evaluated with respect to the state
each mode is found in (e.g., coherent, squeezed, or number
states) multiplied by structure functions that depend on the
spatiotemporal distribution of the elementary modes.

As illustrated for the ideal mirror in Figs. 2–5, the modes
with small values of |κ| exhibit a high degree of 3D localiza-
tion near the focus of the parabolic mirror. In fact, as already
mentioned, the em field of Neuman modes with |κ| � 1 re-
semble the pattern of the em field radiated by a dipole aligned
with the x3 axis. This observation leads to the following
expectative [8]: if an atom in an excited state is located near
the focus of a parabolic mirror there is a high possibility that it
will emit a single photon naturally described by the Neuman
mode with the lowest value of |κ| and a frequency compatible
with the atomic transition energy. This is in stark contrast
with the standard free-space description in terms of plane
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waves where an infinite number of possible modes with wave
vectors �k are usually considered. The enhanced atom-em field
interaction within a mirror could be used for a deterministic
generation of single photons with a given a label or, vice
versa, for the control of atomic states through the interaction
with photons in a given parabolic mode.

V. DISCUSSION

We have shown that symmetries inherent in a parabolic
geometry can be used to obtain closed expressions of the elec-
tromagnetic modes in the presence of boundaries exhibiting
such geometry. Within the Hertz potentials formalism, these
modes incorporate the vectorial character of the em field into
the two parameters given by the elementary solutions of the
scalar wave equation in a simple way. The intrinsic angular
momentum—equivalent to a bivalued parameter σ = ±1—is
imprinted on the form of the Hertz potentials: (i) it couples
with the orbital angular momentum of the scalar field to
yield a vector potential that only involves wave functions with
parameters m and m ± 1, and (ii) it modifies the parabolic
number κ to yield vector Hertz potentials π (m;κ ) via scalar
wave functions with parameters κ and (2κ ± 1i)/2; both are
shown in Eqs. (58).

The elementary electromagnetic modes encountered from
the Hertz potentials exhibit the underlying parabolic symme-
try. They are orthonormal with respect to the scalar product
defined by an extrapolation of the expression of the em energy
density for two different modes, Eq. (63). As a consequence,
these modes can be used to quantize the field through the
Einstein prescription and define the quantum numbers of the
corresponding photons. The quantum numbers are related to
dynamical variables of the field and, in turn, its mechanical
identity. The m quantum number accounts for the projection
of the total angular momentum along the x3 axis, J3, and the
κ quantum number is half the eigenvalue of the generator
A3 characteristic of parabolic symmetry. Both numbers could
play a dynamical role in matter-em field interactions, the study
of which we leave for future work.

The relevance of using symmetrized modes has been fur-
ther analyzed by working in detail the important case of an
ideal parabolic mirror. We have shown that proper boundary
conditions can be satisfied by these modes. For a mirror
located at ζ0, the boundary conditions constrain the relative
weights of the π±, π0 components of the vector Hertz po-
tentials and limit the possible values of κ to solutions of the
compact expression

W2
κ,m(ζ̄0) = −d+

d−
, d± = 1

2
± i

κ

m
,

which encloses the constrains found for both electric,
Eqs. (85) and (97), and magnetic modes, Eqs. (87) and (91).
We observed that, even though the boundary condition is
naturally written in configuration space, several mathematical
manipulations can be dealt with in an easier way in the wave-
vector space.

The parabolic em modes exhibit electric and magnetic
fields with a nontrivial and rich topology. Regions where
electric and magnetic field have different magnitude, phase
singularities, vectorial vortices, and strong gradients of the

field components are found. These properties should be stud-
ied at depth in terms of their effect in the interaction with
atomic systems. These properties motivate the study of the ef-
fect of light over the external and internal degrees of freedom
of material particles.

The experimental generation of any given particular mode
is an important subject. A direct implementation corresponds
to impinge the boundary conditions on the em field through
an accessible surface. In the optical realm the use of space
light modulators seems to be a promising option to that end.
In fact this idea has already been studied and implemented for
Neuman modes by Sonderman et al. [8].

The results reported in this paper can also be used to
study other interesting configurations, e.g., cavities built from
parabolic mirrors. From the analysis reported here, the com-
plete set of modes inside a near confocal cavity bounded by
the surfaces ζ = ζ0 and η = η0 is formed by fields with values
of the parameter κ that are simultaneous solutions of

W2
κ,m(ζ̄0) = −d+

d−
, W2

−κ,m(η̄0) = −d−
d+

.

The feasibility of this condition should be studied in detail;
including a comparison with previous works that used the
WKB approximation to analyze the em field in confocal
cavities [1]. A second example corresponds to explore the
use of the symmetrized vectorial em fields in the presence of
parabolic lenses.
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APPENDIX A: PARABOLIC COORDINATES
AND THE ASSOCIATED SCALE FACTORS

The parabolic coordinates are defined by

x1 =
√

ζη cos ϕ, x2 =
√

ζη sin ϕ, x3 = 1
2 (ζ − η) (A1)

with

0 � ζ < ∞, 0 � η < ∞, 0 � ϕ < 2π. (A2)

The scale factors are

hζ = 1

2

√
ζ + η

ζ
, hη = 1

2

√
ζ + η

η
, hϕ =

√
ζη. (A3)

The unitary parabolic vectors are

eζ =
√

ζ

ζ + η

[√
η

ζ
(cos ϕe1 + sin ϕe2) + e3

]
, (A4)

eη =
√

η

ζ + η

[√
ζ

η
(cos ϕe1 + sin ϕe2) − e3

]
, (A5)

eϕ = − sin ϕe1 + cos ϕe2. (A6)
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Inverting them one obtains the Cartesian basis:

e1 =
√

η√
ζ + η

cos ϕeζ +
√

ζ√
ζ + η

sin ϕeη − sin ϕeϕ, (A7)

e2 =
√

η√
ζ + η

sin ϕeζ +
√

ζ√
ζ + η

sin ϕeη + cos ϕeϕ, (A8)

e3 =
√

ζ√
ζ + η

eζ −
√

η√
ζ + η

eη. (A9)

Notice that

e± = e1 ± ie2 = e±iϕ

2

[
eζ

hη

+ eη

hζ

± 2ieϕ

]
. (A10)

APPENDIX B: E MODES IN THE PRESENCE OF AN IDEAL PARABOLIC MIRROR
USING PARTIALLY SYMMETRIZED HERTZ POTENTIALS

The use of symmetrized modes allows for compact expressions that describe the em field in the presence of an ideal parabolic
mirror. In this appendix, we illustrate the difficulties that arise when solving this problem using vector Hertz potentials that are
eigenfunctions of Ĵ3 but do not necessarily lead to electric and magnetic fields that are eigenfunctions of A3. To that end, the
boundary conditions are imposed for E modes generated from partially symmetrized vector Hertz potentials [see Eqs. (47)].

{EE , BE } partially symmetrized modes for m = 0
In this case

π
(0)
± =

∑
κ

c
(±)
κ,0 e∓iϕVκ,1(ζ̄ )V−κ,1(η̄), π

(0)
0 =

∑
κ

c
(0)
κ,0Vκ,0(ζ̄ )V−κ,0(η̄). (B1)

It can be shown that the condition p(0)
η = 0 for ζ̄ = ζ̄0 is satisfied if[√

ζ̄
∂

∂ζ̄
[D(+)

κ,0 − D
(−)
κ,0 ]

]∣∣∣∣
ζ̄=ζ̄0

= i

√
ζ̄

∂

∂ζ̄
[(−c

(+)
κ+i/2 + c

(−)
κ+i/2)Vκ+i/2,1(ζ̄ ) + (c(+)

κ−i/2 − c
(−)
κ−i/2)Vκ−i/2,1(ζ̄ )]|ζ̄=ζ̄0

, (B2)

with

D
(±)
κ,0 = −i(c(±)

κ+i/2,0Vκ+i/2,0(ζ̄ ) − c
(±)
κ−i/2,0Vκ−i/2,0(ζ̄ )).

The equation p(0)
ϕ = 0 is satisfied if ∑

κ

[μ(+)
κ+i + μ(0)

κ + μ
(−)
κ−i]V−κ,m(η̄) = 0, (B3)

and

μ
(+)
κ+i =

(
1

2
+ iκ − 1

)[
− 1

2
√

ζ̄
(D(+)

κ+i,0 + D
(−)
κ+i ) − D

(0)
κ+i,0 − i

∂D
(0)
κ+i,0

∂ζ̄

]∣∣∣∣
ζ̄=ζ̄0

,

μ(0)
κ =

[
∂

∂ζ̄

√
ζ̄ (D(+)

κ,0 + D
(−)
κ,0 ) + 1

2
√

ζ
(D(+)

κ,0 + D
(−)
κ,0 ) + D

(0)
κ,0 − 2κD

(0)
κ,0

]∣∣∣∣
ζ̄=ζ̄0

,

μ
(−)
κ−i =

(
1

2
− iκ − 1

)[
− 1

2
√

ζ̄
(D(+)

κ−i,0 + D
(−)
κ−i,0) − D

(0)
κ−i,0 + i

∂D
(0)
κ+i,0

∂ζ̄

]∣∣∣∣
ζ̄=ζ̄0

.

Here

D
(0)
κ,0 = c

(0)
κ,0Vκ,0(ζ̄ ).

These equations involve Dκ,0(ζ̄ ) functions with different κ , reflecting the fact that the expression for π (0) has not been chosen
taking into account the parabolic symmetry generated by A3.

{EE , BE } partially symmetrized modes for m > 0
The vectorial Hertz potentials with well defined total angular momentum Ĵ3 have the structure

π
(m)
± = eimϕ

∑
κ

c(±)
κ Vκ,m∓1(ζ̄ )V−κ,m∓1(η̄), π

(m)
0 = eimϕ

∑
κ

c(0)
κ Vκ,m(ζ̄ )V−κ,m(η̄). (B4)

Using the recurrence relations given by Eqs. (12)–(16), it is possible to write the functions V−κ,m±1(η̄) in terms of functions
V−κ,m(η̄), so that, according to their definition Eq. (51),

P
(m)
+ = eimϕ

2
√

η̄

∑
κ

(D(+)
κ+i/2(ζ̄ )V−κ+i/2,m(η̄) + D

(+)
κ−i/2(ζ̄ )V−κ−i/2,m(η̄)), (B5)

P
(m)
− = eimϕ

√
η̄

∑
κ

(D(−)
κ+i/2(ζ̄ )V−κ+i/2,m(η̄) + D

(−)
κ−i/2(ζ̄ )V−κ−i/2,m(η̄)), (B6)
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with

D
(+)
κ±i/2(ζ̄ ) = c(+)

κ Vκ,m−1(ζ̄ )

(
−1

2
∓ iκ

m

)
+ c(−)

κ Vκ,m+1(ζ̄ )[∓i(|m| + 1)],

D
(−)
κ±i/2(ζ̄ ) = c(+)

κ Vκ,m−1(ζ̄ )

(
−1

2
∓ iκ

m

)
− c(−)

κ Vκ,m+1(ζ̄ )[∓i(|m| + 1)]. (B7)

Since Eqs. (B5) and (B6) involve the functions V−κ±i/2,m(ζ̄ ), it is suggested to write

π
(m)
0 = eimϕ

∑
κ

d̃
(0)
κ+i/2V−κ−i/2,m(η̄) + D̃

(0)
κ−i/2V−κ+i/2,m(η̄), D̃

(0)
κ±i/2 = c

(0)
κ±i/2Vκ±i/2(ζ̄ ). (B8)

This expression should lead to results compatible with those obtained from fully symmetrized modes for each κ value. Within
the analysis presented in this appendix the interpretation of κ is not direct. Even more if the ansatz Eq. (B8) is not made and one
insists on working with the general expression for π

(m)
0 , the following hierarchy of equations is found:∑

κ

(
λ

3/2
−κ+3i/2V−κ+3i/2,m + λ

1/2
−κ+i/2V−κ+i/2,m + λ

−1/2
−κ−i/2V−κ−i/2,m + λ

−3/2
−κ−3i/2V−κ−3i/2,m

) = 0, (B9)

under the definitions

λ
3/2
−κ+3i/2 =

(
−ic̃

(0)
κ−i/2 +

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ+i/2

)( |m| + 1

2
− i(κ + i/2)

)
,

λ
1/2
−κ+i/2 = 1

2

∂

∂ζ̄

√
ζ̄D

(+)
κ+i/2,m − 2(κ + i/2)c̃(0)

κ−i/2 − 1

2

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ+i/2 +

( |m| + 1

2
− i(κ − i/2)

)(
−ic̃

(0)
κ+i/2 + 1

2

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ−i/2

)
,

λ
−1/2
−κ−i/2 = 1

2

∂

∂ζ̄

√
ζ̄D

(+)
κ−i/2,m − 2(κ − i/2)c̃(0)

κ+i/2−
1

2

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ−i/2+

( |m| + 1

2
+ i(κ + i/2)

)(
+ic̃

(0)
κ−i/2 + 1

2

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ+i/2

)
,

λ
−3/2
−κ−3i/2 =

(
−ic̃

(0)
κ+i/2 −

√
ζ̄

2

∂

∂ζ̄
D

(−)
κ−i/2

)( |m| + 1

2
+ i(κ − i/2)

)
. (B10)

For {EE , BE }, and m < 0 the role of the functions π+ and π− is interchanged, since the Vκ,m functions defined in Eq. (11) involve
the absolute value of m.

APPENDIX C: PARABOLIC MIRROR BOUNDARY
CONDITION IN TERMS OF COULOMB FUNCTIONS

Under standard conditions, the natural lengths describing
the mirror (e.g., focal length and size) are much greater
than the wavelengths of the em fields of interest. In order
to facilitate the numerical evaluation of the values of κ

satisfying Eq. (93) in this regime, it is necessary to study
the asymptotic behavior of the Wκ,m(ζ̄0) function. In this
appendix, we perform such an analysis in two steps. First, we
write the Vκ±i/2,m(ζ̄0) function in terms of Coulomb functions,
Eq. (20). Second, we use the asymptotic expressions for those
functions [14].

Let us define

Fκ,m(ζ̄0) = F(|m+1|−1)/2(κ, ζ̄0/2)

F(|m−1|−1)/2(κ, ζ̄0/2)
, (C1)

for m a nonzero even integer. Using Eqs. (12) and (13) it
results that

Fκ,m(ζ̄0) = −i
(Vκ+i/2,m − Vκ−i/2,m)|d+|
d+Vκ−i/2,m + d−Vκ+i/2,m

= −i
(Wκ,m − 1)|d+|
d+ + d−Wκ,m

. (C2)

By inverting this equation

Wκ,m = |d+| + iFκ,md+
|d−| − iFκ,md−

, (C3)

the boundary condition

W2
κ,m = −d+

d−
(C4)

is shown to be equivalent to

F2
κ,m(ζ̄0) = 1. (C5)

There is an infinite number of roots {κ0} of this equation. In
fact, for ζ̄0 � κ an analytical result can be given. In this case,
and for m > 0, the boundary condition can be approximated
by

cos2 θκ,m

tan2 ϕκ,m

[1 − tan2 ϕκ,m − 2(tan θκ,m)(tan ϕκ,m)] ∼ 0 (C6)

with

θκ,m = arctan(2κ/m);

ϕκ,m = ζ̄0

2
− κlnζ̄0 − |m|

2

π

2
+ arg�(md+).

Notice that (2� + 1)π = 2θκ�,m, with � an integer number,
guarantees the fulfillment of Eq. (C6) but yields a divergent
root κ0 that breaks the condition ζ̄0 � κ .
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