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We introduce a theory to analyze the behavior of light emitters in nanostructured environments rigorously.
Based on spectral theory, the approach opens the possibility to quantify precisely how an emitter decays to

resonant states of the structure and how it couples to a background, also in the presence of general dispersive
media. Quantification on this level is essential for designing and analyzing topical nanophotonic setups, e.g., in
quantum technology applications. We use a numerical implementation of the theory for computing modal and
background decay rates of a single-photon emitter in a diamond nanoresonator.
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Introduction. Resonance phenomena are omnipresent in
physics. Storage and transfer of energy between different
resonant states allows one to explore wave effects in atomic,
molecular, and optical physics as well as in nuclear and
condensed-matter physics and in other fields of science. Op-
tical resonators are scaled down to the wavelength scale and
below by using modern nanotechnology, as demonstrated in
various material systems [1,2], including plasmonic [3] and
dielectric structures [4]. Placing pointlike sources in the vicin-
ity of such nanoresonators or antennas enables exploration of
new regimes of light-matter interaction. Examples are single-
photon emission with high directivity [5—7], nanoscopic plas-
mon lasers [8,9], and modification of chemical reaction rates
by exploiting strong coupling in microcavities [10].

Theoretical models of light-matter interaction are needed
to understand and optimize the performance of related pho-
tonic devices. Maxwell’s equations can be solved directly to
obtain solutions for the electromagnetic field. For a deeper
insight into physical properties, it is a common approach to
use a modal description. The resonant response of metallic
nanostructures is governed by surface plasmon polaritons.
High-index dielectrics hosts electric and magnetic Mie-like
modes which can be exploited in antenna design [4]. For
understanding the interaction of emitters with nanoresonators,
it is essential to precisely describe the coupling of the emit-
ter to specific modes [11,12]. This coupling is quantified
by individual modal Purcell factors [13,14]. Thus, in most
approaches, the study of the (eigen-)modes and associated
eigenfrequencies of the resonating structure is essential.

The simplest model for modal analysis, a closed nondis-
sipative system, yields a Hermitian linear operator with a
complete set of orthogonal eigenmodes. By duality and based
on a scalar product, these eigenmodes also serve as projectors
which allow for an expansion of the electromagnetic field
into a sum of eigenmodes to characterize the light-matter
interaction. In the past decades, the more challenging study of
open systems, which are usually described by non-Hermitian
operators, is an often addressed research topic in vari-
ous applications including quantum mechanics [15-18] and
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nano-optics [14,19-22]. In a nutshell, the concept of eigen-
modes has been generalized to the theory of resonant states,
also called quasinormal modes (QNMs). QNMs are orthogo-
nal with respect to an unconjugated scalar product [23] which
allows identification of QNMs with projectors again. Also, in
the case of dispersive materials which are ubiquitously present
in nano-optical resonators [3,24], there exist approaches for
QNM expansion [14,21]. However, the orthogonality and
normalization of the QNMs, especially in the case of dis-
persive media, are still under active research and discussed
controversially in the literature [14,21,25-28]. The discrete
set of QNMs is supplemented by the continuous spectrum
of the operator capturing the nonresonant background scat-
tering [29]. State-of-the-art approaches using QNM expan-
sion do not incorporate the continuous spectrum. These can
well be applied when coupling to the background is negli-
gible [14]. However, important application classes rely on
designs with significant background coupling which is present
when low-quality (Q) factor resonances are involved [13].
For realizing integrated single-photon sources, the involved
resonant states are preferably at low Q factor, enabling fast,
pulsed operation [30]. Also, for modifying photochemical
reactions, coupling of molecules to resonant states with a
low Q factor is used due to better accessibility compared to
high Q factor resonances [10]. Theoretical description and
numerical optimization of related setups therefore essentially
require precise treatment and precise distinction of coupling
to the background and to the resonant states.

Riesz projections (RPs) can be used to compute these
quantities in an elegant way. RPs are a well-known concept
in spectral theory [15] and they do not rely on orthogonality
relations and the explicit knowledge of eigenfunctions. RPs
are based on contour integration and provide a powerful
means to analyze the spectrum of partial differential operators.
Note that parallel to this work, a scalar product involving
auxiliary fields has been proposed to ensure the orthogonality
of QNMs for typical dispersive media [31].

In this work, we present a theory for modeling dispersive
light-matter interaction based on RPs. We show that RPs can

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043806&domain=pdf&date_stamp=2018-10-03
https://doi.org/10.1103/PhysRevA.98.043806

LIN ZSCHIEDRICH et al.

PHYSICAL REVIEW A 98, 043806 (2018)

(@) (b)

A

dipole emitter

=)

(c)

4 N\
~—_ —

FIG. 1. Schematic decomposition of the electromagnetic field
caused by a dipole emitter in the vicinity of a nanoresonator. (a) Total
electromagnetic field. (b) A resonance mode of the nanoresonator.
(c) Nonresonant components of the electromagnetic field. This part
includes also the singularity resulting from the dipole source.

()

also be used to model the nonresonant background interaction
in a closed form. The theory allows for a straightforward
numerical implementation which essentially requires solving
time-harmonic scattering problems for complex frequencies.
We apply the method to compute modal decay rates of a dipole
emitter embedded in a diamond nanodisk antenna showing
a weak coupling to the QNMs and a significant background
coupling.

Riesz projection expansion. In the following, we consider
electromagnetic fields in the vicinity of optical nanostructures,
as illustrated in Fig. 1. The total field, sketched in Fig. 1(a),
is decomposed into resonant and nonresonant components
[see Figs. 1(b) and 1(c)]. In the steady-state regime, the
corresponding electric fields E(r, w) are solutions to the time-
harmonic Maxwell’s equations in the second-order form

V x 1~ 'V x E(r, w) — o’ (0)E(r, ) = i), (1)

where w € C is a complex angular frequency. The material
dispersion is described by the permittivity tensor € (w), and the
permeability tensor p typically equals the vacuum permeabil-
ity io. The source term J(r) relates to impressed currents. For
open problems, Eq. (1) is equipped with outgoing radiation
conditions which can be realized by complex scaling in space
of the corresponding partial differential operator. Incident ex-
terior light sources can be incorporated in J(r). Physically rel-
evant scattering solutions have real frequencies wy € R. The
fields E(r, @) can be regarded as an analytical continuation of
E(r, wy) into the complex plane. In this context, the QNMs
correspond to complex frequencies w, e C,m=1,..., M,
where E(r, ») has a resonance pole, i.e., a singularity.

To decompose E(r, wy) into its resonant and nonresonant
parts, we consider the z = w? plane and write E(r,z) =
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FIG. 2. Contour integration in the complex @ plane for com-
puting the Riesz projection expansion, Eq. (3). The red crosses
represent resonance poles w?, the blue curves are the integration
curves for Egs. (2)—(5). (a) Top: Integration path Cy around a)(z), see
Eq. (2). Bottom: Deforming the integration path without enclosing
resonance poles does not modify the integral. (b) Integration curves
C,, in negative direction for computing Riesz projections, see Eq. (4).
(c) Outer integration path C,, for quantifying the interaction with
nonresonant components, see Eq. (5).

E(r, » = /7). Cauchy’s residue theorem gives

1 E(r, z)
E(ra (UO) = 5. 2
Tl Co Z— a)o

dz, ()

where Cj is a closed curve around a)(z) so that E(r, z) is holo-
morphic inside of Cy, as shown in Fig. 2(a). Then, deforming
the path of integration so that an outer curve C,, includes w(z),
the resonance poles w%, ey w%w and no further poles yields

E(r, E(r, E(r,
§ Dy B, f B,
Cp T — Wy c L — Wy Cy £~ @

E(r, 2
—l—?g ( Z)dz,
Cor £ — Wy

see Figs. 2(b) and 2(c). Thereby, we obtain the expansion

M
E(r.w0) = Y En(r, 0p) + En(r, w0), 3)
m=1
where the fields
1 E(r,
En(r.o0) = ——— ¢ B0, 4

- 2
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are related to the resonance poles w%, AU w,zw. The field

1 E
Ep(r, wp) = =— (r.2)

d 5
2mi sz—a)(z) £ ()

quantifies the nonresonant components and contributions
from possible resonance poles outside of the integration curve
Cyr. It has to be ensured that C,,; does not cross the branch cut
in the 7 = w? plane starting from z = 0. The fields in Eq. (4)
are essentially RPs applied to Eq. (1); see results from spectral
theory [15]. The RP expansion offers a general physical
understanding of resonance phenomena without the need to
normalize exponentially diverging fields. Clearly, the integrals
in Egs. (4) and (5) are independent of the particular choice
of the contours C,, and C,,. Therefore, precise locations of
the resonance poles are not required. Also, when a contour
includes multiple resonance poles the contour integral gives
the projector onto the space of corresponding QNMs. In this
way, it is possible to construct projectors for frequency ranges
without detailed a priori knowledge. This case implies that a
specific choice of the number M in Eq. (3) is not necessary.

RP expansion can be applied to any light source; however,
of special interest are pointlike sources. These can be modeled
as dipole emitters J(rg) = jé(r — rp), where j = —iwp with
dipole moment p at position ry. Its enhanced emission rate in
the vicinity of a nanoresonator is characterized by the Purcell
factor [13], also termed normalized decay rate,

I'(wp) = —$Re[E(ro, wp) - j*1/T, (6)

where Iy is the decay rate of the emitter in homogeneous
background material [14,32]. To quantify the coupling of the
emitter to each of the single RPs E,, (r, wy), we introduce the
modal normalized decay rate

T, (@) = —iRe[E,,(ro, wp) - j*1/T. (7)

The nonresonant normalized decay rate is analogously given
by

1—1nr(a)0) = _%Re[Enr(rOv (,()()) j*]/rb (8)

Numerics. For the numerical realization of the RP expan-
sion, we calculate the contour integrals in Eqs. (4) and (5)
using a simple trapezoidal rule. At each integration point, it
is required to solve Eq. (1) for a complex frequency which is
done with a finite-element method (FEM solver, JCMSUITE).
Perfectly matched layers (PMLs) [33] are used to enforce
outgoing radiation conditions. To ensure an accurate FEM
discretization for singular dipole sources, we use a subtrac-
tion field approach E(r, w) = Ey(r, w) + E.(r, w). The field
E,(r, w) is the analytically given solution to a dipole source
in homogeneous bulk material. The correction field E.(r, ») is
suitable for an accurate FEM discretization [32]. Furthermore,
for problem setups with geometries of cylindrical symmetry,
we reduce the three-dimensional computation to a series of
two-dimensional simulations with angular modes e"#¥. The
resonance poles are computed with a linear eigenvalue solver
using an augmented field formulation. However, as mentioned
above, the precise locations of the eigenvalues could be re-
placed by rough guesses. Self-adaptive approaches can be
used for constructing suitable integration paths and to avoid
crossing resonance poles. To run scans of the frequency wq
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FIG. 3. (a) Sketch of a diamond nanodisk antenna (diameter
400 nm, height 160 nm) in air with an embedded dipole emitter
placed 15 nm below the upper surface and on the cylindrical symme-
try axis (z axis). The dipole with normalized strength is oriented in x
direction and oscillates at frequency wy = 27 ¢/455 nm. (b) Log plot
(a.u.) of the total electric field intensity. (c)—(e) Log plots (a.u.) of
the electric field intensity of the three RPs for the complex eigen-
frequencies w; = 2w ¢/(406 4+ 16i nm), w, = 2w c/(454 + 13i nm),
and w3 = 2mc/(655 4 55i nm), respectively.

in the range [Wmin, - - - » Wmax], NOte that the integrand in the
RPs, Eq. (4), only depends on wy by the factor 1/(z — »}).
Therefore, for the whole scan, the fields E(r, w) need to be
evaluated only once at each integration point. Furthermore,
all calculations can be performed in parallel. Due to these
properties, the numerical realization is remarkably fast. We
mention that RPs have also been used for algebraic eigenvalue
solvers [34-36].

Application. Next, we apply the presented method to
a highly topical example: a stable solid-state emitter in a
nanoantenna. There is an urgent need for such systems to
be used as single-photon sources for optical quantum tech-
nologies [37]. Room-temperature operation and directional
emission at high rate are mandatory. As diamond is known
to host various interesting defects; we consider a setup where
a nitrogen-vacancy (N-V) center [38] is hosted in a (di-
electric) diamond nanoantenna. An all-diamond realization
would be ultracompact and ideal for large-scale integration.
The specific geometry is depicted in Fig. 3(a). The dipole
emitter is placed on the symmetry axis and polarized in the
xy plane; therefore only angular modes with n, = £1 are
populated. The diamond permittivity €(w) is described by
a two-pole Lorentz model €(w) = €p(1 + €, + €,,), where
€p, = Aél,zwil,z/(w%m —2iwy — w?), with A, = 0.33006,
Ae, =4.3356, w,, =2mc/175 nm, wp, = 2w c/106 nm, and
damping y = 0 [39].

We investigate the device within the wavelength range of
Ao € [400 nm, ..., 800 nm]. For computing the RPs, we use
four integration points in Eq. (4). Figure 4(a) shows the modal
normalized decay rates I',, of the three RPs corresponding
to the resonance poles with smallest imaginary parts. Each
spectrum shows a maximum at the wavelength corresponding
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FIG. 4. Numerical results for the nanoantenna shown in Fig. 3(a).
(a) T',, spectra of the three dominant RPs from Figs. 3(c)-3(e).
(b) Normalized decay rates: I' (quasiexact solution), ), T, +
[y (complete RP expansion), Zle I',, (RPs for first M reso-
nance poles). (c) Resonance poles of the nanoresonator and in-
tegration curves for computing I',, (C, not to scale) and [y.
(d) Convergence of '), with respect to Cy,;: Maximum relative error
(Zi:l Iy + Ty — I')/T as a function of the number of integration
points [integration path as in (c)]. (e) Convergence of I';(wy =
27 c/455 nm) with respect to the numerical parameters of the con-
tour integration: Relative error of I', as a function of the number
of integration points, for different integration paths (circle C, with
radii r where Aw? =5 x 10% s72), reference solution computed
with r = Aw?/4, and 64 integration points.

to the real part of the respective pole. The highest decay
rate is observed at around Ay = 455 nm. The RPs at wy =
27 c/Ag for three significant eigenfrequencies w,, are shown in
Figs. 3(c)-3(e). For comparison, the total field solution com-
puted from Eq. (1) is shown in Fig. 3(b). We note that for the
investigated case where a single pole is enclosed in each con-
tour integral, the RP is a multiple of the corresponding QNM.
However, as mentioned above, from the QNMs only it is not
possible to compute modal expansion coefficients without an
orthogonality relation, i.e., without scalar products, yielding a
separation of the Maxwell’s equations in a modal sense. The
presented approach is not restricted to specific geometrical
setups. Therefore, also handling complex environments of the
nanodisk antenna, including, e.g., layered structures, waveg-
uides, and arbitrarily shaped objects, is straightforward.
Figure 4(b) validates the completeness of the expansion
in Eq. (3). The quasiexact solution I is gained from solv-
ing the scattering problem in Eq. (1) and applying Eq. (6).
Using Eq. (4) and Eq. (7) for the first three resonance poles

yields an incomplete RP expansion Zi:] I';, which already
reproduces the characteristics of I'. Using the first eight poles,
the agreement of the incomplete RP expansion Zi:l Iy, with
the quasiexact solution improves. Adding the nonresonant part
Iy, calculated with Eq. (8), gives the theoretically expected
match to the quasiexact solution. Here, for the computation
of Ey(r, ) in Eq. (5), we use 128 integration points. We
attribute the fact that the nonresonant components are of
significant quantitative impact to the nature of the diamond
nanodisk antenna. Due to its relatively low refractive index,
the structure hosts many weakly localized modes of low Q
factor. Thus, the coupling to the background continuum of
modes plays an important role for the Purcell factor.

Figure 4(c) details the position of the resonance poles
in the complex plane and the used contour integral curves
for this example. We distinguish between physical resonance
poles and so-called PML poles [29,31]. Physical poles are
stable with respect to a change of the numerical parameters
and are therefore related to the discrete part of the operator
spectrum. The PML poles stem from the continuous part of
the spectrum of the operator and yield algebraic eigenvalues
due to the discretization and truncation of the open resonator
system. In this sense, the integral over the outer contour Cp,
comprises the continuous part of the operator (PML modes) as
well as further QNMs which might be present outside of Cy;.
Note that the bulk emission term Ey(r, ) in the subtraction
field approach E(r, w) = Ey(r, w) + Ec(r, w) is an analytic
function in the entire complex plane. Hence, Ey(r, @) does not
contribute to the RPs E,, (r, wy), which are therefore smooth
fields, cf., Figs. 3(c)-3(e), whereas E(r, wy) produces the
singularity.

The numerical efficiency of the RP expansion depends on
the numerical convergence of the contour integral with respect
to the number of integration points. For the outer contour Cy,
as plotted in Fig. 4(c), we observe convergence with respect
to the number of integration points, see Fig. 4(d). For the
contours of the single RPs, we verified that four integration
points are sufficient to reach a relative accuracy of the derived
modal decay rate better than 107°, see Fig. 4(e).

Conclusions. In conclusion, we presented a theoretical
approach to explain the coupling of light sources to dispersive
nanoresonators by means of an electromagnetic field expan-
sion with Riesz projections. The method allows for the precise
definition and computation of the field expansion into modal
and background parts and for the evaluation of linear func-
tionals, e.g., modal and background decay rates. We applied
the approach to model the coupling of an emitting defect
center in diamond to a nanodisk antenna supporting several
weakly localized resonant states. The method is applicable
to systems with any material dispersion obeying Kramers-
Kronig relation. We therefore expect that the approach will
prove especially useful for understanding and designing novel
photonic devices with material properties that can only be
accurately modeled using high-order rational fits to measured
data. Riesz projection expansion further establishes a route
for quantitative modal analysis of omnipresent nano-optical
systems with relevant nonresonant background. The presented
concepts may also be applied to explore open resonators in
other fields of physics, e.g., in phononic structures [40] and
acoustic metamaterials [41].
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