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Hybrid atom-molecule quantum walks in a one-dimensional optical lattice
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We study hybrid atom-molecule quantum walks in one-dimensional optical lattices with two interacting
bosonic atoms which may be converted into a molecule. The hybrid atom-molecule energy bands include a
continuum band and two isolated bands, which respectively correspond to scattering states and dressed bound
states (DBSs). Because of the atom-molecule coupling, the DBSs may appear even in the absence of atom-atom
interaction. From an initial state of two atoms occupying the same site, in addition to independent quantum
walks which correspond to scattering states, correlated quantum walks appear as a signature of DBSs. Even
if the atom-atom interaction and the atom-molecule coupling are much stronger than the tunneling strengths,
independent quantum walks may still appear under certain resonant conditions. The correlated quantum walks
show two light cones with different propagation velocities, which can be analytically explained by the effective
tunneling strengths of the two different DBSs. Furthermore, the effective nearest-neighbor tunneling of DBSs
can be suppressed to zero, which can be explained by the destructive interference between the atomic pair and
the molecule.
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I. INTRODUCTION

Quantum walks (QWs) [1], a direct result of quantum
interference of different paths, have been extensively studied
in both theory and experiments [2–5]. QWs can be exploited
to various fields, from universal quantum computing [6],
efficient quantum algorithm [7–11], and energy transfer [12]
to topological state detection [13,14]. Single-particle QWs
have already been implemented by various systems including
ultracold atoms [15], ultracold ions [16], photonic waveg-
uides [17], atomic spin impurities [18], etc. Moreover, it
has also been demonstrated that single-particle QWs can be
implemented via classical waves [19].

Beyond single-particle QWs, two-particle QWs have at-
tracted extensive interest in recent years. The two-body
physics in the standard Hubbard model has been studied thor-
oughly [20–23], where quasi-independent scattering states
and repulsive or attractive bound states are found. The non-
classical correlation between noninteracting particles, i.e., the
bunching and antibunching behavior, are found to depend
strongly on the quantum statistical properties [24–26]. On
the other hand, interaction between particles in a lattice is
believed to be beneficial to universal quantum computation
[27]. The interacting two-particle QWs have been broadly
discussed and implemented in previous work [28–32]. The
interaction is found to strongly affect the spatial correlations
[33]. Particularly, the repulsively or attractively interacting
(quasi)particles can form a bound pair [34,35] stabilized by
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the band gap. Therefore, besides the independent QWs, there
is the cowalking of the bound pair [28,33,36].

Although the QWs of interacting particles have been exten-
sively studied, it still remains unclear about the QWs involv-
ing atom-molecule coupling. According to the two-channel
theory, a pair of atoms can be converted into a molecule
and vice versa. For two bosons in optical lattices, due to the
atom-molecule coupling, their energy spectrum includes two
isolated bands and a continuum one [37–40]. The states in
isolated bands are in superposition of atomic bound state and
molecular state, which are called the dressed bound states
(DBSs) in the following context. Under specific conditions,
the DBSs can be tuned to enter the continuum band and thus
lead to so-called scattering resonance [38]. For the Hubbard
systems involving atom-molecule coupling, their two-body
spectrum has been studied in Refs. [37–40] but the two-body
quantum walks are not investigated. Since the QWs in these
systems have not been revealed yet, it is worthy to investi-
gate the dynamical properties of the hybrid atom-molecule
systems. In particular, it is intriguing to explore the signature
of DBSs via QWs.

In this article, by considering a one-dimensional (1D)
Bose-Hubbard model with atom-molecule coupling, we study
the QWs from two interacting Bose atoms occupying the same
lattice site. Before investigating the hybrid atom-molecule
QWs, we shall perform the calculation for the eigenenergies
and the eigenstates to understand the property of the system.
We focus on exploring the interplay among atom-molecule
coupling, atom-atom interaction, and atom-molecule energy
detuning and their effects on the QWs. Without the atom-atom
interaction, there are two kinds of DBSs supported by pure
atom-molecule coupling. Such an atom-molecule coupling
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may play the role of effective atom-atom interaction and
then result in the correlated QWs. Due to the atom-molecule
energy difference, the atom-atom interaction can be balanced
under certain resonant conditions, which are derived explic-
itly. In this case, even if the background interaction is strong,
the DBSs are broken into scattering states and there show the
pattern of independent QWs.

By using the many-body degenerate perturbation theory,
we give the effective models for the QWs of DBSs, in which
the effective tunneling strengths of DBSs can be tuned by the
atom-molecule energy difference. The effective model shows
that the QWs of DBSs can be different. The dependence
of effective tunneling DBSs on the molecular tunneling and
atomic tunneling are of first and second order, respectively,
indicating that even if the molecular tunneling is relatively
weak, it may still have considerable effect on the DBS. Re-
markably, from the effective model we find that the interplay
between tunnelings of atoms and molecule can suppress the
nearest-neighbor (NN) tunneling of DBSs.

The paper is organized as follows. In Sec. II, we introduce
our hybrid atom-molecule system and solve its energy bands.
In Sec. III, we present the QWs from two atoms occupying the
same site. In particular, we discuss how the QWs are affected
by the pure atom-molecule coupling (Sec. III A) and the
interplay between atom-atom interaction and atom-molecule
coupling (Sec. III B). In Sec. IV, we derive effective models
for the QWs of DBSs and discuss the effective tunneling of
DBSs. At last, we make a brief summary and discussion of
our results.

II. HYBRID ATOM-MOLECULE ENERGY BANDS

We consider two interacting Bose atoms in 1D optical
lattices, where the two atoms can be converted into a molec-
ular state via atom-molecule coupling. The system obeys the
Hamiltonian,

Ĥ = −
L∑

l=−L

(Jaâ
†
l âl+1 + Jmm̂

†
l m̂l+1 + H.c.)

+ U

2

L∑
l=−L

n̂a
l

(
n̂a

l − 1
) + g

L∑
l=−L

(â†
l â

†
l m̂l + H.c.)

+
L∑

l=−L

(
εan̂

a
l + εmn̂m

l

)
. (1)

Here, g is on-site atom-molecule coupling strength, U

is on-site background atom-atom interaction, Ja (Jm) is
the atomic(molecular) tunneling strength, εa (εm) is the
atomic(molecular) on-site energy, the lattice site index l

ranges from −L to L, the total number of lattice sites is
Lt = 2L + 1, and the periodic boundary condition (PBC) is
imposed. The bosonic operators â

†
l (m̂†

l ) and âl (m̂l) create
and annihilate an atom (molecule) on the lth site, respectively.
Due to the fact that the mass of molecule composed by two
atoms is two times larger than the single atom, the tunnel-
ing of the molecule is small compared with the tunneling
of the atom [37–39,39,41,42]. Inclusion of relatively weak
molecular tunneling is found to only slightly modify the spec-

trum [38]. Therefore, the tunneling of the molecule is usually
omitted in previous work [39,41,42]. In this work, we shall
keep all the terms of molecular tunneling in the analytical
derivation, but only discuss it when it has non-negligible ef-
fect. The atom-molecule coupling g can be realized by apply-
ing the magnetoassociation [43] or photoassociation [44,45]
technique. The on-site energy difference between atoms and
molecule � = 2εm − εa can be tuned by applying external
magnetic field [43].

Different from Refs. [37–40], we use an alternative method
to obtain the eigenstates and eigenenergies of the system. The
Hilbert space can be spanned by a complete set of orthogonal
basis,

H(2) = {|l1l2〉a ⊕ |j 〉m}. (2)

Here, |j 〉m = m̂
†
j |0〉(−L � j � L) denotes the state of

one molecule in the j th lattice site, while |l1l2〉a = (1 +
δl1l2 )−1/2â

†
l1
â
†
l2
|0〉 (−L � l1 � l2 � L) denotes the state of one

atom in the l1th site and one atom in the l2th site, where δl1l2

is the Kronecker delta function. Hence one can expand the
eigenstates as |�〉 = ∑

l′1�l′2
φl′1l

′
2
|l′1l′2〉a + ∑

j ′ϕj ′ |j ′〉m. Thus

the eigenvalue problem Ĥ |�〉 = E|�〉 is described by the
coupled equations:∑
l′1�l′2

φl′1l
′
2 a〈l1l2|Ĥ |l′1l′2〉a +

∑
j ′

ϕj a〈l1l2|Ĥ |j ′〉m = Eφl1l2 ,

∑
j ′

ϕj ′m〈j |Ĥ |j ′〉m +
∑
l′1�l′2

φl1l2 m〈j |Ĥ |l′1l′2〉a = Eϕj . (3)

For simplicity, we define ψl′1l
′
2
= (1 + δl1

′ l ′
2
)1/2φl′1l

′
2

so that the
normalization coefficient is eliminated. After some algebraic
calculation, using commutation relations of bosonic operators,
one can obtain

Eψl1,l2 = −Ja

(
ψl1,l2+1 + ψl1+1,l2 + ψl1−1,l2 + ψl1,l2−1

)
+ δl1,l2Uψl1,l2 + 2εaψl1,l2 + 2gδl1,j δl2,j ϕj , (4a)

Eϕj = −Jm(ϕj+1 + ϕj−1) + εmϕj + gδl1j δl2jψl1,l2 . (4b)

Obviously, Eq. (4a) and Eq. (4b) show the hybridization
of atomic and molecular states. To solve these equations, we
adopt the ansatz

ψl1,l2 = Cae
iKaRa ξ (r ), ϕj = CmeiKmRm. (5)

Here, Ka , Ra = (l1 + l2)/2 and r = l2 − l1 are respectively
the center-of-mass (c.m.) quasimomentum, c.m. position, and
relative position of atoms. Correspondingly, Km and Rm = j

are the molecular quasimomentum and position, respectively.
The coefficients Ca and Cm are the normalization constants.
The function ξ (r ) is independent of Ka and Ra ,

ξ (r ) = C+eik|r| + C−e−ik|r|, (6)

where k can be real or complex and C± are unknown co-
efficients. From the physical point of view, the states of
atoms ψl1,l2 can be expressed as Bloch-like functions with
independent c.m. part and relative motion part.

Before we go further, let us prove that Ka = Km = K for
eigenstates. When l1 = l2 = j (Rm = Ra = R), combining

043628-2



HYBRID ATOM-MOLECULE QUANTUM WALKS IN A ONE- … PHYSICAL REVIEW A 98, 043628 (2018)

Eq. (4b) and Eqs. (5), we have

E + 2Jm cos (Km) − εm

g
Cmei(Km−Ka )R = ξ (0)Ca. (7)

Because Eq. (7) holds for all R ∈ [−L,L], we have Km =
Ka . For simplicity, we denote Km = Ka = K and restrict
it in the first Brillouin zone from now on. Since the PBC
requires ψl1,l2+Lt

= ψl1+Lt ,l2 = ψl1,l2 and ϕj+Lt
= ϕj , the c.m.

quasimomentum obeys K = 2πn/Lt with n = −L,−L +
1, . . . , L.

From Eqs. (4) and (5), denoting Ẽ = E − 2εa and � =
εm − 2εa , one can obtain

Ẽξ (r ) = JK
a [ξ (r + 1) + ξ (r − 1)] + δr,0Ueffξ (r ), (8)

where Ueff = U + 2g2/(Ẽ − � − JK
m ) and JK

a = − 2Ja

cos(K/2), JK
m = −2Jm cos(K ). Obviously, the atom-

molecule coupling contributes an additional energy-
dependent term in the effective interaction Ueff . This indicates
that the atom-molecule coupling g may play the role of
atom-atom interaction U and therefore DBSs may appear
even when the atom-atom interaction is absent.

In the case of � → ∞ or U → ∞, Eq. (8) can be approx-
imated as

Ẽξ (r ) = JK
a [ξ (r + 1) + ξ (r − 1)] + δr,0Uξ (r ), (9)

which reduces to the case of no atom-molecule coupling [21].

A. Continuum band

The continuum band corresponds to scattering states whose
k are real numbers. For a real k, substituting Eq. (6) into
Eq. (8), we have the eigenenergies

Ẽ = 2JK
a cos(k). (10)

Here, the value of k can be determined by the following
procedure. Substituting Eqs. (6) and (10) into Eq. (8), one can
find that the coefficients C± obey

C+
C−

= −
−JK

a 2i sin k + (
U + 2g2

2JK cos k−�−JK
m

)
JK

a 2i sin k + (
U + 2g2

2JK cos k−�−JK
m

) . (11)

Furthermore, according to the PBC, ξ (r ) obeys ξ (r + Lt ) =
eiKLt /2ξ (r ) and therefore one can obtain the coefficients C±

C+
C−

= − (−1)iKLt /2 − e−ikLt

(−1)iKLt /2 − eikLt

. (12)

Combining Eqs. (11) and (12), one can determine k by solving
the following equation:

JK
a 2i sin k − (

U + 2g2

2JK cos k−�−JK
m

)
JK

a 2i sin k + (
U + 2g2

2JK cos k−�−JK
m

) = (−1)KLt/2e−ikLt .

(13)

Obviously, the above equation is invariant under the transfor-
mation k → −k and thus k can be restrained in the region
[0, π ]. Substituting the values of k into Eq. (10), we obtain
the eigenenergies of scattering states, which are denoted by

the circular dots in Fig. 1. Correspondingly, the explicit ex-
pression of ξ (r ) is given as

ξ (r ) ∼ (−1)KLt/2e−ikLt eik|r| + e−ik|r|, (14)

which has the same form as the one of no atom-molecule
coupling [21,33].

Besides, we calculate the proportion of molecular state for
each eigenstate,

Pm =
∑

j

|ϕj |2, (15)

which is denoted by the color in Fig. 1. Due to the atom-
molecule coupling, the scattering states are a hybridization of
molecular states and atomic states.

B. Isolated bands

Isolated bands correspond to the states with complex
values of k. If the atom-molecule coupling is absent, i.e.,
g = 0, the atomic and molecular states are decoupled and
there appears an isolated band corresponding to the molecular
states; see Fig. 1(a1). When Jm = 0, the isolated molecular
band is exactly given as Ẽ = �.

For nonzero atom-molecule couplings g, the isolated bands
correspond to DBSs, whose k can be assumed as k = β + iη

(where β and η are both real numbers). Noting that the wave
function must remain finite when r → ∞, Eq. (6) can be
rewritten as

ξ (r ) = e(iβ−η)|r|. (16)

For simplicity, we introduce eiβ−η ≡ α, which satisfies α ∈ C
and 0 < |α| < 1. Thus ξ (r ) can be rewritten as

ξ (r ) = α|r|. (17)

This expression indicates that the wave functions of atomic
states decay exponentially when the relative distance in-
creases [21]. Combining Eqs. (8) and (17), one can obtain

Ẽ = 2JK
a α +

(
U + 2g2

Ẽ − � − JK
m

)
(18)

for r = 0 and

Ẽ = JK
a (α−1 + α) (19)

for r > 0. Here, Ẽ and α are unknown parameters. To ensure
real eigenenergies Ẽ, the parameter α must be real as well
so that we have β = mπ and m ∈ N. By numerically solving
Eqs. (18) and (19), we obtain two isolated bands for DBSs;
see the triangular dots in Fig. 1. The emergence of two
isolated bands is consistent with the previous results obtained
by other methods [37–39]. From Eqs. (18) and (19), when
Jm = U = � = 0, we find that if (Ẽ, α) are their solutions,
then (−Ẽ,−α) are also their solutions. Furthermore, when
the atom-molecule coupling strength g increases, the two
symmetric and isolated bands gradually separate from the
continuum band; see Figs. 1(a1)–1(a4), respectively.
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FIG. 1. Energy spectrum under influence of atom-molecule coupling, atom-atom interaction, and atom-molecule energy difference. The
circular and triangular dots denote the scattering states and the DBSs, respectively. The color of each dot represents the proportion of molecular
states, which is given by Pm = ∑

j |ϕj |2. (a1)–(a4) Energy spectrum for different atom-molecule coupling g = 0, 1, 2, 4 with U = � = 0.
(b1)–(b4) Energy spectrum for different atom-atom interaction U/g = 0, 0.25, 1, 4 with � = 0 and g = 4. (c1)–(c4) Energy spectrum for
atom-molecule energy difference �/g = −4, 1, 2, 4 with g = 4, U = 8. The other parameters are set as Ja = 1, Jm = 0, and Lt = 21 by
default. Since the molecular tunneling strength Jm is much smaller than the atomic tunneling strength Ja in reality, we omit it in the numerical
calculation if it only brings small modification to the spectrum for simplicity.

C. Interplay among the atom-molecule coupling, the atom-atom
interaction, and the atom-molecule energy difference

Below, given g = 4Ja = 4 and Jm = 0, we will show how
the atom-atom interaction (U ) and the atom-molecule energy
difference (�) affect the energy spectrum.

To explore the interplay of g and U , we choose � = 0. For
simplicity, we concentrate our discussion on the case of U >

0. Actually, the following discussion can be easily applied to
the case of U < 0. We present the energy bands for different
values of U/g in Figs. 1(b1)–1(b4). Clearly, the repulsive
interaction gradually lifts the energy of isolated bands. Under
strongly repulsive interaction, the lower isolated band enters
into the continuum band and results in the resonance between
scattering and bound states [37,38]; see Fig. 1(b4). Around
resonance, the states display stronger hybridization than other
states in the continuum band. When U approaches infinity,
from Eq. (8), the eigenenergies for the lower and upper
isolated bands are given as Ẽ = � and Ẽ = U , respectively.
In this instance, the lower isolated band purely corresponds to
the bare molecule, while the upper isolated band corresponds
to the bounded atomic pair.

Given finite atom-atom interaction U/g = 2, we then ex-
plore the interplay between � and g, as shown in Figs. 1(c1)–
1(c4). When �/g � −1, the upper and lower isolated bands
are respectively dominated by the bounded atomic pairs and

the molecular states; see Fig. 1(c1). With the increase of �,
the lower isolated band is gradually shifted from the bottom
to the upper of the continuum band; see Figs. 1(c2) and 1(c3).
Particularly, for certain values of �, the lower isolated band
may completely merge into the continuum band, as shown in
Fig. 1(c2). When �/g � 1, the lower isolated band becomes
dominated by the bounded atomic pair and the upper isolated
band tends to be dominated by the molecular states; see
Fig. 1(c4).

However, if the atom-atom interaction is zero, the lower
isolated band will never merge into the continuum band. To
show this, we plot the eigenenergies for given c.m. quasimo-
mentum K = 0 as a function �; see Fig. 2. In the absence
of atom-atom interaction (U = 0), the lower (upper) iso-
lated band gradually approaches the bottom (above) boundary
of the continuum band when � → +∞ (� → −∞); see
Fig. 2(a). The two isolated bands for DBSs always sandwich
the continuum band. For nonzero atom-atom interaction (U =
0), the energy of DBSs can merge into the continuum band,
causing the resonance between DBSs and continuum band;
see Fig. 2(b). In fact, one can prove that, for a given K , there
are two DBS solutions if U = 0 and g = 0, while there can be
only one solution if U = 0; see Appendix A for more details.
To summarize, the atom-atom interaction is essential for the
occurrence of the resonance.
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FIG. 2. Eigenenergies of the zero quasimomentum states (K =
0) versus the energy difference � and different ratios: (a) U/g = 0
and (b) U/g = 2. The color represents the proportion of molecular
states, which is given by Pm = ∑

j |ϕj |2. The other parameters are
chosen as Ja = 1, Jm = 0, g = 4, and Lt = 21.

D. Resonance between scattering states and DBSs

In this subsection, we discuss the resonance between scat-
tering states and DBSs, which is usually characterized as
the Fano-Feshbach resonance [37,38], and give the resonant
conditions.

From Eqs. (18) and (19), one can solve the energies for
two isolated bands of DBSs. However, as mentioned in the
previous subsection, for nonzero atom-atom interaction U we
have proved that there may be only one solution under some
specific conditions. For a given K , the condition of only one
solution of DBSs is given as

2g2

U
− 2

∣∣JK
a

∣∣ − JK
m < � <

2g2

U
+ 2

∣∣JK
a

∣∣ − JK
m . (20)

This indicates that there exists resonance between scattering
states and DBSs. If Jm = 0, from Eq. (20), one can find
that there is only one DBS solution for all K when � =
2g2/U , exactly corresponding to the result mentioned above
in Fig. 1(c2).

The resonance can be understood by the atom-molecule
conversion in the limit of Ja = Jm = 0; see Appendix. B.
By solving the eigenequation, one can obtain three different
kinds of eigenstates. One kind of eigenstate corresponds to
separated atomic states |al1l2〉 = |l1l2〉a with l1 < l2. The other
two kinds of eigenstates correspond to the dressed-molecule
states, which are in superposition of the atomic state and
molecular state |dl〉 = Aσ |l〉m + Bσ |l, l〉a . Here Aσ and Bσ

are the coefficients of lower (σ = 1) and upper (σ = 2)
dressed-molecule states. The lower dressed-molecule states
and the separated atomic states are degenerate when � =
2g2/U (U > 0). Under this condition, a tiny atomic tunneling
will immediately make the separated atomic states into the
atomic scattering states, and then the atomic scattering states
couple with the dressed-molecule states. That is why the
degenerate condition is identical to the condition where the
lower isolated band merges into the continuum band.

In addition, due to the interplay between different interac-
tions, the scattering resonance has also been found [46,47].

For an example, due to the interplay between the on-site
and nearest-neighbor interactions [46], the bound states may
merge into the continuum band. Similarly, in our hybrid
atom-molecule system, the interplay between atom-molecular
coupling (which results in an effective atom-atom interaction)
and the background atom-atom interaction may induce the
scattering resonance.

III. HYBRID ATOM-MOLECULE QUANTUM WALKS

In this section, we analyze the QWs in our atom-molecule
Hubbard system (1). The initial state is chosen as |�(0)〉 =
|0, 0〉a , in which both atoms occupy the zeroth lattice site. The
time evolution is governed by the Schrödinger equation,

|�(t )〉 = e−iĤ t |�(0)〉. (21)

The atomic and molecular density distributions are respec-
tively defined as

na,l (t ) = 〈�(t )|a†
l al|�(t )〉,

nm,l (t ) = 〈�(t )|m†
l ml|�(t )〉. (22)

The spatial correlation of atoms is characterized by a second-
order correlation function,

�l1l2 (t ) = 〈�(t )|a†
l1
a
†
l2
al2al1 |�(t )〉, (23)

which relates to the probability Pl1,l2 (t ) = |〈l1, l2|�(t )〉|2 via
�l1l2 (t ) = (1 + δl1,l2 )Pl1,l2 (t ). Thus �l1l2 (t ) gives the probabil-
ity of detecting one particle at l1th site and the other particle
at l2th site in the meantime. The diagonal terms �l1=l2 (t )
describe the correlated QWs of two atoms, in which the
two atoms walk as a whole. The nondiagonal terms �l1 =l2 (t )
describes the independent QWs of two atoms.

If there is no atom-molecule coupling, the time evolu-
tion from the initial state |0, 0〉a will evolve only in the
subspace of the atomic states. Since the molecular subspace
is not involved, the QWs of atoms are expected to only
depend on Ja/U . When the atom-atom interaction is weak,
the initial state has large overlaps with the atomic scattering
states so that the time evolution is dominated by independent
QWs [33]. When the atom-atom interaction is strong, the two
atoms in the same site will form a stable bound state so that the
time evolution is dominated by correlated QWs [21,33,35,39].

Indeed, under strong interaction, two atoms do perform
correlated QWs, that is, the correlation function is dominated
by the diagonal terms which recovers the results in Ref. [33].

A. QWs with atom-molecule coupling

Since the atom-molecule coupling may play the role of
effective interaction, to show how the atom-molecule coupling
affects the QWs, we turn off the atom-atom interaction (U =
0) and the atom-molecule energy difference (� = 0).

For comparison, we simulate the QWs with g = 0 and
g = 10. The tunneling of atoms and molecule are chosen as
Ja = 1, Jm = 0. Without atom-molecule coupling, the time
evolution of atomic density distribution and the final correla-
tion function are shown in Figs. 3(a) and 3(b). The correlation
function is dominated by the off-diagonal terms, which indi-
cates that the two atoms walk independently.
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FIG. 3. QWs with (a),(b) zero atom-molecule coupling g/Ja =
0 and (c),(d) strong atom-molecule coupling g/Ja = 10. The left
column shows the time evolution of atomic density distribution and
the right column shows correlation functions of atoms for the final
state. The other parameters are chosen as Ja = 1, Jm = 0, U = 0,
� = 0, and Lt = 21.

At the presence of atom-molecule coupling, there will be
the atom-molecule Rabi oscillations [48,49]. If the atom-
molecule coupling is strong enough, the atoms would go
through many times of conversion before they walk to nearby
lattice sites and thus experience a larger effective interaction.
In Figs. 3(c) and 3(d), we show the atomic density distribution
and the final correlation function for g = 10 and � = 0.
There appears notable stripes in the time propagation of
atomic density distribution, which can be explained by the fast
atom-molecule conversion induced by strong atom-molecule
coupling; see Fig. 3(c). The strongly correlated QWs are
also identified by the final correlation functions which are
dominated by diagonal terms; see Fig. 3(d). This is because
the effective interaction is much larger than the tunneling
strength, Ueff = 2g2/(Ẽ − � − JK

m ) � Ja .
However, even for strong atom-molecule coupling, corre-

lated QWs disappear when the atom-molecule energy differ-
ence � is much larger than the atom-molecule coupling g. In
such a situation, the larger atom-molecule energy difference
makes the atom-molecule conversion negligible. Therefore,
atomic and molecular states are nearly decoupled and the two
atoms walk independently since there is negligible effective
atom-atom interaction from the atom-molecule conversion.

B. QWs near the resonance between scattering states and DBSs

In the above, we show that the time evolution is either
dominated by independent QWs or correlated ones. We won-
der whether independent and correlated QWs may coexist.
As mentioned in Sec. II D, under the conditions of g � Ja,m

and U � Ja,m, the resonance between scattering states and
DBSs takes place around � � 2g2/U . Below we will show
the coexistence of independent and correlated QWs near the
resonance between scattering states and DBSs.

0 5 10 15
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L
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FIG. 4. Hybrid atom-molecule QWs under (a),(b) nonresonant
condition � = −40 � 2g2/U and (c),(d) resonant condition � =
40 = 2g2/U . The left column shows the time evolution of atomic
density distribution and the right column shows correlation functions
of atoms for the final state. The other parameters are chosen as
Ja = 1, Jm = 0, U = 5, g = 10, and Lt = 21.

Given Ja = 1, Jm = 0, g = 10, and U = 5, we present
the QWs in nonresonant (� = −40 � 2g2/U ) and resonant
(� = 40 = 2g2/U ) conditions; see Fig. 4. Compared with
Fig. 3(c), there are no clear stripes in the time propagation
of atomic density distribution for large �; see Figs. 4(a) and
4(c). This is because large atom-molecule energy difference
suppresses the atom-molecule conversion. In the nonreso-
nant condition, the diagonal elements of correlation func-
tion dominate after the time evolution, indicating the strong
cowalking behavior; see Fig. 4(b). In the resonant condition,
however, in addition to significant off-diagonal elements near
the boundaries, there are significant diagonal elements on the
diagonal line in the final correlation function; see Fig. 4(d).
This indicates the coexistence of independent and correlated
QWs, although the propagation speed of correlated QWs is
smaller than the one of independent QWs. Such a process can
be explained by our argument in Sec. II D.

IV. EFFECTIVE SINGLE-PARTICLE MODEL FOR
STRONGLY CORRELATED QUANTUM WALKS

The strongly correlated QWs can be described by a single-
particle model. By employing the many-body quantum degen-
erate perturbation theory [50], we derive an effective single-
particle Hamiltonian for the strongly correlated QWs.

To avoid the breakdown of DBSs near the resonance
between scattering states and DBSs, we suppose |� −
2g2/U | � 0. When Ja,m � g or Ja,m � U , the tunneling
term T̂ = −∑

(Jaâ
†
l âl+1 + Jmm̂

†
l m̂l+1 + H.c.) in Hamilto-

nian (1) can be treated as a perturbation. Defining the subspace
Hd

σ = {|dσ,l〉,−L � l � L} for DBSs (see Appendix B), the
projection operator is given by projecting the full Hilbert
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space H(2) onto the unperturbed subspace Hd
σ ,

P̂σ =
∑

l

|dσ,l〉〈dσ,l |, (24)

where σ = {1, 2} denotes the index for two different kinds of
DBSs. Besides, the projection onto the orthogonal comple-
ment of Hd

σ reads as

Ŝσ =
∑

E
(0)
l1 l2

=E
(0)
σ

1

E
(0)
σ − E

(0)
l1l2

|l1l2〉〈l1l2|

+
∑

l,σ ′ =σ

1

E
(0)
σ − E

(0)
σ ′

|dσ ′,l〉〈dσ ′,l|. (25)

Therefore, according to the perturbation theory [50] up to
second order, we have

Ĥ eff
σ = ĥσ,0 + ĥσ,1 + ĥσ,2

= Eσ P̂σ + P̂σ T̂ P̂σ + P̂σ T̂ Ŝσ T̂ P̂σ . (26)

Substituting the projection operators and perturbation term
into the above equation, we can obtain

ĥσ,0 = Eσ

∑
l

|dσ,l〉〈dσ,l |, (27)

ĥσ,1 = −JmA2
σ

∑
l

(|dσ,l〉〈dσ,l+1| + |dσ,l+1〉〈dσ,l |), (28)

ĥσ,2 = 2Ja
2B2

σ

E
(0)
σ − E

(0)
l1,l2

∑
l

(
2|dσ,l〉〈dσ,l |

+|dσ,l+1〉〈dσ,l | + H.c.

)

+ Jm
2A2

1A
2
2

E
(0)
σ − E

(0)
σ ′

∑
l

(
2|dσ,l〉〈dσ,l |

+|dσ,l+2〉〈dσ,l | + H.c.

)
.

(29)

Here, the coefficients Aσ and Bσ are given by calculating
the unperturbed time-independent Schrödinger equation (see
Appendix B).

By introducing the mapping, |dl〉〈dl | ⇔ dl
†dl, |dl〉〈dl+1|

⇔ dl
†dl+1, |dl+1〉〈dl| ⇔ dl+1

†dl , the effective single-particle
Hamiltonian can be written as

Ĥ eff
σ =

∑
l

(
E(0)

σ + 4Ja
2B2

1,2

E
(0)
σ − E

(0)
l1,l2

+ 2
Jm

2A2
1A

2
2

E
(0)
σ − E

(0)
σ ′

)
dσ,l

†dσ,l

+
(

2Ja
2B2

σ

E
(0)
σ − E

(0)
l1,l2

− JmA2
σ

)∑
j

(dσ,l
†dσ,l+1 + H.c.)

+
(

Jm
2A2

1A
2
2

E
(0)
σ − E

(0)
σ ′

)∑
l

(dσ,l
†dσ,l+2 + H.c.). (30)

In addition to the nearest-neighbor (NN) tunneling, there
appears the next-nearest-neighbor (NNN) tunneling, which
originates from the effects of molecular tunneling. The NNN
tunneling brought by the atomic tunneling can be derived from
third-order perturbation theory, and we have neglected it since
this term is extremely small compared with the lower order
terms. Since |E(0)

1 − E
(0)
2 | � |E(0)

1 − E
(0)
0 | or |E(0)

2 − E
(0)
0 |,

the NNN tunneling term is generally negligible compared
with other terms. By implementing a Fourier transformation,
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FIG. 5. (a) Effective nearest-neighbor tunneling strength J NN
eff

versus the atom-molecule energy difference �. The parameters are
chosen as Ja = Jm = 1, g = 10, and U = 0. (b) Time evolution of
molecular density distribution with � = −10 and the same param-
eters with (a). (c) The energy bands with � = −19.125, Lt = 21,
and other parameters given in (a). The blue-dotted lines and the red
dots correspond to the bands of DBSs and atomic scattering states,
respectively. (d) Long time evolution of atomic density distribution
with � = −19.125 and other parameters given in (a).

the above single-particle Hamiltonian can be easily diagonal-
ized and the eigenenergies are given as

Eeff
σ =

(
8Ja

2B2
σ

E
(0)
σ − E

(0)
l1,l2

− 4JmA2
σ

)
cos2

(
K

2

)

+ 4
Jm

2A2
1A

2
2

E
(0)
σ − E

(0)
σ ′

cos2 K + E(0)
σ + 2JmA2

σ , (31)

which are well consistent with the ones from numerical diag-
onalization of the original Hamiltonian.

In the effective single-particle Hamiltonian (30), the
effective NN tunneling strength is given as JNN

eff,σ =
2Ja

2B2
σ /(E(0)

σ − E
(0)
l1,l2

) − JmA2
σ . Obviously, JNN

eff,σ also de-
pends on the atom-molecule energy difference �. In Fig. 5(a),
we plot JNN

eff,σ as a function of �, in which the solid and dashed
lines respectively correspond to the upper and lower DBS
bands. The parameters are chosen as Ja = Jm = 1, g = 10,
and U = 0. The effective tunneling strengths for the upper
and lower DBS bands are always different except for the
crossing point. The different effective tunneling strength will
result in different propagation speeds in QWs. In Fig. 5(b), we
show the atomic density distribution with � = −10 and other
parameters the same as the ones for Fig. 5(a). Since the initial
state mostly occupies the two DBS bands, there appear two
light cones: the inner light cone and the outer one respectively
correspond to the QWs of DBSs in the upper and lower bands.

From Fig. 5(a), near � = −19.125, the effective tunneling
strength of the DBSs in the upper band is almost zero, i.e.,
JNN

eff ≈ 0. Given � = −19.125, we plot the energy bands in
Fig. 5(c). The upper DBS band is very flat, which indicates
very small tunneling strength, while the lower DBS band
is not. This is concordant with the results of the effective
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model in Fig. 5(a). Noticing that JNN
eff ≈ 0, there is only

the NNN tunneling term (JNNN
eff � 0.005) in the effective

Hamiltonian (30). Therefore, the odd sites are never occupied
in the QWs from the zeroth site, which is clearly significant
of the NNN tunneling; see Fig. 5(d). Such a phenomenon can
be understood as the coherent interference between the atomic
and molecular tunneling. As shown in the perturbative calcu-
lation, the effective NN tunneling of DBSs can be achieved via
two paths, one of which is the second-order atomic tunneling
and the other one the first-order molecular tunneling. These
two paths give rise to different values of effective tunneling
energy. When these two values have opposite values with the
same magnitude, the total effective tunneling is canceled out.

On the other hand, in the effective Hamiltonian (30), the
effective tunneling induced by the molecular tunneling is of
first order, while the effective tunneling induced by atomic
tunneling is of second order. This means that, as the molecular
tunneling may have considerable effects, it should be treated
carefully in realistic systems.

V. SUMMARY AND DISCUSSIONS

In summary, we study the energy bands and hybrid atom-
molecule QWs of a 1D coupled atom-molecule Hubbard
system. We find that the atom-molecule coupling can play
the role of effective atom-atom interaction. Unlike the con-
ventional bounded atomic pair, the cooperation of the atom-
atom interaction and the atom-molecule coupling induces two
kinds of DBSs, which are the dressed molecule states in
superposition of bounded atomic pair and bare molecule. Even
if the atom-atom interaction is absent, one can observe corre-
lated QWs induced by the atom-molecule coupling. Tuning
the parameters (the atom-molecule energy difference �, the
atom-atom interaction U , and the atom-molecule coupling
g) to satisfy the resonant condition, one of the DBSs will
enter the continuum band and break into atomic scattering
states. Thus one can observe the coexistence of independent
and correlated QWs near the resonance between scattering
states and DBSs. Away from the resonant condition, we
employ many-body quantum degenerate perturbation theory
to derive the effective single-particle Hamiltonian for the two
DBS bands. The nearest-neighbor tunneling strength in the
effective single-particle model can be turned off by tuning
the atom-molecule energy difference �. Due to the two DBSs
having different effective tunneling strengths, the QWs show
two light cones with different propagation speeds. Moreover,
we find that the NN tunneling of one of the DBSs can be
suppressed to zero due to the interference between atomic
tunneling and molecular tunneling. In this condition, the NNN
tunneling becomes dominated and can be observed from the
distribution of atomic density during the time evolution.

Our study not only provides a full description for the
hybrid atom-molecule QWs with atom-molecule coupling,
but also will shine some light on the two-photon QWs with
spontaneous parametric down-conversion (SPDC) [51–53].
In such a waveguide array, the near-degenerate signal and
idler photons correspond to two identical atoms, the pump
photon acts as the molecule, and the SPDC plays the role
of the atom-molecule coupling. The difference is that, in
the waveguide array, the energy of signal and idler photons

always equal the pump photon, and there is no interaction
between photons if the Kerr effects are absent. According to
our study, the idler and signal photons may have effective
on-site interaction induced by the SPDC even if there are no
Kerr effects [54]. Furthermore, the idler and signal photons
can form dressed bound states with the pump photon when the
SPDC is sufficiently strong. Therefore, there will appear two
different kinds of dressed photonic bound states with different
effective hopping strengths between waveguides.
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APPENDIX A: GRAPHICAL ILLUSTRATION
FOR SOLUTIONS OF DBSs

To give the solutions of DBSs, one has to determine the
parameter α by solving Eqs. (18) and (19). From Eq. (19), we
have

α±(Ẽ) = (
Ẽ ±

√
Ẽ2 − (

2JK
a

)2)/
2JK

a (A1)

and |Ẽ| > 2JK
a . Therefore, Eq. (18) can be rewritten as

Ẽ − 2g2

Ẽ − � − JK
m

= 2JK
a α±(Ẽ) + U. (A2)

Because |α| < 1, we have α = α− when Ẽ > 0 and α = α+
when Ẽ < 0. Thus Eq. (A2) is equivalent to

−2g2

Ẽ − � − JK
m

= ±
√

Ẽ2 − (
2JK

a

)2 + U. (A3)

Introducing

f (Ẽ) ≡ −2g2
/(

Ẽ − � − JK
m

)
,

(A4)

h(Ẽ) ≡ ±
√

Ẽ2 − (
2JK

a

)2 + U,

the solutions of Eq. (A3) can be obtained by solving f (Ẽ) =
h(Ẽ). Therefore, the intersections of f (Ẽ) and h(Ẽ) give the
solutions of Ẽ and then the parameter α can be given from
Eq. (A1). In Fig. 6, given g = 10, U = 20, Ja = 1, Jm = 0,
and � = 50, we show the intersections of f (Ẽ) and h(Ẽ).

FIG. 6. Intersections of f (Ẽ) and h(Ẽ). Here, g = 10, U = 20,
Ja = 1, Jm = 0, and � = 50.
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Clearly, there are always two intersections if U = 0, while
there might be only one intersection if U = 0 for some values
of �.

APPENDIX B: FROZEN LIMIT

In the frozen limit, Ja = Jm = 0, the Hamiltonian reads

Ĥ = U

2

L∑
l=−L

n̂a
l

(
n̂a

l − 1
) + g

L∑
l=−L

(â†
l â

†
l m̂l + H.c.)

+
L∑

l=−L

(
εan̂

a
l + εmn̂m

l

)
(B1)

and there are two kinds of eigenstates,∣∣al1,l2

〉 = |l1, l2〉, 1 � l1 < l2 � Lt,

|dl〉 = A|l〉m + B|l, l〉a, 1 � l � Lt, (B2)

where A and B are normalization coefficients. By diagonaliz-
ing the Hamiltonian (B1), one can obtain its eigenstates and
eigenenergies. The eigenenergy of |al1,l2〉 is given as Ẽ0

0 = 0.
For |dl〉, we have

Ẽ
(0)
1 = (U + � −

√
8g2 + (U − �)2)/2,

C1 = A1/B1 = (� − U −
√

8g2 + (U − �)2)/2
√

2g,

(B3a)

Ẽ
(0)
2 = (U + � +

√
8g2 + (U − �)2)/2,

C2 = A2/B2 = (� − U +
√

8g2 + (U − �)2)/2
√

2g,

(B3b)

where Aσ = ± Cσ√
1+C2

σ

and Bσ = ± 1√
1+C2

σ

with σ = {1, 2}.
Thus the two eigenstates read as |dσ,i〉 = Aσ |i〉m + Bσ |i, i〉a .
These two states correspond to two isolated DBS bands.
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