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A nuclear-spin-exchange interaction exists between two ultracold fermionic alkali-earth-metal-like atoms in
the electronic 1S0 state (g state) and 3P0 state (e state) and is an essential ingredient for the quantum simulation of
the Kondo effect. We study the control of this spin-exchange interaction for two atoms simultaneously confined
in a quasi-one-dimensional (quasi-1D) tube, where the g atom is freely moving in the axial direction while
the e atom is further localized by an additional axial trap and behaves as a quasi-0D impurity. In this system,
the two atoms experience effective 1D spin-exchange interactions in both even and odd partial-wave channels,
whose intensities can be controlled by the characteristic lengths of the confinements via confinement-induced
resonances (CIRs). In a previous work, we studied this problem with a simplified pure 1D model [Y. Cheng
et al., Phys. Rev. A 96, 063605 (2017)]. In the present work, we go beyond that pure 1D approximation. We
model the transverse and axial confinements by harmonic traps with finite characteristic lengths a⊥ and az,
respectively, and exactly solve the quasi-1D–quasi-0D scattering problem between these two atoms. Using the
solutions, we derive the effective 1D spin-exchange interaction and investigate the locations and widths of the
even-odd wave CIRs for our system. It is found that when the ratio az/a⊥ is larger, the CIRs can be induced by
weaker confinements, which are easier to be realized experimentally. The comparison between our results and a
recent experiment by L. Riegger et al. [Phys. Rev. Lett. 120, 143601 (2018)] shows that the two experimentally
observed resonance branches of the spin-exchange effect are due to an even-wave CIR and an odd-wave CIR,
respectively. Our results are advantageous for the control and description of either the effective spin-exchange
interaction or other types of interactions between ultracold atoms in quasi-(1+0)-dimensional systems.
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I. INTRODUCTION

In recent years the ultracold gases of alkali-earth-metal-
like atoms, e.g., Ca, Sr, and Yb, have attracted much attention
[1–16]. One important application of this system is the quan-
tum simulation for the Kondo effect [17] which is induced by
the spin-exchange between localized impurities and itinerant
fermions [18–24]. The following two features of alkali-earth-
metal-like atoms play a critical role in this quantum simula-
tion.

(i) An alkali-earth-metal-like atom has not only a stable
electronic orbital ground state, i.e., the 1S0 state (g state), but
also a very long-lived electronic orbital excited state, i.e., the
3P0 state (e state) [Fig. 1(a)]. These two states have different ac
polarizabilities except for the lasers with a magic wavelength
[25,26]. Therefore, in experiments, one can realize either the
same or different trapping potentials for the atom in the g state
and e state.

(ii) There exists a spin-exchange interaction between two
homonuclear fermionic alkali-earth-metal-like atoms in the e

and g states. As a result, these two atoms can exchange their
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nuclear-spin states during collision, i.e., the process

|e,↑〉|g,↓〉 � |e,↓〉|g,↑〉 (1)

can occur.
Benefiting from these two properties, one can simulate the

Kondo effect with ultracold alkali-earth-metal-like atoms in
an optical lattice which is very deep for the atoms in the e

state (e atoms) and very shallow for the atoms in the g state
(g atoms). In that system the e atoms are localized as impuri-
ties and the g atoms remain itinerant [Fig. 1(b)].

Nevertheless, to perform this quantum simulation the en-
hancement of the intensity of the spin-exchange interaction
between the g and e atoms is required so that the Kondo
temperature can be high enough and thus attainable by current
cooling capabilities. In previous works [22,23], we and our
co-workers proposed to solve this problem by confinement-
induced resonance (CIR). As shown in Fig. 1(c), in this
scheme both the g atoms and the e atoms are confined in a
quasi-one-dimensional (quasi-1D) confinement with the same
characteristic length a⊥, which is generated by laser beams
with a magic wavelength. In addition, there is also a confine-
ment along the axial direction of the quasi-1D tube, which
can only be experienced by the e atoms and has characteristic
length az. One can tune a⊥ and az by changing the intensities
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FIG. 1. (a) Energy levels of a fermionic alkali-earth-metal-like
atom. Whether the atom is in the electronic orbit 1S0 state (g state) or
the 3P0 state (e state), the nuclear spin could always be either ↑ or ↓.
(b) Deep lattice for the e-atom weak lattice for g atoms created by
the same standing-wave laser. (c) Quasi-(1+0)-dimensional system
for the quantum simulation of the Kondo effect. The spin-exchange
process occurs during the scattering between g atoms (itinerant
fermions) and localized e atom (impurity). In (b) and (c) the blue
and red balls denote the g atom and e atom, respectively, and the
arrows denote the nuclear spins.

of the optical lattices. As a result, the g atoms are freely
moving in the quasi-1D tube, while the e atoms are localized
as quasi-0D impurities. Here we assume that in each axial
confinement there is one e atom. In this system the g atom and
e atom experience an effective 1D spin-exchange interaction.
The strength � of this effective interaction is determined by
the scattering amplitude between these two atoms, which is a
function of a⊥ and az. Confinement-induced resonance is the
scattering resonance which occurs when a⊥ and az are tuned
to some specific values. At a CIR point � can be resonantly
enhanced. In addition, when the system is near a CIR, one can
efficiently control � by tuning az and a⊥.

Our results in Refs. [22,23] are qualitatively consistent
with the recent experiment by Riegger et al. [24], where
the quasi-(1+0)-dimensional system is realized with ultracold
173Yb atoms and the resonant control of the spin-exchange
strength via the CIRs is demonstrated. In contrast, for sim-
plicity, some approximations are implemented in our works
in Refs. [22,23]. In Ref. [22] we investigate the control of
the effective-1D spin-exchange interaction strength by tuning
the quasi-1D confinement (transverse confinement). Thus, we
approximate this strength as the one for the systems where all
atoms are freely moving in the quasi-1D tube, i.e., the axial
trap is ignored in our two-body calculations. In Ref. [23] we
focus on the effect induced by the axial trap for the e atom.
Accordingly, we ignore the transverse degree of freedom
and use a pure-1D model which only describes the axial
motion. These approximations are reasonable for the cases
where the characteristic lengths of the transverse and axial
confinements, i.e., a⊥ and az, are very different from each
other.

However, in realistic systems a⊥ and az are generally of
the same order. In this case, the cross effect of the transverse
and axial confinements can be important. Thus, we should
go beyond the above approximations and explicitly take into
account both of the two confinements in the theoretical calcu-
lation.

In this paper we perform such a complete calculation. In
our model the transverse and axial confinements are described
by harmonic potentials with finite characteristic lengths a⊥
and az, respectively. We exactly solved the quasi-1D–quasi-
0D scattering problem between a freely moving g atom and
a trapped e atom. In this system, there are two partial-wave
scattering channels, i.e., the even-wave channel and the odd-
wave channels. We derive the scattering amplitude for both
of these partial waves, as well as the effective 1D interaction
between these two atoms. Using these results, we investigate
the even- and odd-wave CIRs in our systems. It is found that
when the ratio az/a⊥ is larger, the CIRs can occur in weaker
confinements (i.e., the confinements with lower trapping fre-
quencies), which are easier to realize in experiments.

We further compare our results with the recent exper-
imental observations shown in Ref. [24]. The authors of
Ref. [24] have done a theoretical calculation based on a two-
site model, where the coupling between the center-of-mass
motion and relative motion of two atoms in the same site is
ignored. Here we use our model to explore the location and
widths of the CIRs in this experiment. As shown above, in
our model the optical-lattice-induced confinement potentials
are approximated as harmonic potentials. In addition, in the
experiments, the g atoms also experience a shallow lattice
potential in the axial direction, and in our current calculation,
we ignore this shallow lattice. Nevertheless, even with these
two simplifications, our results are still consistent with the
experiment. In particular, our results reveal that one resonance
branch of the spin-exchange effect observed in the experiment
is due to an even-wave CIR, while the other one is due to an
odd-wave CIR. Thus, the effective spin-exchange interactions
for these two resonance branches are quite different from each
other.

Our results are valuable for the quantum simulation of
Kondo effect with alkali-earth-metal-like atoms. Furthermore,
our exact solution for the quasi-1D–quasi-0D scattering prob-
lem can also be applied to other problems of quasi-1D ultra-
cold gases with localized impurities, e.g., the realization of a
high-precision magnetometer with such a system [27,28].

The remainder of this paper is organized as follows. In
Sec. II we describe the detail of our model and the approach
of our calculation. In Sec. III we illustrate our results and
investigate the CIR effects for our system; we also compare
our results with the experimental results. A summary and
discussion are given in Sec. IV. In the Appendixes we present
details of our calculations.

II. EFFECTIVE 1D INTERACTION

A. Model

As shown above, we consider two ultracold fermionic
alkali-earth-metal-like atoms of the same species, with one
atom in the electronic g state and the other one in the
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e state. In our problem the electronic states e and g can be
used as the labels of the two atoms, i.e., the e atom and g

atom behave as two distinguishable particles. Accordingly, the
nuclear-spin states of the g (e) atom can be denoted by |↑〉g (e)

and |↓〉g (e). Here we consider the case with zero magnetic
fields, i.e., B = 0. We assume that the two atoms are tightly
confined in a two-dimensional isotropic harmonic trap in the
x-y plane [Fig. 1(c)], which is formed by laser beams with
a magic wavelength and thus has the same intensity for both
atoms. In addition, there is also an axial harmonic trap in the z

direction, which is only experienced by the e atom. We further
define r ≡ (xr, yr , zr ) as the relative coordinate of these two
atoms and zg (e) as the z coordinate of the g (e) atom, which
satisfy zr = zg − ze.

The Hamiltonian for the two-body problem is given by

H = H0 + V, (2)

with H0 and V the free Hamiltonian and the interatomic inter-
action in 3D space, respectively. Furthermore, in the x-y plane
the relative motion of the two atoms can be decoupled from
the center-of-mass motion. Therefore, the free Hamiltonian
H0 can be expressed as (m = h̄ = 1, with m the single-atom
mass)

H0 = −1

2

∂2

∂z2
g

+ H⊥ + He, (3)

with

H⊥ = − ∂2

∂x2
r

− ∂2

∂y2
r

+ ω2
⊥

4

(
x2

r + y2
r

)
, (4)

He = −1

2

∂2

∂z2
e

+ ω2
z

2
z2
e , (5)

where ω⊥ and ωz are the frequency of the transverse and axial
confinements, respectively. They are related to the character-
istic lengths a⊥ and az via

a⊥ =
√

2

ω⊥
, az =

√
1

ωz

. (6)

In addition, for our system the interatomic interaction V is
diagonal in the basis of nuclear-spin singlet and triplet states

|+〉 = 1√
2

(|↑〉g|↓〉e − |↓〉g|↑〉e ), (7)

|−, 0〉 = 1√
2

(|↑〉g|↓〉e + |↓〉g|↑〉e ), (8)

|−,+1〉 = |↑〉g|↑〉e, (9)

|−,−1〉 = |↓〉g|↓〉e (10)

and can be expressed as

V = V+P+ + V−P−, (11)

where

P+ = |+〉〈+|, P− =
∑

q=0,±1

|−, q〉〈−, q|. (12)

Here V+ and V− are the interaction potential in the channels of
nuclear-spin singlet and triplet states, respectively. They can

be modeled by the Huang-Yang pseudopotential

V± = 4πa±δ(r)
∂

∂r
(r·), (13)

where r = |r| and a± are the corresponding s-wave scattering
lengths. For a certain type of alkali-earth-metal-like atom,
the two scattering lengths a+ and a− are usually different.
For instance, for 173Yb atoms we have a+ ≈ 1878a0 and
a− ≈ 216a0, with a0 the Bohr radius [13]. On the other hand,
Eq. (11) directly yields that g〈↓| e〈↑|V |↑〉g|↓〉e ∝ a+ − a−.
Thus, the strength of the spin-exchange interaction in 3D
space is proportional to a+ − a−.

In this work we consider the cases in which the temperature
is much lower than ω⊥/kB and ωz/kB , with kB the Boltzmann
constant. In these cases, when the two atoms are far away from
each other, the relative motion in the x-y plane and the axial
motion of the e atom in the z direction are frozen in the ground
states of the corresponding harmonic confinements. As a
result, our system can be effectively described by a simple
model where the g atom and e atom are spin- 1

2 particles,
which are freely moving in the pure-1D space and fixed at
z = 0, respectively. The effective Hamiltonian of this pure 1D
model can be expressed as

Heff = −1

2

∂2

∂z2
g

+ V
(eff)
+ P+ + V

(eff)
− P−, (14)

where V
(eff)
+ (−) is the effective potential for the nuclear-spin

singlet or triplet state. In the 1D scattering problem between
the freely moving g atom and the fixed e atom, there are two
partial-wave scattering channels, i.e., the even wave and the
odd wave. As a result, V

(eff)
ξ (ξ = +,−) can be expressed

as the summation of the 1D zero-range pseudopotentials for
these two partial waves. Explicitly, we have [29]

V
(eff)
ξ = g

(even)
ξ δ(zg )d̂e + g

(odd)
ξ δ′(zg )d̂o for ξ = +,−. (15)

Here δ(zg ) is the Dirac delta function, δ′(zg ) = dδ(zg )
dzg

, and the

operators d̂e and d̂o are defined as

d̂eψ (zg ) ≡ 1
2 [ψ (zg )|zg=0+ + ψ (zg )|zg=0− ], (16)

d̂oψ (zg ) ≡ 1

2

[
d

dzg

ψ (zg )

∣∣∣∣
zg=0+

+ d

dzg

ψ (zg )

∣∣∣∣
zg=0−

]
. (17)

The operators d̂e and d̂o are essentially the projection opera-
tors to the even and odd partial-wave channels, respectively,
and g

(even)
ξ δ(zg )d̂e and g

(odd)
ξ δ′(zg )d̂o are the 1D even- and

odd-wave pseudopotentials, respectively [29].
Furthermore, the complete effective potential V

(eff)
+ P+ +

V
(eff)
− P− is required to reproduce the correct low-energy

scattering amplitude between the freely moving g atom and
the e atom in the ground state of the axial trap. Comparing
Eqs. (14) and (15) with Eqs. (2) and (11), one can find that
this means that the low-energy scattering amplitude for the
Hamiltonian − 1

2
∂2

∂z2
g

+ g
(even)
ξ δ(zg )d̂e + g

(odd)
ξ δ′(zg )d̂o should

approximately equal the one for H0 + Vξ (ξ = +,−). This
requirement determines the value of the intensities g

(even)
±

and g
(odd)
± .
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On the other hand, the complete effective interaction
V

(eff)
+ P+ + V

(eff)
− P− can be rewritten as

V
(eff)
+ P+ + V

(eff)
− P−

= �(zg ) + �(zg )
[

1
2σ (g)

z σ (e)
z + σ

(g)
+ σ

(e)
− + σ

(g)
− σ

(e)
+
]
, (18)

where σ
(j )
z = |↑〉j 〈↑| − |↓〉j 〈↓|, σ

(j )
+ = |↑〉j 〈↓|, and σ

(j )
− =

σ
(j )†
+ (j = e, g) are the Pauli operators for the j atom and

�(zg ) and �(zg ) are defined as

�(zg ) = �(even)δ(zg )d̂e + �(odd)δ′(zg )d̂o, (19)

�(zg ) = �(even)δ(zg )d̂e + �(odd)δ′(zg )d̂o, (20)

with

�[even (odd)] = 3
4g

[even (odd)]
− + 1

4g
[even (odd)]
+ , (21)

�[even (odd)] = 1
2 [g[even (odd)]

− − g
[even (odd)]
+ ]. (22)

Thus, �(even) and �(odd) indicate the strength of the effective
1D spin-exchange interaction.

Since the 1D effective interaction V
(eff)
+ P+ + V

(eff)
− P− is

determined by the four parameters g
[even (odd)]
± , in the next

section we calculate g
[even (odd)]
± via solving the two-atom

scattering problem.

B. Quasi-1D–quasi-0D scattering problem

As shown above, the value of g
[even (odd)]
ξ (ξ = +,−) is

determined by the scattering amplitude between a g atom
moving in the quasi-1D confinement and an e atom localized
by the axial trap, with the two-atom Hamiltonian H0 + Vξ .
Thus, to calculate g

[even (odd)]
ξ we first solve this quasi-1D–

quasi-0D scattering problem. Our approach is similar to that
of Massignan and Castin [30], who calculated the scattering
amplitude between one atom freely moving in 3D free space
and another atom localized in a 3D harmonic trap.

1. Scattering amplitudes

In the incident state of our problem, the relative transverse
motion of the two atoms and the axial motion of the e atom
are in the ground states of the corresponding confinements.
Therefore, the incident wave function � (0)(ρ, ze, zg ) can be
expressed as

� (0)(ρ, ze, zg ) = eikzg

√
2π

χn⊥=0,mz=0(ρ)φnz=0(ze ), (23)

where k is the incident momentum of the g atom and ρ =
xrex + yrey is the transverse relative position vector, with
ex(y) the unit vector along the x (y) direction. Here χn⊥,mz

(ρ)

is the eigenstate of the transverse relative Hamiltonian H⊥
defined in Eq. (4), with n⊥ and mz the principle quantum
number and the quantum number of the angular momentum
along the z direction, respectively. It satisfies

H⊥χn⊥,mz
(ρ ) = (n⊥ + 1)ω⊥χn⊥,mz

(ρ ), (24)

with mz = 0,±1,±2, . . . and n⊥ = |mz|, |mz| + 2, |mz| +
4, . . .. In addition, in Eq. (23) the function φnz

(ze ) (nz =
0, 1, 2, . . .) is the eigenstate of the axial Hamiltonian He of
the e atom and satisfies

Heφnz
(ze ) = (nz + 1

2

)
ωzφnz

(ze ). (25)

Actually this function can be expressed as φnz
(ze ) =√

1/az

√
π2nznz!e−z2

e /2a2
z Hnz

(ze/az), with Hnz
the Hermite

polynomial. It is clear that � (0) is an eigenstate of the total
free Hamiltonian H0 with eigenvalue

E = k2

2
+ ω⊥ + ωz

2
. (26)

Here we assume that the incident kinetic energy k2/2 is
smaller than the energy gap between the ground and first
excited state of He or H⊥ with mz = 0, i.e.,

0 � k2

2
< 2ω⊥, 0 � k2

2
< ωz. (27)

The scattering wave function �ξ (ρ, ze, zg ) corresponding
to the incident state � (0) is determined by the Schrödinger
equation (H0 + Vξ )�ξ = E�ξ , with Vξ (ξ = +,−) given
by Eq. (13), as well as the outgoing boundary condition in
the limit |zg| → ∞. These requirements can be equivalently
reformulated as the integral equation [30]

�ξ (ρ, ze, zg ) = � (0)(ρ, ze, zg ) + 4πaξ

∫
dz′GE

× (ρ, ze, zg; 0, z′, z′)ηξ (z′), (28)

where the function ηξ (z′) is the regularized scattering wave
function, defined as

ηξ (z′) = ∂

∂zr

[
zr�ξ

(
0, z′ − zr

2
, z′ + zr

2

)]∣∣∣
zr→0+

, (29)

and GE is the retarded Green’ s function for the free Hamilto-
nian H0. Using the Dirac bracket, we can express GE as

GE (ρ, ze, zg; ρ′, z′
e, z

′
g )

= 〈ρ, ze, zg| 1

E + i0+ − H0
|ρ′, z′

e, z
′
g〉, (30)

where |ρ, ze, zg〉 and |ρ′, z′
e, zg〉 are the eigenstates of the

transverse relative position and the axial coordinates of the
g and e atoms.

We can extract the scattering amplitude from the behavior
of �ξ (ρ, ze, zg ) in the long-range limit |zg| → ∞. To this end,
we reexpress the Green’s function GE (ρ, ze, zg; 0, z′, z′) as

GE (ρ, ze, zg; 0, z′, z′) = −i
eik|zg−z′ |

k
χn⊥=0,mz=0(ρ)χ∗

n⊥=0,mz=0(0)φnz=0(ze )φ∗
nz=0(z′)

−
∑

nz=0, 1, 2, . . . ;
n⊥=0, 2, 4, . . . ;
(nz, n⊥ )�=(0, 0)

e−κn⊥ ,nz |zg−z′ |

κn⊥,nz

χn⊥,mz=0(ρ)χ∗
n⊥,mz=0(0)φnz

(ze )φ∗
nz

(z′), (31)
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with κn⊥,nz
=
√

2[(n⊥ + 1)ω⊥ + (nz + 1/2)ωz] − k2. In the
derivation of Eq. (31) we have used the fact that χn⊥,mz

(0) = 0
for mz �= 0. Furthermore, due to the low-energy assumption
(27), in the limit |zg| → ∞ all the terms in the summation in
Eq. (31) decay to zero. Substituting Eq. (31) into Eq. (28) and
using this result, we obtain

�ξ (ρ, ze, |zg| → ∞)

= 1√
2π

[
eikzg + f even

ξ (k)eik|zg | + f odd
ξ (k)sgn(zg )eik|zg |]

×χn⊥=0,mz=0(ρ)φnz=0(ze ). (32)

Here the scattering amplitudes f even
ξ (k) and f odd

ξ (k) can be
expressed as [23]

f
even (odd)
ξ (k) = −i

2(2π )3/2aξ

k
χ∗

n⊥=0,mz=0(0)
∫

dz′Feven (odd)

× (k, z′)φ∗
nz=0(z′)ηξ (z′), (33)

with Feven(k, z′) = cos(kz′) and Fodd(k, z′) = −i sin(kz′). It
is clear that Eq. (32) can be reexpressed in a convenient form
(k > 0)

�ξ (ρ, ze, |zg| → ∞)

= χn⊥=0,mz=0(ρ)φnz=0(ze )

×
{

1√
2π

[eikzg + rξ (k)e−ikzg ] for zg → −∞
1√
2π

tξ (k)eikzg for zg → +∞,
(34)

where rξ (k) and tξ (k) are the reflection and transmission
amplitudes, respectively, related to f

even (odd)
ξ (k) via

rξ (k) = f even
ξ (k) − f odd

ξ (k), (35)

tξ (k) = f even
ξ (k) + f odd

ξ (k) + 1. (36)

Actually, f even (odd)
ξ (k) are nothing but the two partial-wave

scattering amplitudes. Explicitly, the complete Hamiltonian H

in Eq. (2) is invariable under the total reflection operation

T : {zg → −zg, ze → −ze}. (37)

As a result, the parity P with respect to this reflection oper-
ation is conserved. Therefore, there are two partial waves for
our quasi-1D–quasi-0D scattering problem, i.e., the even wave
(corresponding to P = +1) and the odd wave (corresponding
to P = −1). As shown in Appendix A, it can be proved that
f

even (odd)
ξ (k) given by Eq. (33) is just the scattering amplitude

for the even (odd) partial waves, respectively.
Here we would like to emphasis that, even though our

3D bare interaction V± defined in Eq. (13) only includes the
s-wave component, both the even- and odd-wave scattering
amplitudes f

even (odd)
ξ (k) are nonzero. This can be explained

as follows. The total parity P with respect to the reflection T

can be expressed as

P = Pc.m. × Pr , (38)

where Pc.m. is the parity corresponding to the reflection of
the center-of-mass coordinate [i.e., the transformation {Z →
−Z; zr → zr}, with Z = (ze + zg )/2 and zr = zg − ze as
defined above] and Pr is the parity corresponding to the

reflection of the relative coordinate (i.e., the transformation
{Z → Z; zr → −zr}). Therefore, in the odd-wave subspace
(i.e., the subspace with P = −1), there are some states with
Pc.m. = −1 and Pr = +1. Thus, although the s-wave Huang-
Yang pseudopotentials V± only operate on the states with
Pr = 1, they have nonzero projection for the odd-wave sub-
space. As a result, the odd-wave scattering amplitude f odd

ξ (k)
is nonzero. Similarly, f even

ξ (k) is also nonzero. It has been
shown that in the scattering problems of two ultracold atoms
in a mixed-dimensional system, even if the interatomic inter-
action is described by an s-wave Huang-Yang pseudopoten-
tial, the high partial-wave scattering amplitudes are usually
nonzero [31].

2. Calculation of f even (odd)
ξ (k)

Equation (33) shows that the scattering amplitudes
f

even (odd)
ξ (k) are functionals of the regularized wave function

ηξ (z′) defined in Eq. (29). In contrast, substituting Eq. (28)
into Eq. (29), we can find that ηξ (z) satisfies another integral
equation (Appendix B)

ηξ (z) = � (0)(0, z, z) + Ôξ [ηξ (z)]. (39)

Here Ôξ is an integral operator with the explicit form given
in Appendix B. In our calculation, we first numerically solve
Eq. (39) and obtain ηξ (z), and then substitute our results into
Eq. (33) and obtain the scattering amplitudes f

even (odd)
ξ (k).

3. Low-energy behaviors of f even (odd)
ξ (k)

Furthermore, in the low-energy limit k → 0 the behaviors
of the scattering amplitudes f

even (odd)
ξ (k) are given by [32–38]

f even
ξ (k) ≈ − 1

1 + ika
(even)
ξ

, (40)

f odd
ξ (k) ≈ −ik

ik + 1/a
(odd)
ξ

, (41)

where

a
(even)
ξ ≡ lim

k→0

i

k

[
1 + 1

f even
ξ (k)

]
, (42)

a
(odd)
ξ ≡ lim

k→0

i

k

[
1 + 1

f odd(k)

]−1

(43)

are the effective 1D scattering lengths for the even and odd
waves, respectively.

4. Effective 1D interaction

In addition, the low-energy scattering amplitudes in
Eqs. (40) and (41) can be reproduced by the effective 1D inter-
action g

(even)
ξ δ(zg )(zg )d̂e + g

(odd)
ξ δ′(zg )d̂o, with d̂e,o defined in

Eqs. (16) and (17) and the intensities g
[even (odd)]
ξ given by [29]

g
(even)
ξ = − 1

a
(even)
ξ

, (44)

g
(odd)
ξ = −a

(odd)
ξ . (45)

043627-5



REN ZHANG AND PENG ZHANG PHYSICAL REVIEW A 98, 043627 (2018)

FIG. 2. (a)–(e) Effective 1D interaction strength g
(even)
ξ (blue solid line) and g

(odd)
ξ (red dash-dotted line) as functions of a⊥/aξ for

(a) az/a⊥ = 0.5, (b) az/a⊥ = 0.7, (c) az/a⊥ = 1, (d) az/a⊥ = 1.5, and (e) az/a⊥ = 2. (f) Locations α
(even)
∗1 and α

(even)
∗2 of the two broadest

even-wave CIRa and the location α
(odd)
∗1 of the broadest odd-wave CIR, for various az/a⊥.

Therefore, when the scattering amplitude f
even (odd)
ξ (k) is ob-

tained, we can calculate the effective 1D scattering length
a

[even (odd)]
ξ via Eq. (42) [Eq. (43)] and then derive the effective

1D interaction intensity g
[even (odd)]
ξ via Eq. (44) [Eq. (45)].

III. RESULTS AND ANALYSIS

In the preceding section we showed our approach for
the numerical calculation for the strengths g

[even (odd)]
± of the

effective 1D interaction V
(eff )
± . In this section we illustrate our

results and study the CIRs for our system and then compare
our results with the experimental observations in Ref. [24].

A. Locations and widths of the CIRs

As shown above, g
[even (odd)]
+ and g

[even (odd)]
− are given by

the scattering amplitudes for the same scattering problem with
different 3D scattering lengths a+ and a−, respectively. As a
result, an immediate dimensional analysis yields that

g
(l)
ξ = aξ

λl Sl

(
a⊥
aξ

,
az

a⊥

)
(46)

for l = (even, odd) and ξ = (+,−), with λeven = −1, λodd =
+1, and Seven(α, β ) and Sodd(α, β ) ξ -independent universal
functions which can be obtained via the numerical calculation
shown in Sec. II. This result shows that for a system with fixed
3D scattering length aξ , the control effect of the parameters
az and a⊥ for g

[even (odd)]
ξ can be described by the two dimen-

sionless parameters a⊥/aξ and az/a⊥ with the following clear
physical meanings. The absolute value of a⊥/aξ describes the
intensity of the transverse confinement. Explicitly, |a⊥/aξ |

is larger for weaker transverse confinement. Similarly, the
ratio az/a⊥ describes the relative intensity of the axial and
transverse confinement.

In addition, Eq. (46) shows that the conditions for the CIR
in the even- and odd-wave channels can be expressed as(

az

aξ

,
az

a⊥

)
= (α(even)

∗ , β (even)
∗ ) (47)

and (
az

aξ

,
az

a⊥

)
= (α(odd)

∗ , β (odd)
∗ ), (48)

respectively, with (α[even (odd)]
∗ , β

[even (odd)]
∗ ) being any singu-

larity of the function Seven (odd)(α, β ). It is clear that the
values of (α[even (odd)]

∗ , β
[even (odd)]
∗ ) are ξ independent. When

the condition in Eq. (47) or (48) is satisfied for a specific ξ ,
we have g

(even)
ξ = ∞ or g

(odd)
ξ = ∞. According to Eqs. (18),

(20), and (22), in this case the strength of the effective 1D
spin-exchange interaction, i.e., �(even) or �(odd), also diverges.

Now we investigate the locations and widths of the CIRs.
To this end, in Figs. 2(a)–2(e) we illustrate the dependence of
g

(even)
ξ (in units of 1/az) and g

(odd)
ξ (in units of az) on a⊥/aξ

for given values of az/a⊥. In addition, in Fig. 2(f) we plot
the locations α

(even)
∗1 and α

(even)
∗2 of the two broadest even-wave

CIRs, as well as the location α
(odd)
∗1 of the broadest odd-wave

CIR, as functions of az/a⊥. The results in these figures can be
summarized and understood as follows.

(A) Multiple CIRs can appear for both even- and odd-
wave channels. This result is qualitatively consistent with our
previous work with the pure-1D model [23]. As stated in
[23], it can be explained as the result of the coupling between
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the center-of-mass motion and the relative motion of the two
atoms in the z direction. Similar multiresonance phenomena
were also found in other scattering problems between two
ultracold atoms, where the center-of-mass motion is coupled
to the relative motion [30,31,39–45].

(B) For the odd partial wave, the broadest CIR is the one
located at the lower end of a⊥/aξ . The location is defined
as a⊥/aξ = α

(odd)
∗1 . Other odd-wave CIRs become more and

more narrow when a⊥/aξ increases. In addition, as shown
in Figs. 2(c)–2(e), for az/a⊥ � 0.7, we have α

(odd)
∗1 < 0, i.e.,

the broadest odd-wave CIR can appear only when the s-wave
scattering length aξ is negative.

(C) For the even partial wave, when az/a⊥ is small [e.g.,
az/a⊥ = 0.5, as shown in Fig. 2(a)], the situation is similar to
the odd partial wave, i.e., the broadest CIR is the one located
at the lower end of a⊥/aξ . When the value of az/a⊥ becomes
large [Fig. 2(b)], some narrow CIRs, which appear for rela-
tively large a⊥/aξ , gradually merge with each other and form
another broad CIR. Furthermore, in the parameter region with
az/a⊥ � 1 [Figs. 2(c)–2(e)], there are always two relatively
broad CIRs which are located at a⊥/aξ = α

(even)
∗1 and α

(even)
∗2 ,

with α
(even)
∗1 < 0 and α

(even)
∗2 > 0. In addition, many relatively

narrow CIRs can occur for α
(even)
∗1 < a⊥/aξ < α

(even)
∗2 . Thus,

when az/a⊥ � 1, a broad CIR, which is usually very advan-
tageous for the control of interatomic interaction, can always
be realized for the systems with either positive or negative 3D
scattering length aξ .

(D) As shown in Fig. 2(f), for az/a⊥ � 0.7 the absolute
values of αodd

∗1 and αeven
∗1,2 , i.e., the locations of the broadest

odd-wave CIRs and the two broadest even-wave CIRs, almost
linearly increase with az/a⊥. Thus, for either positive or
negative aξ , by increasing the ratio az/a⊥ one can always
realize a broad even-wave CIR via the confinements with
larger characteristic lengths of a⊥ and az. These confinements
can be created via weaker laser beams and thus are more
feasibly prepared in the experiments. Similarly, when aξ is
negative one can also realize a broad odd-wave CIR in these
confinements. Nevertheless, in realistic systems az/a⊥ cannot
be infinitely increased. That is because, when az/a⊥ → ∞,
we have either az → ∞ or a⊥ → 0. In the former case, we
also have ωz → 0 and thus the low-temperature condition
T � ωz/kB would be violated. In the latter case, the trans-
verse confinement has to be realized via very strong laser
beams, which is formidable in experiments.

B. Comparison of theory and experiment

Now we compare our theoretical results with the recent ex-
periment of ultracold 173Yb atoms [24]. In this experiment the
transverse confinement for both atoms and the axial confine-
ment for the e atom are realized via a 2D optical lattice with
magic wavelengths λ⊥ = 759 nm and a 1D optical lattice with
wavelength λz = 680 nm, respectively. The explicit potentials
of these two lattices are given by

V
(⊥)

lattice = U⊥
∑
j=e,g

[cos2(2πxj/λ⊥) + cos2(2πyj/λ⊥)], (49)

V
(z)

lattice = Uz cos2(2πze/λz), (50)

where xj and yj (j = e, g) are the x and y coordinates of

the j atom, respectively, and Uz and U⊥ are the intensities
of the lattices. By expanding these two potentials around
the minimum points we can obtain the harmonic trapping
potentials shown in Eqs. (4) and (5). The characteristic lengths
az and a⊥ are given by

a⊥ =
√

λ⊥
21/4

√
πU

1/4
⊥

, az =
√

λz

23/4
√

πU
1/4
z

(51)

and can be tuned via the intensities Uz and U⊥. In the
experiments of Ref. [24], the e atoms and g atoms are initially
prepared in the states |↓〉e and |↑〉g , respectively. After a finite
holding time, the spin of some e atoms is flipped to the state
|↑〉e by the effective spin-exchange interaction. The number
Ne↑ of spin-flipped e atoms is measured. This number is
supposed to be positively correlated with the absolute value
of the effective 1D spin-exchange intensity �[even (odd)], which
is given by �[even (odd)] = (g[even (odd)]

− − g
[even (odd)]
+ )/2 in our

theory, as shown in Eqs. (18) and (22). Explicitly, when the
system is around a CIR of either g

[even (odd)]
+ or g

[even (odd)]
− , the

atom number Ne↑ should be resonantly enhanced.
In Fig. 3(a) we compare the experimentally observed

atom number Ne↑ and the effective spin-exchange-interaction
intensities �(even) and �(odd) obtained from our theory, for the
cases with U⊥ = 35.6E

(z)
R , where E

(z)
R = 2π2/λ2

z and E
(⊥)
R =

2π2/λ2
⊥ are the recoil energies of the lattices. To be consistent

with Ref. [24], in the figure we chose the horizontal ordinate
to be Vz ≡ Uz/3.3. As shown in this figure, a even-wave
CIR (CA) and an odd-wave CIR (CB) are found by our
calculations, with the positions close to the experimentally
observed peaks pA and pB of Ne↑, respectively. According
to this result, the peaks pA and pB are due to CIRs in
different partial-wave channels. In addition, there is some
difference between the position of the CIR CA,B and the
observed peak pA,B . The difference between the positions of
CA and pA may due to the fact that in our calculation the
shallow lattice experienced by the g atom is ignored. On the
other hand, the difference between the positions of CB and
pB may be due to the fact that, in the region of CB and
pB (Vz � 3E

(z)
R , i.e., Uz � 9.9E

(z)
R ) the depth of the trapping

potential V
(z)

lattice experienced by the e atom is so weak that the
harmonic approximation for this potential does not work very
well.

In Figs. 3(b) and 3(c) we further illustrate �(even) and
�(odd) given by our calculation, respectively, for the param-
eter regions U⊥/E

(⊥)
R ∈ [15, 50] and Vz/E

(z)
R ∈ [0.3, 8] (i.e.,

Uz/E
(⊥)
R ∈ [1, 26.4]). In these figures, the locations of the

CIRs are the places where the color suddenly changes from
deep blue to yellow, where |�[even (odd)]| is very large and the
sign of �[even (odd)] suddenly changes. Two even-wave CIR
branches (A) and (C) and one odd-wave CIR branch (B) are
illustrated. Our calculations show that all of them are caused
by the CIRs of g

[even (odd)]
+ . The experimental results for the

parameter region of Figs. 3(b) and 3(c) are given in Fig. 3
of Ref. [24], where the lattice depth U⊥ is denoted by V⊥. It
is shown that the even-wave CIR branch (A) and odd-wave
CIR branch (B) are clearly observed at locations which are
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FIG. 3. Comparison between our theory with the experimental
results of Ref. [24]. In our calculations we take a+ = 1878a0 and
a− = 216a0 [13]. (a) Black circles with error bar denote the number
Ne↑ of spin-flipped e atoms observed in the experiment, for the cases
with U⊥ = 35.6E

(⊥)
R . The data are taken from Fig. 3(b) of Ref. [24].

The blue solid line shows the effective 1D even-wave spin-exchange
intensity �(even) (in units of 1/a+) given by our calculation. The
red dash-dotted line shows the effective 1D odd-wave spin-exchange
intensity �(odd) (in units of a+) given by our theoretical calculation.
As shown in the text, the horizontal ordinate Vz is defined as Vz ≡
Uz/3.3, with Uz defined in Eq. (50). (b) Theoretically calculated
�(even) (in units of 1/a+) as a function of Vz and U⊥. (c) Theoretically
calculated �(odd) (in units of a+) as a function of Vz and U⊥.

close to our theoretical results. In addition, similar to Fig. 3(a),
the quantitative shifts between the theoretical prediction and
the experimental observation for these two CIR branches are
due to the ignorance of the shallow lattice for the g atom as
well as the weakness of the trapping lattice potential V

(z)
lattice

for the e atom in the region of CIR (B). Furthermore, the
even-wave CIR branch (C) is not experimentally detected.
That is very possibly because this branch is too narrow, as
shown in Fig. 3(b).

IV. SUMMARY AND OUTLOOK

We exactly solved the scattering problem between two
alkali-earth-metal-like atoms, i.e., one g atom freely moving
in a quasi-1D tube and another e atom localized by a 3D
harmonic trap. Our solutions show that with the help of the
even- or odd-wave CIRs in this system, the effective 1D spin-
exchange interaction can be resonantly controlled via the char-
acteristic lengths az and a⊥ of the confinements. When az/a⊥
is larger, the relatively broad CIRs can be realized in weaker
confinements. Our results reveal that the two CIR branches
which were observed in the recent experiment in Ref. [24]
are due to even-wave and odd-wave CIRs, respectively. In
previous studies for the Kondo effect, most of the attention
was paid to systems with only an even-wave 1D interaction.
The system with the resonant odd-wave spin-exchange in-
teraction was not studied much. Our results show that these
systems can be experimentally realized in the ultracold gases
of alkali-earth-metal-like atoms.

As shown above, in the experiments a shallow axial lattice
potential for the g atom can also be induced by a laser beam
which is used to confine the axial motion of the e atom.
Further study of the effect induced by this shallow lattice
potential is left for future work.
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APPENDIX A: PARTIAL-WAVE ANALYSIS

In this appendix we prove that f
even (odd)
ξ (k) given by

Eq. (33) is just the scattering amplitude for the even (odd)
partial wave.

As shown in Sec. II B, our system in invariable un-
der the total reflection operation T : {zg → −zg, ze → −ze}.
Thus, the subspaces Heven ≡ {�|T � = +�} (corresponding
to the parity P = +1, or the even partial wave) and Hodd ≡
{�|T � = −�} (corresponding to P = −1, or the odd partial
wave) are invariant subspaces of the complete Hamiltonian
H . Furthermore, the incident state � (0)(ρ, ze, zg ) defined in
Eq. (23) can be expressed as

� (0) = � (0)
even + �

(0)
odd, (A1)
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where �
(0)
even (odd) ∈ Heven (odd) and are defined as

� (0)
even(ρ, ze, zg ) = cos(kzg )√

2π
χn⊥=0,mz=0(ρ)φnz=0(ze ), (A2)

�
(0)
odd(ρ, ze, zg ) = i

sin(kzg )√
2π

χn⊥=0,mz=0(ρ)φnz=0(ze ). (A3)

Therefore, the scattering wave function �ξ (ρ, ze, zg ) corre-
sponding to the incident state � (0), which we studied in
Sec. II B, can be expressed as

�ξ (ρ, ze, zg ) = �even
ξ (ρ, ze, zg ) + �odd

ξ (ρ, ze, zg ), (A4)

with �
even (odd)
ξ ∈ Heven (odd) the scattering wave functions cor-

responding to the incident states �
(0)
even (odd), i.e., the scattering

states in the even (odd) partial-wave channel. In addition,

using the analysis which is similar to that in Sec. II B, we
can find that

�
even (odd)
ξ (ρ, ze, |zg| → ∞)

= �
(0)
even (odd)(ρ, ze, zg ) + f

even (odd)
ξ (k)�even (odd)

× eik|zg |χn⊥=0,mz=0(ρ)φnz=0(ze ), (A5)

where �even = 1, �odd = sgn(zg ), and f
even (odd)
ξ (k) is

given by Eq. (33). In the derivation of this result, we
have used ηξ (z′) = ηeven

ξ (z′) + ηodd
ξ (z′), with ηξ (z′) defined

in Eq. (29), η
even (odd)
ξ (z′) = ∂

∂zr
[zr�

even (odd)
ξ (0, z′ − zr

2 , z′ +
zr

2 )]|zr→0+ , and the fact that η
even (odd)
ξ (z′) is an even (odd)

function of z′. Equation (A5) shows that f
even (odd)
ξ (k) is

nothing but the scattering amplitude for the even (odd) partial
wave.

APPENDIX B: INTEGRAL EQUATION FOR ηξ (z)

In this appendix we derive the integral equation for the regularized wave function ηξ (z) defined in Eq. (29).

1. Green’s function G E (0, ze, zg; 0, z′, z′ )

The Green’s function GE (0, ze, zg; 0, z′, z′) is very important for our calculation. Therefore, here we first reexpress this
function in convenient forms. Using Eq. (31) and the fact that |χn⊥,mz=0(0)|2 = ω⊥/2π , we have

GE (0, ze, zg; 0, z′, z′) = ω⊥
2π

∑
n⊥=0,2,4,6,...

g[E − (n⊥ + 1)ω⊥; ze, zg, z
′, z′], (B1)

where the function g(E ; ze, zg; z′
e, z

′
g ) is the Green’s function for the axial motion of the g atom and the e atom (i.e., the matrix

element of [E + i0+ − (H0 − H⊥)]−1) and can be expressed as

g(E ; ze, zg; z′, z′) =
∑

nz=0,1,2,3,...

e
√

2[(nz+ 1
2 )ωz−E]|zg−z′ |√

2
[(

nz + 1
2

)
ωz − E

]φnz
(ze )φ∗

nz
(z′), (B2)

where for the function
√

q is defined as
√

q = i|q|1/2 for q < 0. Equation (B1) yields that

GE (0, ze, zg; 0, z′, z′) = ω⊥
2π

g[E − ω⊥; ze, zg; z′, z′] + GE′ (0, ze, zg; 0, z′, z′), (B3)

with the energy E′ defined as

E′ = E − ω⊥. (B4)

With the help of Eq. (B3) we convert the calculation of GE to the calculations of the functions g[E − ω⊥; ze, zg; z′, z′]
and GE′ . The former function can be easily calculated numerically. Furthermore, due to the low-energy assumption shown
in Eqs. (26) and (27), we know that E′ is lower than the threshold of H0, i.e., E′ < ω⊥ + ωz/2. Due to this fact, the
integration − ∫∞

0 dβ eβE′
e−βH0 converges and we have (E′ − H0)−1 = − ∫∞

0 dβ eβE′
e−βH0 . Thus, the Green’s function GE′

can be reexpressed as

GE′ (0, ze, zg; 0, z′, z′) = −
∫ ∞

0
dβ eβE′

Kβ (0, ze, zg; 0, z′, z′), (B5)

with the function Kβ (ρ, ze, zg; ρ′, z′
e, z

′
g ) the imaginary-time propagator of the free Hamiltonian H0, which can be expressed as

Kβ (ρ, ze, zg; ρ′, z′
e, z

′
g ) = 〈ρ, ze, zg|e−βH0 |ρ′, z′

e, z
′
g〉

= K
(⊥)
β (ρ, ρ′)K (e)

β (ze, z
′
e )K (g)

β (zg, z
′
g ), (B6)
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where K
(⊥)
β , K (e)

β , and K
(g)
β are the propagators of the two-atom transverse relative motion (two-dimensional harmonic oscillator

with mass 1/2 and frequency ω⊥), the axial motion of the e atom (1D harmonic oscillator with mass 1 and frequency ωz), and
the axial motion of the g atom (1D free particle with mass 1), respectively. Explicitly, we have

K
(⊥)
β (ρ, ρ ′) =

[
ω⊥

4π sinh(ω⊥β )

]
exp

{
−ω⊥[(|ρ|2 + |ρ ′|2) cosh(ω⊥β ) − 2ρ · ρ ′]

4 sinh(ω⊥β )

}
, (B7)

K
(e)
β (ze, z

′
e ) =

√
ωz

2π sinh(ωzβ )
exp

{
−ωz

[(
z2
e + z′2

e

)
cosh(ωzβ ) − 2zez

′
e

]
2 sinh(ωzβ )

}
, (B8)

K
(g)
β (zg, z

′
g ) =

√
1

2πβ
exp

[
− (zg − z′

g )2

2β

]
. (B9)

Substituting Eqs. (B7)–(B9) into Eq. (B6), we can obtain the expression for the function Kβ (0, ze, zg; 0, z′, z′) in Eq. (B5):

Kβ (0, ze, zg; 0, z′, z′) = ω⊥
8π2 sinh(ω⊥β )

√
ωz

β sinh(ωzβ )
exp

{
−ωz

[(
z2
e + z′2) cosh(ωzβ ) − 2zez

′]
2 sinh(ωzβ )

− (zg − z′)2

2β

}
. (B10)

In our following calculations we will use Eqs. (B3), (B5), and (B10).

2. Short-range behavior of �ξ (0, z − zr
2 , z + zr

2 )

Now we derive the equation for ηξ (z). According to Eq. (29), ηξ (z) is determined by the behavior of the function �ξ (0, z −
zr

2 , z + zr

2 ) in the short-range limit |zr | → 0. Thus, we first study this behavior. According to Eqs. (28) and (B3), the function
�ξ (0, z − zr

2 , z + zr

2 ) satisfies the equation

�ξ

(
0, z − zr

2
, z + zr

2

)
= � (0)

(
0, z − zr

2
, z + zr

2

)
+ 2ω⊥aξ

∫
dz′g

[
E − ω⊥; z − zr

2
, z + zr

2
; z′, z′

]
ηξ (z′)

+ 4πaξηξ (z)
∫

dz′GE′
(

0, z − zr

2
, z + zr

2
; 0, z′, z′

)

+ 4πaξ

∫
dz′GE′

(
0, z − zr

2
, z + zr

2
; 0, z′, z′

)
[ηξ (z′) − ηξ (z)]. (B11)

In the limit zr → 0, the first and second terms on the right-hand side of Eq. (B11) converge. Now we study the behavior of the
third term. To this end, we define

U ≡
∫

dz′GE′
(

0, z − zr

2
, z + zr

2
; 0, z′, z′

)
. (B12)

Then Eq. (B5) yields that

U =
∫ ∞

0
dβ L[β, z, zr ], (B13)

with the function L[β, z, zr ] defined as

L[β, z, zr ] = −
∫ ∞

−∞
dz′eβE′

Kβ

(
0, z − zr

2
, z + zr

2
; 0, z′, z′

)
. (B14)

Substituting Eq. (B10) into Eq. (B14), we further obtain

L[β, z, zr ] = − ω⊥
√

ωz

2(2π )3/2 sinh(ω⊥β )
√

ωzβ cosh(ωzβ ) + sinh(ωzβ )

× exp

⎧⎪⎨
⎪⎩βE′ +

[
ωz (z− zr

2 )
sinh(ωzβ ) + (z+ zr

2 )
β

]2

2
(

ωz

tanh(ωzβ ) + 1
β

) − ωz

(
z − zr

2

)2
2 tanh(ωzβ )

− 1

2β

(
z + zr

2

)2

⎫⎪⎬
⎪⎭. (B15)

Furthermore, the integration
∫∞

0 dβ L[β, z, zr ] diverges in the limit zr → 0. This divergence is due to the behavior of L[β, z, zr ]
in the limit β → 0. Thus, we can obtain the behavior of

∫∞
0 dβ L[β, z, zr ] in this limit by reexpressing L[β, z, zr ] as

L[β, z, zr ] = L0[β, z, zr ] + L1[β, z, zr ], (B16)

where

L0[β, z, zr ] = L[β → 0+, z, zr ] = 1

8(πβ )3/2
exp

(
− z2

r

4β

)
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and

L1[β, z, zr ] = L[β, z, zr ] − L0[β, z, zr ].

Thus, we have

U =
∫ ∞

0
L0[β, z, zr ]dβ +

∫ ∞

0
L1[β, z, zr ] = − 1

4π |zr | + F1(z) + O(zr ), (B17)

where the function F1(z) is given by

F1(z) =
∫ ∞

0
L1[β, z, zr = 0]dβ =

∫ ∞

0
{L[β, z, zr = 0] − L0[β, z, zr = 0]}dβ

= − 1

4π3/2

∫ ∞

0
dβ

[
ω⊥

√
ωz exp

(
βE′ − ωz[ωzβ+2 tanh(ωzβ/2)]

2[1+ωzh̄β coth(ωzβ )] z2
)

√
2 sinh(βω⊥)

√
ωzβ cosh(ωzβ ) + sinh(ωzβ )

− 1

2β3/2

]
. (B18)

Using the result in Eqs. (B13) and (B17), we can obtain the behavior of the third term on the right-hand side of Eq. (B11) in the
limit |zr | → 0.

Finally, we can show that last term on the right-hand side of Eq. (B11) is convergent in the limit |zr | → 0 with the following
analysis, which is quite similar to the analysis around Eq. (E12) of Ref. [30]. This term is proportional to

∫ +∞
−∞ dz′GE′ (0, z −

zr

2 , z + zr

2 ; 0, z′, z′)[ηξ (z′) − ηξ (z)]. By defining u = z′ − z, we can rewrite this integration as I ≡ ∫ +∞
0 du[G(zr ; u)B(u) +

G(zr ; −u)B(−u)], with G(zr ; u) = GE′ (0, z − zr

2 , z + zr

2 ; 0, z + u, z + u) and B(u) = ηξ (z + u) − ηξ (z). In the limit |zr | → 0,
the only possible cause for the divergence of I is the fact that G(zr = 0; u) diverges as 1/u2 for u → 0. However, when u → 0
we also have B(±u) = ±B ′u + B ′′u2, with B ′ = dB(u)/du|u=0 and B ′′ = d2B(u)/du2|u=0, which leads to [G(zr ; u)B(u) +
G(zr ; −u)B(−u)] ∝ 1

u2 [2B ′′u2 + O(u3)] ∝ 2B ′′ + O(u). Notice that the linear terms ±B ′u in B(u) and B(−u) cancel each
other. Thus, the divergence of G(zr = 0; u) is canceled by the functions B(±u), and the integration I and the last term on the
right-hand side of Eq. (B11) are thus convergent.

With our above results, especially Eqs. (B13) and (B17), we obtain the behavior of �ξ (0, z − zr

2 , z + zr

2 ) in the short-range
limit |zr | → 0,

lim
zr→0

�ξ

(
0, z − zr

2
, z + zr

2

)
= − 1

|zr |aξηξ (z) + � (0)(0, z, z) + 2ω⊥aξ

∫
dz′g[E − ω⊥; z, z; z′, z′]ηξ (z′)

+4πaξF1(z)ηξ (z) + 4πaξ

∫
dz′F2(z, z′)[ηξ (z′) − ηξ (z)] + O(zr ), (B19)

where the function F2(z, z′) is defined as F2(z, z′) ≡ GE′ (0, z, z; 0, z′, z′). Using Eqs. (B5) and (B10), we obtain

F2(z, z′) = −
∫ ∞

0
dβ

ω⊥
8π2 sinh(ω⊥β )

√
ωz

β sinh(ωzβ )
exp

{
βE′ − ωz[(z2 + z′2) cosh(ωzβ ) − 2zz′]

2 sinh(ωzβ )
− (z − z′)2

2β

}
. (B20)

3. Integral equation for ηξ (z)

Substituting Eq. (B20) into Eq. (29), we obtain the integral equation for ηξ (z), which is Eq. (39), where Ôξ is an integral
operator which is defined as

Ôξ [ηξ (z)] ≡ 2ω⊥aξ

∫
dz′g[E − ω⊥; z, z; z′, z′]ηξ (z′) + 4πaξF1(z)ηξ (z) + 4πaξ

∫
dz′F2(z, z′)[ηξ (z′) − ηξ (z)], (B21)

with the function g[E − ω⊥; z, z; z′, z′] defined in Eq. (B2), the function F1(z) defined in Eq. (B18), and the function F2(z, z′)
defined in Eq. (B20).
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