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Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction
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We revisit the dynamics of a Bose-Einstein condensate in a double-well potential, from the regime of
Josephson plasma oscillations to the self-trapping regime, by means of the Bogoliubov quasiparticle projection
method. For a very small imbalance between the left and right wells only the lowest Bogoliubov mode is
significantly occupied. In this regime the system performs plasma oscillations at the corresponding frequency,
and the evolution of the condensate is characterized by a periodic transfer of population between the ground
and the first excited state. As the initial imbalance is increased, more excited modes—though initially not
macroscopically occupied—get coupled during the evolution of the system. Since their population also varies
with time, the frequency spectrum of the imbalance turns out to be still peaked around a single frequency,
which is continuously shifted towards lower values. The nonlinear mixing between Bogoliubov modes eventually
drives the system into the the self-trapping regime, when the population of the ground state can be transferred
completely to the excited states at some time during the evolution. For simplicity, here we consider a one-
dimensional setup, but the results are expected to hold also in higher dimensions.
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I. INTRODUCTION

Two weakly coupled Bose-Einstein condensates (BECs)
in a double-well potential constitute a paradigmatic system
for investigating the physics of bosonic Josephson junctions
[1–4]. Owing to the nonlinear character of the interactions,
this system exhibits different dynamical behaviors, ranging
from Josephson plasma oscillations (in the limit of a very
small imbalance between the population of the two wells) [5],
to macroscopic self-trapping where—above a critical value
of the imbalance—the population of the two wells is almost
locked to the initial value [3,4,6]. Due to the conceptual
importance of these phenomena, BECs in double-well poten-
tials and arrays of coupled boson Josephson junctions have
been extensively investigated in the last two decades both
theoretically [2,3,7–30] and experimentally [4,6,31–39], as
well as their counterparts with fermionic superfluid atomic
samples [40–43].

The physics of these systems is well captured by a two-
mode approximation of the Gross-Pitaevskii (GP) equation,
each mode being localized in one of the two wells, which
allows for an effective description in terms of only two
parameters, namely, the population imbalance z(t ) and the
phase difference φ(t ) between the left and right components.
Here, we provide a complementary description by means of
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the quasiparticle projection method of Ref. [44], extending the
Bogoliubov treatment of Ref. [30] to the case of arbitrary ini-
tial imbalance. For the sake of simplicity, we shall restrict the
analysis to the case of a (quasi-) one-dimensional condensate
[45].

We find that in the regime of a small initial imbalance,
where only one Bogoliubov mode is significantly occupied
and the system performs plasma oscillations at the corre-
sponding frequency [30], the evolution of the condensate is
characterized by a periodic transfer of population between
the ground state and the first excited state. As the initial
imbalance is increased, more Bogoliubov modes get coupled
during the evolution of the system, and their population also
varies with time, contrarily to what happens in a linear system.
As a consequence, the frequency spectrum of the imbalance
turns out to be still peaked around a single frequency which
is shifted towards lower values, rather than getting relevant
contributions at higher frequencies, where Bogoliubov modes
are located. By further increasing the initial imbalance, the
population of the ground state can be completely transferred
to the excited states at some time during the evolution, driving
the system into the macroscopic self-trapping regime.

The paper is organized as follows. In Sec. II we intro-
duce the formalism, reviewing the definition of the two-
mode approach (Sec. II A) and of the quasiparticle Bogoli-
ubov expansion (Sec. II B). Then, in Sec. III we present
the results by discussing the behavior of the system in the
regime of Josephson plasma oscillations (Sec. III A), the self-
trapping regime (Sec. III C), and that intermediate between
the former two (Sec. III B), highlighting the role of nonlinear
mixing (Sec. III D). Final considerations are drawn in the
conclusions.
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FIG. 1. Plot of the critical initial imbalance z0c vs u0, as obtained
from the solution of the GP equation (solid line). The shaded area
indicates the self-trapping (ST) regime, for μ/V0 = 0.25. Open
squares on the vertical dashed line represent the values of z0 and
u0 considered in this paper. The prediction of the TM model [3] in
Eq. (9) is also shown as a reference (dotted line).

II. MODEL

Let us consider the following (dimensionless) Gross-
Pitaevskii equation [30],

i∂tψ (x, t ) = [− 1
2∇2

x + V (x) + u0|ψ (x, t )|2]ψ (x, t ), (1)

with

V (x) = 1
2 (x + δx)2 + V0e

−2x2/w2
, (2)

and
∫

dx|ψ (x)|2 = 1, describing a (quasi-) one-dimensional
condensate trapped in a double-well potential. The latter is
composed by a harmonic potential term, plus a barrier of
intensity V0 and width w, with δx providing a relative shift
between the two (the distance between the barrier center and
the minimum of the potential). Here, we are interested in
describing the dynamics triggered by an initial population
imbalance between the two wells. This can be obtained by
preparing the system in the ground state ψg (x) = ψ (x, 0) of
the above potential with δx �= 0, and then suddenly switching
δx = 0 at t = 0. Notice that only the harmonic potential is
shifted (the barrier does not move), so that the dynamics of
the system takes place in a parity symmetric potential. The
ground state ψg (x) is obtained from[− 1

2∇2
x + V (x) + u0|ψg (x)|2]ψg (x) = μψg (x), (3)

with μ being the condensate chemical potential. As for the
parameters, here we choose w = 0.3 and V0 = 50, that corre-
spond to a double-well configuration within reach of current
experiments (see, e.g., Ref. [43]), whereas the interaction
strength u0 and the initial shift δx are taken as free parameters,
and will be varied for exploring different regimes (see below).
In particular, δx is chosen in order to produce the desired
initial imbalance z0.

As it is known, in the limit of a very small initial imbalance
the system performs Josephson plasma oscillations [1], and
eventually enters a self-trapping (ST) regime at a critical
imbalance [3] whose specific value depends on the strength
u0 of the nonlinear term (see Fig. 1). The dynamics of the
system will be analyzed by means of an expansion over the

Bogoliubov modes, by comparing with the exact evolution
and the two-mode (TM) approach.

A. Two-mode model

Usually, the dynamics of a condensate in a double-well
potential is treated by means of the two-mode approach,
which consists in writing the condensate wave function as
(see, e.g., Refs. [30,46] and references therein)

ψ (x, t ) = cL(t )ψL(x) + cR (t )ψR (x), (4)

where the functions ψL,R (x) are localized in the left and
right well, have unit norm, and are orthogonal to each other,
〈ψL|ψR〉 = 0. Though somewhat approximate—and not en-
tirely justified from the formal point of view [30]—the two-
mode model provides an effective description of the double-
well system in several respects, and will be used in the
rest of the discussion as a reference. Here, we construct
the two modes ψL,R (x) from the ground state ψg (x) (sym-
metric) and the first excited solution ψ1(x) (antisymmetric)
of the stationary GP equation [47]. Namely, we take the
following linear combination, ψL/R ≡ (ψg ± ψ1)/

√
2 [46],

corresponding to the most common approach in the literature
[9,13,18,34,46,48–50]. Then, by defining (α = L,R)

cα (t ) =
√

Nα (t )eiφα (t ), (5)

and

K ≡ −
∫

dxψα (x)Ĥ0ψβ (x),

Uαmnβ ≡ u0

∫
dxψα (x)ψm(x)ψn(x)ψβ (x), (6)

one gets the following equations for the phase difference φ ≡
φα − φβ and the imbalance z ≡ Nβ − Nα [13],

ż

2K
= (2�1 − 1)

√
1 − z2 sin φ + (1 − z2)�2 sin 2φ, (7)

φ̇

2K
= (� − 2�2)z + (1 − 2�1)z√

1 − z2
cos φ − z�2 cos 2φ, (8)

with � ≡ Uαααα/2K , �1 ≡ Uαααβ/2K , �2 ≡ Uααββ/2K . In
the following, this set of equations will be referred to as the
full two-mode (FTM) model. When the terms �1 and �2 can
be neglected, it reduces to the well-known two-mode (TM)
model by Smerzi et al. [3].

We recall that the TM model predicts that the system
enters the ST regime when the parameter � exceeds a critical
value �c. For φ0 = 0, it takes the following value: �c(z0) =
2(

√
1 − z2

0 + 1/z2
0) [3]. Here, we shall use as the independent

parameter u0 rather than � (which will depend on u0). Then,
the previous equation can be easily inverted, yielding

z0c = [2
√

�(u0) − 1]/�(u0). (9)

As shown in Fig. 1, this formula provides a good estimate for
the actual critical imbalance extracted from the GP equation,
in the whole range considered (u0 ∈ [1, 200]).
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B. Bogoliubov approach

As a complementary description, here we employ the
quasiparticle projection method introduced by Morgan et al.
in Ref. [44]. It amounts to a Bogoliubov expansion [51,52]
where the condensate and quasiparticle populations are al-
lowed to vary with time, namely,

ψ (x, t ) = e−iμt/h̄{ψg (x)[1 + bg (t )] + δψ (x, t )}, (10)

with

δψ (x, t ) =
∑
i>0

bi (t )ũi (x) + b∗
i (t )ṽ∗

i (x). (11)

The functions ũi (x) and ṽi (x) are the Bogoliubov eigen-
modes, with the tilde indicating that they are chosen to be
orthogonal to ψg (x) [53]. They are solutions of (from now
on we fix ψ∗

g = ψg without loss of generality) [54](
L u0ψ

2
g

−u0ψ
2
g −L

)(
ũi

ṽi

)
= ωi

(
ũi

ṽi

)
, (12)

with

L ≡ − 1
2∇2

x + V (x) + 2gψ2
g − μ. (13)

The solutions of Eq. (12) satisfy the following orthogonality
relations [55],∫

dx[ũ∗
i (x)ũj (x) − ṽ∗

i (x)ṽj (x)] = δij , (14)∫
dx[ũi (x)ṽj (x) − ṽi (x)ũj (x)] = 0. (15)

The coefficients bg (t ) and bi (t ) are given by [44]

bg (t ) =
∫

dx[ψg (x)ψ (x, t )eiμt ] − 1, (16)

bi (t ) =
∫

dx[ũ∗
i (x)ψ (x, t )eiμt − ṽ∗

i (x)ψ∗(x, t )e−iμt ].

(17)

When the modes remain decoupled during the whole evo-
lution, as it generally assumed in the standard Bogoliubov
approach (see, e.g., Refs. [44,51]), the coefficients bi (t ) are
solutions of iḃi (t ) = ωibi (t ), namely,

bi (t ) = bi0e
−iωi t , (18)

where the coefficients bi0 ≡ bi (0), which do not depend on
time, are fixed by the initial conditions [see Eq. (17)]

bi0 =
∫

dx[ũ∗
i (x) − ṽ∗

i (x)]ψg (x). (19)

In the following we shall refer to this regime as the linear
regime. This has to be contrasted with the general situation,
discussed in this paper, in which the quasiparticles interact
with the condensate, and both the condensate and quasi-
particle populations depend on time [44], characterizing the
nonlinear mixing regime.

Imbalance. To construct the population imbalance between
the right and left wells we start by integrating the particle
density

n(x, t ) ≡ |ψ (x, t )|2 
 |1 + bg (t )|2|ψg (x)|2 + 2 Re

[
ψg (x)[1 + b∗

g (t )]
∑

i

[bi (t )ũi (x) + b∗
i (t )ṽ∗

i (x)]

]
(20)

over the positive and negative x semiaxis. By taking into account the symmetries of the problem we have

NR,L(t ) = A(t ) ± B(t ), (21)

with

A(t ) = |1 + bg|2
∫ +∞

0
dx|ψg|2 + 2 Re

[
(1 + b∗

g )
∑

i∈even

(
bi

∫ +∞

0
dx ψgũi + b∗

i

∫ +∞

0
dx ψgṽ

∗
i

)]
,

B(t ) 
 2 Re

[
(1 + b∗

g )
∑
i∈odd

(
bi

∫ +∞

0
dx ψgũi + b∗

i

∫ +∞

0
dx ψgṽ

∗
i

)]
. (22)

Then, the imbalance z(t ) ≡ NR (t ) − NL(t ) is

z(t ) = 2B(t ). (23)

Remarkably, only the Bogoliubov excitations with odd i

contribute to the imbalance, owing to the symmetries of the
system. In the linear regime we have (using also the fact that
in our case ũi , ṽi can be chosen real without loss of generality)

B(t ) 
 2
∑
i∈odd

[
bi0

∫ +∞

0
dx ψg (ũi + ṽi )

]
cos(ωit )

≡ 2
∑
i∈odd

B0i cos(ωit ). (24)

III. RESULTS AND DISCUSSION

Here, we shall discuss the evolution of the imbalance for
different values of its initial value z0 ≡ z(0) [throughout this
work we set φ0 ≡ φ(0) = 0], discussing the behavior of the
system in terms of the quasiparticle projection method [44]
introduced in the previous section. The general behavior of
z(t ) has already been extensively studied, at least in the
framework of the TM model (see, e.g., the seminal Ref. [3]).
In the rest of this paper we fix the ratio μ/V0 ≡ 0.25, a
value that characterizes a typical Josephson regime (with the
chemical potential much lower than the barrier height [46]). A
discussion of the actual shape of the ground and first excited
states (which enter explicitly in the calculations) can be found
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FIG. 2. Evolution of the normalized imbalance, z(t )/z0, for z0 =
0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d). The different lines correspond to the
solution of the GP equation (solid purple line), the TM model [long-
dashed green line, in (a)], and the prediction of the quasiparticle
projection method in Eq. (23), with B(t ) given by Eq. (22) [dotted-
dashed orange line, in (b)–(d)] and Eq. (24) [short-dashed cyan line,
in (a)–(c)].

in Ref. [30]. As an example, we consider here a moderate
value of the interactions, u0 = 4. There is nothing special
in this value, and we have verified that the general picture
discussed in the following is quite general and holds equally
for higher values of the interactions (see also Ref. [30]). The
explicit behavior of the imbalance evolution is shown in Fig. 2
for z0 = 0.1, 0.3, 0.5, and 0.7 (open squares in Fig. 1), ranging
from the regime of Josephson plasma oscillations (z0 � 0.1),
to the ST regime (z0 � 0.62). A detailed description of the
different dynamical behaviors and of the various lines plotted
in the figure is given in the following.

A. Josephson plasma oscillations

In the limit of very small imbalance, the system performs
Josephson plasma oscillations characterized by a frequency
ωJ . This frequency corresponds to the energy of the lowest
Bogoliubov mode [30]. In fact, in this limit only one Bogoli-
ubov mode is occupied, the system is in the linear regime, and
z(t ) is well reproduced by Eqs. (23) and (24) with the only
contribution of B01, namely [30],

z(t ) = 4B01 cos(ω1t ). (25)

This is shown in Fig. 2(a), where the GP prediction (solid
purple line) is perfectly reproduced by that of Eq. (25) (dotted
cyan line). In general, if u0 is not too large, namely, the
interaction term does not exceed significantly the kinetic one,
also the frequency obtained from the TM model [3,30,46,56]

ωTM
J = (2K/h̄)

√
1 + � (26)

can provide a reasonable estimate. In the present case
(μ/V0 = 0.25, u0 = 4), the prediction of the TM model—that
here coincides with that of the FTM model—exceeds the
exact frequency by approximately a 8% (ωJ = 0.595, ωTM

J =
0.643) [see the dotted green line in Fig. 2(a)]. This difference
may increase further by increasing u0 [30].
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FIG. 3. Evolution of the occupation number of the ground state
and of the Bogoliubov modes, ng and ne respectively, for z0 = 0.1
(a), 0.3 (b), 0.5 (c), 0.7 (d). Notice that in (a), where only the lowest
excited mode is appreciably populated, ne ≡ ne1 , the oscillation
period of the population is half of that of the imbalance, namely,
T = π/ω1 [see Eq. (28)]. The horizontal lines at n = 0, 1 are a guide
to the eye.

In this regime we also have∫
dx|ψ (x, t )|2 
 ng (t ) + ne1 (t ), (27)

where ng (t ) ≡ |1 + bg (t )|2 represents the (relative) popula-
tion of the ground state, and

ne1 (t ) ≡ |b10|2
∫

dx(|ũ1|2 + |ṽ1|2)

+ 2b2
10 cos(2ω1t )

∫
dxũ1ṽ1 (28)

that of the first Bogoliubov excitation, the other excited modes
being essentially irrelevant. The evolution of ng and ne1 is
plotted in Fig. 3(a) for z0 = 0.1 (the other three panels will be
discussed later on). A sinusoidal oscillation—with frequency
2ω1 [see Eq. (28)]—is clearly visible in Fig. 3(a). It corre-
sponds to a (small) periodic transfer of population between
the ground state and the first excited state, contrarily to what
happens in a truly linear system, where the occupation number
of each energy level is constant.

B. Intermediate regime

In general, when one increases the initial imbalance z0,
the form of z(t ) changes, and its frequency (the inverse of
the period) changes as well [3] [see Figs. 2(b) and 2(c)]. In
particular, before entering the ST regime, the imbalance is still
characterized by periodic oscillations, but with a frequency ω

that is shifted with respect to the plasma value ωJ as an effect
of the nonlinearity [see Fig. 4(a)]. These changes are reflected
in the change of the Fourier spectrum, in Fig. 4(b).

Remarkably, in this regime the spectrum is still peaked
around a single frequency, that is shifted continuously towards
lower-frequency values with respect to ωJ ≡ ω1, contrarily
to the naive expectation of having more Bogoliubov modes
macroscopically occupied [the first Bogoliubov frequencies
is indicated by the solid (red) point on the horizontal axis of
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FIG. 4. (a) Frequency ω = 2π/T of the oscillations of z(t ) as
a function of the initial imbalance z0 obtained from the solution of
the GP equation and from the TM and the fTM models. (b) Fourier
spectrum of z(t ) (calculated over an interval of size t = 103), for
different values of the initial imbalance z0. The (red) point on the
horizontal axis indicates the value of the first Bogoliubov frequency,
ω1 
 0.6. Higher modes lie far outside the present range (e.g., ω2 

1.84, ω3 
 2.19).

Fig. 4(b), higher modes lie far outside the present range]. In
fact, we find that the system exits the linear regime, namely,
Eq. (24) fails in reproducing the actual behavior of z(t )—see
Figs. 2(b) and 2(c)—even if higher Bogoliubov modes have
an initial population that is still below 1% that of the lowest
mode. In other words, the linear approach fails not because
some of the other excited modes are initially macroscopically
occupied (as it would be the case for a truly linear system),
but because of the nonlinear mixing during the evolution of
the system.

In this regime, the analog of the decomposition (28) be-
comes more complicated as the contribution of all the excited
modes to the total density is now

ne(t ) =
∑
i,j

[
bi (t )b∗

j (t )
∫

dx(ũi ũ
∗
j + ṽ∗

j ṽi )

+ bi (t )bj (t )
∫

dxũi ṽj+b∗
i (t )b∗

j (t )
∫

dxũ∗
j ṽ

∗
i

]
, (29)

meaning that it is not possible to write the total density as
the sum of separate contributions of each Bogoliubov mode.
The evolution of ng (t ) and ne(t ) is shown in Fig. 3 for
increasing values of the initial imbalance z0. This figure shows
that the transfer of population between the ground and the
excited states increases by increasing z0. Initially, when the
system exits the linear regime but z0 is not too large [e.g.,
z0 = 0.3, Fig. 3(b)], ng (t ) and ne(t ) are still characterized by
sinusoidal oscillations. For larger values of z0, the oscillations
in the population deviate from this behavior, as does the
corresponding imbalance [see, e.g., Figs. 3(c) and 2(c)]. In any
case, the oscillations of ng (t ) are always in phase with those

of |z(t )| (that is, the maximal imbalance is obtained when the
population of the ground state is maximal).

C. Self-trapping regime

By further increasing the initial imbalance z0, the period of
z(t ) gets larger and larger (see also Ref. [3]), and eventually
diverges at the critical value z0c where ω ∝ 1/T → 0 [see
Fig. 4(a)] (z0c 
 0.62 in the present case). Notice that the
value of z0c obtained from the solution of the GP equation is
reproduced with great accuracy by the FTM model (we have
verified that this holds true even for values of u0 larger than
that considered in the present paper). Remarkably, the onset
of ST corresponds to a situation in which the population of
the ground state can be transferred completely to the excited
states, namely, when ng (t ) = 0 at some t during the evolution
[see Fig. 3(d)]. This feature is indeed a distinctive characteris-
tic of the ST regime. In this regime the imbalance is stuck on
the positive side (or the negative one, depending on the initial
conditions), still oscillating, but with an irregular pattern [3].
The latter reflects in the shape of the frequency spectrum, that
significantly broadens and acquires a relevant contribution
from the low-frequency region, ω 
 0 [dotted-dashed orange
line in Fig. 4(b)].

D. Nonlinear mixing

Owing to the coupling between the different Bogoliubov
modes [see Eq. (29)], we argue that |bi (t )|2 cannot be identi-
fied with the occupation number of the ith quasiparticle level,
contrarily to the the interpretation given in Ref. [44]. How-
ever, since the coefficients bi (t ) represent the quasiparticle
amplitudes in the sense of the expansion (11), in the following
we shall consider their modulus squared |bi (t )|2 as a measure
of the weight of each mode in the system dynamics. Their
evolution (for i = 1, 2, 3, 4) is shown in Fig. 5 (left), along
with the corresponding time-averaged values

〈|bi |2〉(t ) ≡ 1

t

∫ t

0
|bi (t

′)|2dt ′, (30)

for the same values of the initial imbalance as in the previous
figures, namely, z0 = 0.1, 0.3, 0.5, 0.7. In Fig. 5 (right) we
show the corresponding region of the complex plane spanned
by the real and imaginary parts of bi (t ) [here normalized to
b1(0), for ease of visualization] during the evolution of the
system. In Fig. 5(e) we also show the trajectory of the lowest
Bogoliubov mode (i = 1) for z0 = 0.005, indicating that in
the limit z0 → 0 the expected behavior is recovered: In this
case the coefficient b1(t ) is constant in modulus as dictated
by Eq. (18) for the linear regime, and the contribution of all
higher excited modes is negligible [30]. As z0 is increased,
the dynamics in the complex plane becomes chaotic, each
mode spanning a larger portion of the plane. Notice also the
change in the orbit shape, from circular (in the limit z0 → 0)
to elliptical (for z0 � 0.1). Both left and right panels evidence
a mixing between different modes, especially those with i = 2
and i = 3. Remarkably, the mode i = 2—which, being even,
does not contribute directly to the imbalance [see Eqs. (22)
and (23)]—indeed affects it through the mixing with other
modes during the evolution of the system.
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FIG. 5. Left: Evolution of (the modulus square of) the quasiparticle amplitudes |bi (t )|2 (i = 1, 2, 3, 4, dotted lines, from top to bottom) and
of their corresponding time-averaged values 〈|bi |2〉(t ) [solid lines, see Eq. (30)], for z0 = 0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d). Right: Evolution of
the real and imaginary part of bi (t ) [normalized to the initial value of b1(t )] in the complex plane, for z0 = 0.1 (e), 0.3 (f), 0.5 (g), 0.7 (h). The
legends of the two figures are the same. The (black) circle in (e) represents the trajectory for mode 1 in the limit z0 → 0 (here, z0 = 0.005).

IV. CONCLUSIONS

We have analyzed the dynamics of a (quasi-) one-
dimensional Bose-Einstein condensate in a double-well po-
tential [57], from the regime of Josephson plasma oscillations
to the self-trapping regime, by means of the Bogoliubov quasi-
particle projection method [44]. In the limit of a very small
initial imbalance, the system performs Josephson plasma os-
cillations characterized by the frequency of the lowest Bo-
goliubov mode (the only Bogoliubov mode being significantly
occupied) [30]. In this regime, the evolution of the system is
characterized by a periodic transfer of population between the
ground state and the first excited state. As the initial imbalance
is increased, the system still performs periodic oscillations
between the left and right wells, but with a frequency that
is continuously shifted towards values lower than the plasma
frequency. This occurs because of the nonlinear mixing of the
Bogoliubov modes during the evolution of the system, and
not because some of the excited modes (besides the lowest
one) are initially macroscopically occupied, contrarily to what

happens in a linear system. The frequency spectrum of the
imbalance is therefore still peaked around a single frequency,
and the corresponding period diverges when the system enters
the self-trapping regime. This corresponds to a situation in
which the population of the ground state can be transferred
completely to the excited states at some time during the
evolution. This feature is indeed a distinctive characteristic of
the ST regime. The present picture is expected to hold also in
higher dimensions.

ACKNOWLEDGMENTS

We thank Alessia Burchianti, Chiara Fort, and Gonzalo
Muga for useful discussions during the initial stage of this
work. We acknowledge support by the Spanish Ministry of
Economy, Industry and Competitiveness and the European
Regional Development Fund FEDER through Grant No.
FIS2015-67161-P (MINECO/FEDER, UE), and the Basque
Government through Grant No. IT986-16.

[1] J. Javanainen, Phys. Rev. Lett. 57, 3164 (1986).
[2] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.

Rev. A 55, 4318 (1997).
[3] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.

Rev. Lett. 79, 4950 (1997).
[4] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and

M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).
[5] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[6] R. Gati, M. Albiez, J. Fölling, B. Hemmerling, and M.

Oberthaler, Appl. Phys. B 82, 207 (2006).
[7] F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4213

(1996).
[8] I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57, R28

(1998).
[9] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.

Rev. A 59, 620 (1999).
[10] S. Giovanazzi, A. Smerzi, and S. Fantoni, Phys. Rev. Lett. 84,

4521 (2000).

[11] Y. Zhang and H. J. W. Müller-Kirsten, Phys. Rev. A 64, 023608
(2001).

[12] E. Sakellari, M. Leadbeater, N. J. Kylstra, and C. S. Adams,
Phys. Rev. A 66, 033612 (2002).

[13] D. Ananikian and T. Bergeman, Phys. Rev. A 73, 013604
(2006).

[14] M. Rosenkranz, D. Jaksch, F. Y. Lim, and W. Bao, Phys. Rev. A
77, 063607 (2008).

[15] S. Giovanazzi, J. Esteve, and M. Oberthaler, New J. Phys. 10,
045009 (2008).

[16] R. Ichihara, I. Danshita, and T. Nikuni, Phys. Rev. A 78, 063604
(2008).

[17] B. Juliá-Díaz, M. Melé-Messeguer, M. Guilleumas, and A.
Polls, Phys. Rev. A 80, 043622 (2009).

[18] B. Juliá-Díaz, J. Martorell, M. Melé-Messeguer, and A. Polls,
Phys. Rev. A 82, 063626 (2010).

[19] C. Ottaviani, V. Ahufinger, R. Corbalán, and J. Mompart, Phys.
Rev. A 81, 043621 (2010).

043624-6

https://doi.org/10.1103/PhysRevLett.57.3164
https://doi.org/10.1103/PhysRevLett.57.3164
https://doi.org/10.1103/PhysRevLett.57.3164
https://doi.org/10.1103/PhysRevLett.57.3164
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1103/PhysRevA.54.4213
https://doi.org/10.1103/PhysRevA.54.4213
https://doi.org/10.1103/PhysRevA.54.4213
https://doi.org/10.1103/PhysRevA.54.4213
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevA.64.023608
https://doi.org/10.1103/PhysRevA.64.023608
https://doi.org/10.1103/PhysRevA.64.023608
https://doi.org/10.1103/PhysRevA.64.023608
https://doi.org/10.1103/PhysRevA.66.033612
https://doi.org/10.1103/PhysRevA.66.033612
https://doi.org/10.1103/PhysRevA.66.033612
https://doi.org/10.1103/PhysRevA.66.033612
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.77.063607
https://doi.org/10.1103/PhysRevA.77.063607
https://doi.org/10.1103/PhysRevA.77.063607
https://doi.org/10.1103/PhysRevA.77.063607
https://doi.org/10.1088/1367-2630/10/4/045009
https://doi.org/10.1088/1367-2630/10/4/045009
https://doi.org/10.1088/1367-2630/10/4/045009
https://doi.org/10.1088/1367-2630/10/4/045009
https://doi.org/10.1103/PhysRevA.78.063604
https://doi.org/10.1103/PhysRevA.78.063604
https://doi.org/10.1103/PhysRevA.78.063604
https://doi.org/10.1103/PhysRevA.78.063604
https://doi.org/10.1103/PhysRevA.80.043622
https://doi.org/10.1103/PhysRevA.80.043622
https://doi.org/10.1103/PhysRevA.80.043622
https://doi.org/10.1103/PhysRevA.80.043622
https://doi.org/10.1103/PhysRevA.82.063626
https://doi.org/10.1103/PhysRevA.82.063626
https://doi.org/10.1103/PhysRevA.82.063626
https://doi.org/10.1103/PhysRevA.82.063626
https://doi.org/10.1103/PhysRevA.81.043621
https://doi.org/10.1103/PhysRevA.81.043621
https://doi.org/10.1103/PhysRevA.81.043621
https://doi.org/10.1103/PhysRevA.81.043621


NONLINEAR MIXING OF BOGOLIUBOV MODES IN A … PHYSICAL REVIEW A 98, 043624 (2018)

[20] B. Juliá-Díaz, J. Martorell, and A. Polls, Phys. Rev. A 81,
063625 (2010).

[21] B. Juliá-Díaz, D. Dagnino, M. Lewenstein, J. Martorell, and A.
Polls, Phys. Rev. A 81, 023615 (2010).

[22] M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls,
and A. Sanpera, New J. Phys. 13, 033012 (2011).

[23] S. Wüster, B. J. Dabrowska-Wüster, and M. J. Davis, Phys. Rev.
Lett. 109, 080401 (2012).

[24] B. Juliá-Díaz, E. Torrontegui, J. Martorell, J. G. Muga, and A.
Polls, Phys. Rev. A 86, 063623 (2012).

[25] B. Juliá-Díaz, T. Zibold, M. K. Oberthaler, M. Melé-Messeguer,
J. Martorell, and A. Polls, Phys. Rev. A 86, 023615 (2012).

[26] B. Juliá-Díaz, A. D. Gottlieb, J. Martorell, and A. Polls, Phys.
Rev. A 88, 033601 (2013).

[27] D. M. Jezek, P. Capuzzi, and H. M. Cataldo, Phys. Rev. A 87,
053625 (2013).

[28] S. Li, S. R. Manmana, A. M. Rey, R. Hipolito, A. Reinhard, J.-F.
Riou, L. A. Zundel, and D. S. Weiss, Phys. Rev. A 88, 023419
(2013).

[29] K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A 89, 023602 (2014).

[30] A. Burchianti, C. Fort, and M. Modugno, Phys. Rev. A 95,
023627 (2017).

[31] F. Cataliotti, S. Burger, C. Fort, and P. Maddaloni, Science 293,
843 (2001).

[32] Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A.
Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 020403
(2005).

[33] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, and M. K.
Oberthaler, Phys. Rev. Lett. 96, 130404 (2006).

[34] R. Gati and M. Oberthaler, J. Phys. B: At., Mol. Opt. Phys. 40,
R61 (2007).

[35] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature
(London) 449, 579 (2007).

[36] L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour,
D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Phys. Rev.
Lett. 106, 025302 (2011).

[37] A. Trenkwalder, G. Spagnolli, G. Semeghini, S. Coop, M.
Landini, P. Castilho, L. Pezze, G. Modugno, M. Inguscio, A.
Smerzi, and M. Fattori, Nat. Phys. 12, 826 (2016).

[38] R. Labouvie, B. Santra, S. Heun, and H. Ott, Phys. Rev. Lett.
116, 235302 (2016).

[39] G. Spagnolli, G. Semeghini, L. Masi, G. Ferioli, A.
Trenkwalder, S. Coop, M. Landini, L. Pezzè, G. Modugno,
M. Inguscio, A. Smerzi, and M. Fattori, Phys. Rev. Lett. 118,
230403 (2017).

[40] A. Spuntarelli, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. 99,
040401 (2007).

[41] F. Ancilotto, L. Salasnich, and F. Toigo, Phys. Rev. A 79,
033627 (2009).

[42] P. Zou and F. Dalfovo, J. Low Temp. Phys. 177, 240 (2014).
[43] G. Valtolina, A. Burchianti, A. Amico, E. Neri, K.

Xhani, J. A. Seman, A. Trombettoni, A. Smerzi, M. Za-
ccanti, M. inguscio, and G. Roati, Science 350, 1505
(2015).

[44] S. Morgan, S. Choi, K. Burnett, and M. Edwards, Phys. Rev. A
57, 3818 (1998).

[45] For the definition of a (quasi-) one-dimensional condensate, see,
e.g., Ref. [58] and references therein.

[46] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity, International Series of Monographs on Physics
(Oxford University Press, Oxford, UK, 2016).

[47] The stationary GP equation is solved by imaginary time evolu-
tion [51]. Once the ground state ψg has been obtained, the first
excited solution is found by the same approach, requiring it to
be orthogonal to ψg (x ).

[48] E. Sakellari, N. P. Proukakis, M. Leadbeater, and C. S. Adams,
New J. Phys. 6, 42 (2004).

[49] I. Danshita, K. Egawa, N. Yokoshi, and S. Kurihara, J. Phys.
Soc. Jpn. 74, 3179 (2005).

[50] S. K. Adhikari, H. Lu, and H. Pu, Phys. Rev. A 80, 063607
(2009).

[51] F. Dalfovo, S. Giorgini, L. P. Pitaevsii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).

[52] Y. Castin, in Coherent Atomic Matter Waves, edited by R.
Kaiser, C. Westbrook, and F. David, Lecture Notes of Les
Houches Summer School, LXXII, 1999 (Springer, Berlin,
2001), pp. 1–136.

[53] In general, the solutions of Eq. (12) are not orthogonal to
ground-state solution ψg . However, one has the freedom to
impose that condition, posing [44] ui = ũi − aiψg , ṽ∗

i = ṽ∗
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