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We study the current of Bose particles between two reservoirs connected by a one-dimensional channel.
We analyze the problem from first principles by considering a microscopic model of conductivity in the
noninteracting limit. Equations for the transient and the stationary current are derived analytically. The
asymptotic current has a form similar to the Landauer-Biittiker equation for electronic current in mesoscopic

devices.
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I. INTRODUCTION

Recent progress in cold-atom physics witnesses the emer-
gence of the new field atomtronics [1-3], which deals with
atom-based setups which are similar to crystal-based elec-
tronic devices. In particular, the recent series of experiments
at Zurich [4,5] analyzes a current of fermionic atoms between
two atomic reservoirs connected by a point contact [4], or
even by quasi-one-dimentional channels with periodic struc-
ture [5]. To explain their experimental results in the case of
weakly interacting atoms the authors of [4,5] appeal to the
Landauer-Biittiker (LB) theory [6], which has been proved to
be very successful in describing ballistic transport of electrons
in mesoscopic solid-state devices.

According to the LB approach [6] the electron current j is
given by the equation

j= Z/f(E)Vn(E)FdE. )

Here n labels the transmission channels, #,(E) is the trans-
mission amplitude at the energy E of each channel, and the
function f(E) is determined by the chemical potentials of the
left and right reservoirs through the Fermi-Dirac distribution
frp(E) as f(E)~ frp(E —ur) — frp(E — ug). It was
demonstrated in the ETH experiments that Eq. (1) describes
reasonably well the current of weakly interacting fermionic
atoms in engineered optical potentials. A unique property of
atomtronic devices is that they may use Fermi as well as Bose
atoms. This raises the question about an analog of the LB
equation for bosonic transport [7]. To obtain such an analog
for particle transport is the main goal of this paper.

II. MICROSCOPIC MODEL

In what follows we illustrate the derivation of the bosonic
LB equation by considering a simple microscopic model that
is a modification of the model introduced in Ref. [8]. It
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consists of two reservoirs of Bose particles connected by the
transport channel; see Fig. 1 (upper panel). The reservoirs are
described by the Bose-Hubbard Hamiltonians Hj,
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Hy = n;nmmm D=3 n;(bmﬂbm +Hc), (2

where W # 0 is the interaction constant and we implicitly
assume the thermodynamic limit with a fixed filling factor
it = N/M. The reservoirs are connected to the transport chan-
nel described by the Hamiltonian H,,
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where the on-site energies E; correspond to a scattering
potential. Finally, the channel is coupled to the left reservoir
by the Hamiltonian Hjy,

Hi = e(bya + H.e)), )
where the hopping matrix element ¢ plays the role of the cou-
pling constant. The coupling Hamiltonian to the right reser-
voir (which is described by its own Bose-Hubbard Hamilto-
nian) has the form FIim = s(&Llﬁ + H.c.).

To avoid a possible confusion we stress that, in spite of
using different notations for the creation and annihilation
operators for Bose particles in the transport channel and
reservoirs, the total Hamiltonian describes a system of indis-
tinguishable particles. The main assumption of the model is
that the interaction constants W and U in the Hamiltonians
(2) and (3) can be varied independently, where we will mainly
focus on the case U = 0 but W # 0. The advantage of using
the interacting Bose-Hubbard model (2) as a bath is that it is
generally a quantum chaotic system with universal properties
of the energy spectrum and eigenstates [9,10]. These proper-
ties help us to justify the master equation that will be derived
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below. The advantage of considering a noninteracting channel
is that the obtained master equation can be solved analytically
without any further approximations.

III. MASTER EQUATION

The first step is to derive the master equation for the
reduced density matrix describing the carriers in the trans-
port channel, ps(¢) = Trp[p0(2)], where Trp[. . .] denotes the
partial trace over the bath variables. A master equation in
Lindblad form can be obtained for p,(#) within the so-called
Born-Markov approximation [11]. This approximation as-
sumes that (i) the total density matrix factorizes into the tensor
product of the reduced density matrices for all times, py(¢) =
op(t) ® ps(t) (here for simplicity we temporally discuss the
case of a single bath) and that (ii) bath degrees of freedom
are § correlated, i.e., Trp[6(1)bT (1) pp(t = 0)] ~ §(t —t'). We
mention, in passing, that the former approximation is actually
never satisfied because the coupling Hamiltonian entangles
the particles in the channel and the bath. However, one can
justify a weaker approximation [12], Trp[F (13, IST)pmt(t)] =
Trp[F (b, b1)py(1)]ps (), which is sufficient to eliminate the
bath [F(.,.) is an arbitrary operator-valued function of the
bath variables]. The required property behind the previous
equation is a quantum counterpart of the mixing property of
classically chaotic systems and the interacting Bose-Hubbard
model possesses this property [9].

Using the explicit form of the coupling Hamiltonian (4),
the result is a Lindblad master equation for the reduced
density matrix of the channel; see, e.g., [13]. This provides
an effective model for the reduced dynamics in the channel,
as sketched in Fig. 1 (bottom panel). The channel is now a
dissipative Bose-Hubbard chain subject to single-particle loss
processes at rates y; ; as well as incoherent pumping at the
same rates around the populations 71, ; at both ends, labeled 1
and L, respectively. Explicitly we have

0, = —ilH,. p1+ Y y;(@;Dlallp+(i;+1)Dla,14,),

j=1L
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FIG. 1. Schematic representation of the microscopic model (up-
per panel) from which the effective dissipative Bose-Hubbard chain
description is derived with gain and loss at sites 1 and L (bottom
panel).

where the dissipator is defined as Dla]p, =a peat —
1/2{ata, py}. In terms of the microscopic model of Egs. (2)—
(4), the parameters 71; and 71, are given by the filling factor of
the Bose-Hubbard reservoirs and the parameters y; ; are pro-
portional to the square of the lead-channel coupling constant,
v1.L ~ €2. Notice that, besides the particle exchange between
the system and the bath, the relaxation terms in Eq. (5) are
responsible for decoherence processes as well. The latter is a
consequence of the mentioned system-bath entanglement.

With respect to the microscopic model Egs. (2)—(4), the
validity of the master Eq. (5) was tested in Ref. [8]. It was
found that it is well justified in the high-temperature limit,
where the overwhelming majority of bath states are chaotic.
However, it may give wrong results in the low-temperature
limit, where most of the populated bath states (including the
ground state) are regular states. The high-temperature limit
(which we shall assume from now on) implies that all Bloch
states for a particle in the bath are equally populated. Thus a
particle coming into the channel may have an arbitrary quasi-
momentum. Let us also mention that the master equation (5) is
used as the starting point in many papers on conductivity with
bosonic and fermionic carriers [14—16], where in the latter
case the bosonic annihilation and creation operator should be
substituted by fermionic ones.

IV. SINGLE-PARTICLE DENSITY MATRIX

The reduced density matrix p,;(¢) entering the master
equation (5) carries the whole information about the atoms
in the transport channel but has a huge dimension which
grows exponentially with L. Fortunately, for many purposes,
it suffices to know only the single-particle density matrix
(SPDM), which has the fixed dimension L x L and is defined
as

O (1) = Tr[ps(1)2] @] = (@] (1)am (1)). (6)

The SPDM is easily shown to satisfy the following set of
equations of motion:

001 = l(El - Em)alm
J
+IE(Gl,m+l + Ol,m—1 — Ol+1,m — Gl—l,m)

— iU (@] analam) — (@aa)an))
Vi _
= 2 G+ b o = i) (D)
j=1.L

These equations can be put into a closed form using an appro-
priate truncation scheme such as the mean-field or the beyond-
mean-field Bogoliubov back-reaction method [14,17]. Fortu-
nately, in the case of noninteracting bosons (U = 0), consid-
ered throughout this paper, the equations are already in closed
form. This holds for any master equation with Hamiltonian
terms and Lindblad operators at most quadratic on the creation
and annihilation operators [11].

A. Transient dynamics of the SPDM

We are interested in the current across the chain. By build-
ing a vector o out of the SPDM’s matrix elements, Eq. (7) can
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FIG. 2. Asymptotic relaxation time 7, vs L for 7, =0.02, 71, =0,
and various ratios y/J as shown in the legend. The dashed line shows
a fit approximately cubic in L.

be rewritten in the form
3,5 (1) = A5 (1) + b, (8)

with A a diagonally dominant complex symmetric matrix. The
general solution of such a system is

G(t) = M5 (0) + A1(1 — eA)b, 9)

which can be explicitly obtained for a few-site chain, for
example the two-site system; see Appendix A for a detailed
discussion of this case. However, explicit expressions get
more involved for larger systems, for which numerical diago-
nalization can be efficiently used. This is the reason why we
will now study the limit of the stationary current. Indeed, it
follows from Eq. (9) that, independent of the initial condition,
the SPDM oy ,,(¢) relaxes to some stationary matrix 6j,,.
Relaxation towards this steady state occurs on a time scale
of the order of the asymptotic relaxation time, defined as
17, = inf,({|A¢|})~", where {A,} denotes the set of eigenvalues
of the matrix A of Eq. (8). We find that the relaxation time
7, increases with the chain length L. This raises the question
of its asymptotic scaling. Figure 2 shows that 7, scales with
the number of sites L as an approximate cubic power law, as
predicted in Ref. [18] for boundary dissipation.

To analyze the regime of stationary currents, we first
consider the case of identical on-site energies E;, where
the transmission probability is unity. In this case the SPDM
relaxes to a tridiagonal matrix &, shown in Fig. 3(a). This
matrix is uniquely characterized by four quantities: the value
of its diagonal elements A (except for the first and last sites),
the value of its off-diagonal elements +iB, and 6, = C
and 61, = D. To simplify the equations we shall restrict
ourselves to the parameter region y; = y;, = y. Setting the
left-hand side of Eq. (7) to zero for U = 0, we obtain the
following system of algebraic equations for the unknown
matrix parameters

yC+ JB = yny, (10)
yB—-—JC+JA =0, an
yB—JA+JD =0, (12)

yD —JB = yng, (13)
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FIG. 3. Absolute values of the steady-state SPDM for L = 21,
iy =0.02, i, =0, y/J =2, and either F/J = 0 (upper panels) or
F/J = 0.5 (bottom panels) for the V; scattering potential. Exact
numerical results (left) are to be compared to the LB ones (right),
computed from Eq. (16).

which gives

(14)

and

B= %u (15)

ye+J 2

Keeping in mind the matrix of the current operator, j;,, =
Jo(81.m+1 — 8141.m)/2i, we conclude that Eq. (15) determines
the stationary current in the channel as j = jyoB, where jy, =
Jd/h, with d being the lattice period which we set to unity
from now on. As expected, j is proportional to the population
difference 717 — 71, between the two reservoirs and to the re-
laxation rate y, provided that y < J. It follows from Eq. (14)
that the mean number of carries in the lead is (N) = (i7; +
iip)L /2. This information may be relevant for a numerical
simulation of the system dynamics using approximate, e.g.,
Hilbert-space, truncation methods.

Next we analyze the case of a nonvanishing scattering
potential. As an example, we consider the potential V| cor-
responding to a pointlike scatter E; = F'§; 1 /,. Figure 3(c)
presents the stationary density matrix for F = 0.5J. As ex-
pected, the diagonal elements &;; now show a jump at the
scatterer’s position. Yet, the nearest elements to the main diag-
onal, which determine the current in the system, have constant
value, which is a consequence of the continuity equation.
We notice non-negligible antidiagonal matrix elements, which
reflect strong spatial correlations between the transmitted and
reflected particles. The analytical expressions for the SPDM
from Fig. 3(c), which is now uniquely characterized by eight
quantities, are given in Appendix B.

For a more complicated scattering potential, for exam-
ple the potential V2 defined by El = F(SZ,L/Z—I + 81,L/2+1),
where one meets the phenomenon of resonant scattering, the
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stationary density matrix has an even more involved structure
which is hard to reproduce by means of an algebraic approach.
However, we can fairly well reproduce this structure by em-
ploying the LB approach [6] in the next section.

B. Landauer-Biittiker approach

It is instructive to discuss the result depicted in Fig. 3(a)
in terms of the Bloch waves |k) ~ ), exp(ix!)|l), where we
formally consider the limit L — oo and, hence, the quasi-
momentum k is a continuous quantity. This limit eliminates
the boundary effects and the stationary matrix &; ,, is approx-
imated by the average matrix &,

_ 7 d
5 =/ |K><x|f<x>§, (16)

T

where
f(k) = A+ 2Bsin(k). (17)

Remarkably, the case of a nonvanishing scattering potential is
reproduced by substituting in Eq. (16) the Bloch wave |«) by
the scattered Bloch waves |«’):

l<L)j2

(Ul ~ {exp(iicl)+r(/<)exp(—ifcl), e (18)

t(k)exp(ixl),

Figure 3 compares the exact steady-state SPDM (left pan-
els) with those obtained from Eq. (16) (right panels) for
the scattering potentials V; with F' =0 (upper panels) and
F = J/2 (bottom panels). It is seen that Egs. (16)—(18) well
approximate the exact SPDM. Weak deviations from the exact
result are mainly due to the fact that the LB approach (which
is essentially a scattering theory) neglects the dehoherence
induced by the (nonperfectly-absorbing) reservoirs.

The observed agreement suggests the following equation
for the stationary current:

(T ,dk
J 2]0/ sin(ic).f (Ol GO 5 (19)
. b4
which follows from Egs. (16)—(18). In principle, the integra-
tion over quasimomentum in Eq. (19) can be substituted by
an integration over the energy with dE = J sin(k )dk. Then
Eq. (19) takes the same form as the celebrated LB equation (1)
used to describe particle [6] and heat transport [19]. The
usage of quasimomentum, however, has the advantage that we
obtain not only the current but also reproduce the SPDM.The
lower panel of Fig. 4 shows the stationary current across
the chain as a function of F/J obtained from the analytical
expression (19) (solid lines), as compared to numerical results
based on simulations of the reduced density matrix (symbols)
for both above-defined potentials V; and V,. The squared
modulus of the associated transmission coefficients are plotted
respectively in the top left and top right panels, as a function
of the impurity energy shift F for any quasimomentum «. The
agreement of the result based on the LB approach with the
exact data is very good.

V. CONCLUSIONS

We studied the stationary current of Bose particles be-
tween two reservoirs connected by a one-dimensional trans-

[t(r)[?

3 1
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~
=
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2 4 — Landauer-Biittiker: 1}
§ 3 . Numerical integration: Vj
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5
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FIG. 4. Squared modulus of the transmission coefficient corre-
sponding to the scattering potentials V; (upper left) and V, (upper
right) as a function of F/J and the quasimomentum « . Bottom panel:
Steady-state currents across a L = 20 chain for both potentials and
iy =0.02, iy =0, y/J = 2. Results predicted by Eq. (19) (solid
lines) are compared to exact numerical simulations (symbols).

port channel. We analyzed the problem from first principles,
i.e., without using uncontrolled assumptions. The obtained
equation for the stationary current has the same structure as
the fermionic LB equation and involves an integration over
the energy or quasimomentum of the transmission probability
for the carriers weighted by some function f(x). Similar to
the fermionic case, this weight function is determined by
the chemical potentials of the reservoirs. Additionally, f (k)
was found to depend on the relaxation constant y, whose
value is determined by the coupling constant & as y ~ 2.
This result goes beyond the common LB approach because
it explicitly takes into account a particular form of coupling
between the lead and reservoirs. It should also be mentioned
that the obtained Eq. (19) requires infinite temperature of
the reservoirs—the assumption we need to justify the master
Eq. (5). It is an open problem to obtain the bosonic LB
equation for a finite temperature where the Markovian ap-
proximation may be not justified and, hence, the equation
on the reduced density matrix may include non-Markovian
terms.
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APPENDIX A: TRANSIENT DYNAMICS OF AN
INCOHERENTLY PUMPED DOUBLE WELL

For U = 0 and Lindblad operators such as L ¢ = dy (loss),
I:g = &Z (gain), or f,(g = 71y (phase noise), the single-particle
density matrix’s (SPDM) equation of motion [14], Eq. (7), is
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FIG. 5. Schematic representation of the open noninteracting
double well.

linear and can thus always be solved by diagonalization. By
building a vector 6 out of the SPDM’s elements, the equation
of motion can be rewritten in the form

8,5(1) = AG (1) + b, (A1)

Let us consider the incoherently pumped double well de-
picted in Fig. 5. It is described by the following Lindblad
master equation [14]:

&p = —ilH.pl+ ) v;*Dlajlp
j=12

+ Y vi@;Dlajlp+ @, + 1)Dla;1p) (A3)
j=12
5 S ota 4 ata
H=- E(al@ + a,a), (A4)
where J denotes the hopping amplitude, y; is the incoherent
gain-loss process rate at site j, and ijp accounts for a possible
supplementary single-particle loss rate at site j, modeling en-
gineered loss locally at a site [14], for instance. The dissipator
superoperator is defined as D[L1p = LpLt — 1/2{LTL, p}.

By defining o' L (o1, 012, 001, on), T 2y +
with A a diagonally dominant complex symmetric matrix. The ~ ¥,°)/J, T C (I +T2)/2, and AT € (I, —T)/2, one
general solution of such a system is gets

—T i/2  —i/2 0 iyl
(1) =eM5(0) + A7 (1 — )b, I T ] B
=2 0 -+l | o)
which can be explicitly obtained for a few-site chain. For 0 —=i/2 i2 - 2ys
a time-dependent source term b(t), the last term is to be (A5)
changed into the convolution [, dt'eA*=")b(t"), which in-
cidentally becomes in the steady-state limit a linear super- Sp(A/J)={-f _y L4, L T A6
position of the Laplace transforms of the time-dependent P(A/]) { 27T TN T T }’ (46)
sources. Therefore, everything amounts to calculating U(¢) & where y &f VAT2/4 — 1.
exp(At) = TeMT!. A can be diagonalized as A = TAT ™!, where
1 1 1 0
—L(y+A)  L(y—=AD) 0 1
- 27 2 . , (AT)
L(y+ Al —i(y—AD) AT 1
AT(y—AT) AT (y—AT)
=1 1 - == 1 0
SRR -1 Sy - AD S -AD ]
1| ALG+AD) 4 _i AT i AT 1
T71=_2 2 2(y+ ) 2()’+ ) 7 (AS)
y -2 iAT —iAT -2
iAT (AT? =2) -2 iAT
and A = diag({—T —y, -T +y,-I,-T})
Finally, the analytical expression for the symmetric U(¢) reads
a_— lb+ —lb+ C
eI L 4y —¢ c —ib_
U= , i (A9)
y? 4y* —c  ib_
a+
where
ar = =2+ (AT? — 2)cosh(Jyt) £ ATy sinh(Jyt), (A10)
by =+ AT'[1 — cosh(Jyt)] + y sinh(Jyt), (A11)
¢ =—2+42cosh(Jyt). (A12)
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From this matrix and its time integral, one gets the following expressions for the populations:

0 = 4 — AT2 cosh(J yt inh(J yt An(0 inh(J yt
ny(r) = na0) _re ( cos 2( v _,psinh(Jy )) 4 n( )<Cosh(]yt)— Ap Sy ))
2 4— AT y N0t (0) y
+ filt; T, Doy + fo(t5T, To)yadia, (A13)
0 = 4 — AT? cosh(J yt inh(J yt An(0 inh(J yt
na(1) = Ma0) e < cos 2( ) _ pSinhlly )> _ an )<cosh(lyt)—AF—Sm (Jy ))
2 4 — AT y N0t (0) y
+ fo(t; 0o, Ty + f1(t5 T, Ti)yana, (A14)
. A AT[1 — cosh(Jy1)] sinh(Jyt) B _
jt)=e ”’( = T i (0) + Tym(m) + £t T Ty + f3(t: T, Ty, (A15)
where
r,+2/T < (2/T T, +20/y? I —T 2 sinh(Jyt
AT, Ty) = 2 +2/ e_r1z</_2_ 2+20/y cosh(Jy) + 2(I'y — Ty) + 2 sinh(Jy )>7 (AL6)
Nr,+4 y Nr,+4 rr,+4 y
2/T . (2/F 20 /y? 2 sinh(Jyt))
t;1, )= ——— +e —— — ——~—cosh(Jyt) — , Al7
ST T) = 5 g T TS L S (A17)
P T D) = [ — AT _m< AT N AT(T — AT) +4cosh(Jyt) [ —AT sinh(Jyt)) (AL8)
TP RO, + 4) y? YA(T'\T2 +4) Nh+4  y )

[

A,, where the first three quantities have the same meaning
as in the case F = 0, while A; and A, denote the occupa-
tions of the lattice sites before and after the scatterer; see
upper panel of Fig. 8. The second matrix takes into account
correlations between the transmitted and reflected waves and
is hence antidiagonal. The matrix elements along the main

In the absence of any additional single-body dissipation,
the steady-state current is maximized for y; =y, = J, ie.,
the frequency of the oscillations of the closed double well. In
this case, the steady-state current is equal to J (7] — 712)/2.

The dynamics derived from the above system of equations
is plotted in Figs. 6, 7(a), and 7(b).

s 1
APPENDIX B: ANALYTICAL SOLUTION FOR THE £ |
STEADY-STATE DENSITY MATRIX IN THE CASE 08k ]
OF A POINTLIKE SCATTERER :; 1\

For the sake of simplicity, we shall consider the case 30’6 ;I‘\. ]
of odd L and shall move the coordinate origin to [ =0, = 0.4l (Ve ]
ie, —M <1< M, where M = (L —1)/2. An example of = | /\
the steady-state SPDM for F #£0 and L= 21 is given in 2on f/ N ) - 2';2::2 L
Fig. 3(c). Formally, this matrix can be viewed as the sum of £ — N/l | ]
a tridiagonal matrix and an antitridiagonal matrix. The first F ol | L L
matrix is characterized by the quantities C, D, B, and A and 0 1 2 | 3 5

(a) t
3 1 2001
s I
Z08p .
= rn
[
Qi 0.6 /N -
g Pyl a
g “’l \\\ VAN
D R 3
:5 :/: .\\ / NN = nI/I;U.“_O._.i s {
202 ~ = MMy | -— yJ=5
£/ — N | ] Steady state
\507“““““““““““““ T S I S SR |
0 2.5 5 7.5 10 12.5 15 2 ; 3 4 5
t

FIG. 6. Populations of the double well for an initial imbalance FIG. 7. Double well with an initial imbalance of An(0) =

of An(0) = —0.8Ny, y;* = —y," = —0.2J (the negative rate y,” is —0.8No. y\¥ = y," = 0,711 = 0.5Ny, ii; = 0.2N,. (a) Populations of
equivalent to the gain dissipator y," D[&f][) for the SPDM), y, = the double well for y; = y, = 0.5J. (b) Current from site 2 to site 1,
v, =0.5J, 7 = 0.5Ny, i, = 0.2Ny. y1 =y, = y (see legend).
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FIG. 8. Density matrix elements along the main diagonal (a) and
the imaginary part of matrix elements along the main antidiagonal
(b), where the real part is strictly zero except for the central matrix
element oo = (7| + 71y )/2. Parameters are L =21, y/J =2, and
F/J = 0.5 (dashed lines) and F/J = 1 (solid lines).

antidiagonal are pure imaginary and, for the parameters of
Fig. 3(c), are exemplified in the lower panel in Fig. 8. We shall
characterize them by the quantity K = io_y y = —iom,—u
and the quantity G = —io;,_; = +io_;; (I # £M). The first
upper and lower antidiagonals have pure real elements with
the values 1, respectively. Notice that if we sum up these two
matrices the four matrix elements around the origin become
complex, oy 0=FI £iB,0p+1 = FI FiB.

Let us now obtain algebraic equations for the introduced
quantities. First, Egs. (10)—(13) in the main text should be split
into two pairs,

yC + JB = yiy, (B1)
yB—JC+JA =0, (B2)
and
yB—JAy+JD =0, (B3)
yD —JB = yiy. (B4)

Similar to the case F = 0 discussed in the main body of
this paper, these equations reflect the matching conditions at
the left and right contacts. Next we match (yet unknown)
solutions of the above equations at the scatterer. This gives
another three equations,

00,0 = A1 + Az, (B5)
JA, —JA, —4FI =0, (B6)
JG —2FB =0, (B7)

which contain the amplitude of the scattering potential F.
Finally, we satisfy the matching conditions for the upper-right
and lower-left corners of the density matrix, which correspond
to the decay of the superposition of the reflected and transmit-
ted waves. We get

yK —JI =0, (BS)

JG—JK —yIl =0. (B9)

The obtained full set of eight equations can be easily solved
analytically with the following main results: (i) The current
through the channel, which is determined by the quantity B,
is given by

. X o
L _p= mom (B10)
Jjo a+a lQF/J)? 2
where
J
a=Y 4+ (B11)
J oy

Thus, asymptotically the current decreases as (J/F)?. This
scaling with the on-site energy of the scattering site implies
how the atomic transport may be controlled by locally con-
trolling the energy levels, i.e., by additional electromagnetic
potentials in the experiment [14,20]. (ii) The population drop

at the scatterer is
Al — A, =8Ba~ ' (F/J)*. (B12)

Then, in the limit of large F, the population drop approaches
the population difference 71, — 1.
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