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Topological bosonic states on ribbons of a honeycomb lattice
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The topological properties of hardcore bosons on ribbons of honeycomb lattice are studied using quantum
Monte Carlo simulations. We map out a rich phase diagram with the superfluid and insulator phases at various
fillings. Particularly, it is revealed that the insulator state at half filling is a topological bosonic state, which is
characterized by a nontrivial Berry phase and a pair of end states. We provide an intuitive picture to understand
this topological bosonic insulator state by showing that it can be adiabatically mapped to a topological fermionic
model. It is also shown that the topological end states are robust against weak interactions beyond the hardcore
repulsion. Our results can be simulated by using bosonic cold atoms trapped in designed optical lattices.
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I. INTRODUCTION

The study of topological phases has been at the frontier
of current physics research [1–4]. Over the past decade,
much progress has been made in understanding and realizing
various kinds of topological phases in various systems, partic-
ularly for Bloch electrons in crystalline materials. Based on
commonly encountered antiunitary symmetries, the noninter-
acting fermions can be classified into ten symmetry classes,
and topologically nontrivial states can appear at different spa-
tial dimensions [5–7]. Further combined with lattice symme-
tries, much more symmetry-protected topological phases have
been proposed and are actively sought. However, the current
experimental study of fermion topological phases lags behind
the theoretical progress. The big challenges come from the
material side: (i) the naturally existing topological materials
are rare; (ii) topological band features are often complicated
by the presence of other trivial extraneous bands in the same
energy window; and (iii) the study is further hindered by the
lack of good control of the material properties, such as doping
level, surface condition, defects, etc.

While most studies are based on fermions, there are in-
creasing efforts to extend the topological properties to bosonic
systems. From the experimental perspective, techniques for
realizing precisely controllable bosonic models have been
well developed. For example, using ultracold atoms in optical
lattices, one can in principle simulate any bosonic lattice
models with arbitrary interactions. The optical/mechanical
metamaterials also offer versatile playground for realizing
various topological photonic/acoustic states. In addition, com-
pared with fermions, bosonic systems also have their unique
characters: e.g., bosons tend to condense, such that topolog-
ical bosonic states only exist in interacting systems [8,9];
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and their symmetry properties under time reversal or rotation
are distinct from fermions. These reasons suggest a wealth
of interesting physics to be explored in topological bosonic
systems. Indeed, recent theoretical works have established
rich topological phases for bosonic systems from studying the
cohomology classification and the phenomenological Chern-
Simons field theory [10,11]. Still it is highly desirable to
have simple and experimentally relevant topological bosonic
models, which can allow transparent physical pictures that can
be verified in experiment.

A natural idea to construct such models is to simply
load bosons in the hardcore limit to the known topological
lattice models for fermions. The allowed topological phases
are likely to persist at a finite interaction. In this way, a
topological Bose-Mott insulator in a one-dimensional (1D)
optical superlattice has been identified [12–15]. However this
approach often fails for higher dimensions, or even quasi-1D
systems (such as in the ladder geometry) [16,17]. The reason
is that, in strictly 1D open lattices, hardcore bosons behaves
exactly the same as fermions due to the absence of particle
exchange process; however, the commutation statistics of
bosons breaks the topological phase when the exchange is
possible for dimensions beyond strictly 1D. Nevertheless, the
exchange processes as well as interactions open opportunities
to realize other nontrivial quantum phases [18–23], which is
an interesting problem to explore.

As a prominent example of quasi-1D fermionic systems,
the topological properties of graphene nanoribbons (GNRs)
have been investigated by several works in the past [24,25].
A recent work by Cao et al. has shown that narrow GNRs
with specific widths and termination realize 1D topological
phases with protected end states [26]. Specifically, for arm-
chair GNRs, the spectrum is gapped for the width N �= 3n +
2 (n > 1). For such gapped GNRs (with a specific termina-
tion), topologically trivial and nontrivial phases appear in an
oscillatory manner with increasing N . Moreover, the topology

2469-9926/2018/98(4)/043617(6) 043617-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043617&domain=pdf&date_stamp=2018-10-15
https://doi.org/10.1103/PhysRevA.98.043617


WANG, ZHU, ZOU, YANG, AND GUO PHYSICAL REVIEW A 98, 043617 (2018)

1

2

N=3

(a)

1

2

N=3

(b)

2 4 6 8 10 12 14 16
N

0.0

0.1

0.2

0.3

0.4

0.5
(c)

=0
=1

1
2

3 4

5
6

y
x

FIG. 1. (a) and (b) Schematics of a N = 3 ribbon of honeycomb
lattice with different unit cells. Each unit cell (see the region with
red dashed boundary lines) contains six sites labeled from 1 to 6.
Under open boundary condition, (a) [(b)] has termination A (B).
Free fermions on geometry (a) form trivial insulator, while they have
nontrivial topological property on geometry (b). (c) The gap of free
fermions on the ribbon geometry as a function of the width N . The
Berry phase for (a) is also shown using filled (γ = 1) or empty
(γ = 0) circles.

of a GNR can be modified by dopants or external fields. Thus,
ribbons of honeycomb lattice provide an ideal model system
of 1D topological phases. Naturally, it is interesting to study
the physical properties of bosons in this geometry, which
is readily accessible in current cold-atom experiments [27].
Since such ribbons are quasi-1D systems allowing boson
exchange processes, the interplay between particle exchange,
interaction, and lattice geometry may generate interesting
topological phases.

Motivated by the recent progress mentioned above, in the
paper we study the topological properties of hardcore bosons
on ribbons of honeycomb lattice using quantum Monte Carlo
simulations. Through calculation of the average density and
superfluid density, we map out the phase diagram, which
contains superfluid and insulator phases at various fillings.
The nature of the insulators is analyzed. Interestingly, it is
found that the insulator at half filling is a topological bosonic
state, which is characterized by a nontrivial Berry phase and
a pair of end states. We show that the topological bosonic
insulator state is adiabatically connect to a limiting case that
can be well understood using a related fermionic model. We
also show that the topological bosonic end states are robust
against weak interactions beyond the hardcore repulsion.

II. MODEL AND APPROACH

We consider hardcore bosons loaded into armchair ribbons
of honeycomb lattice. Hardcore means that the bosons have
an infinitely large on-site repulsion, which forbids double
occupancy of a single site. This behavior can be realized in
ultracold atom experiment using Feshbach resonance [28].
The lattice geometry is depicted in Fig. 1. Here, the width N

of the ribbon counts the number of layers in the y direction, as
indicated in Fig. 1. The basic physics of this bosonic system
is described by the following extended Bose-Hubbard model

H = −t
∑
〈i,j〉

(b†i bj + H.c.) +
∑

i

Vini − μ
∑

i

ni, (1)

where bi (b†i ) is the hardcore bosonic annihilation (creation)
operator and ni = b

†
i bi is the number operator for bosons.

The occupying number of hardcore bosons is 0 or 1 on
each site. Hence, the hardcore bosons obey commutation
relation [bi, b

†
j ] = 0 for sites i �= j but anticommutation re-

lation {bi, b
†
i } = 1 for a single site i. This hardcore condition

makes the model a strongly interacting one. The first term in
Eq. (1) is the nearest-neighbor hopping term, and the hopping
amplitude t will be taken as the unit of energy (t = 1) in our
calculation. The second term in Eq. (1) represents a possible
on-site potential. In the following, we take Vi = V0 · (yi −
�N

2 � − 1), where yi is the y coordinate for the site i (see
Fig. 1) and V0 the strength of the potential. Such a potential
resembles the electrostatic potential for a transverse E field
in the case of GNRs, which is capable to drive a topological
phase transition for the fermionic case. Here, we shall also
investigate the possible phase transition driven by the potential
V . Finally, μ in the last term denotes the chemical potential,
which controls the number of bosons in the system.

The model in Eq. (1) has a U (1) symmetry, namely the
model is invariant under the transformation bi → eiθbi where
θ is a real-valued phase. In a superfluid phase, this symme-
try would be spontaneously broken. The model also has a
particle-hole symmetry at μ = 0 for odd N . For μ �= 0, the
average density ρμ at μ equals the hole density 1 − ρ−μ at
−μ, which makes the density versus μ curve centrosymmetric
about the point (0,0.5) in the (ρ,μ) plane. The system also
respects a mirror symmetry Mx : (x, y) → (−x, y), which
plays an important role in quantizing the Berry phase for
the system, as we discuss below. Moreover, we mention that
the model is equivalent to a spin−1/2 XY model through a
mapping S+

i = b
†
i and Sz

i = ni − 1
2 .

In the following, we employ the stochastic series expansion
(SSE) quantum Monte Carlo (QMC) method with directed
loop updates [29] to study the model in Eq.˜(1). The SSE
method expands the partition function in power series and the
trace is written as a sum of diagonal matrix elements. The
directed loop updates make the simulation very efficient. Our
simulations are on finite lattices with the total number of sites
Ns = 6L for L (the number of unit cells) up to 40. There
are no approximations causing systematic errors, and the
discrete configuration space can be sampled without floating
point operations. The temperature is set to be low enough to
obtain the ground-state properties. For such quasi-1D bosonic
systems, the notorious sign problem in the QMC approach
can be avoided [30]. In the following, we mainly focus on the
N = 3 case as shown in Fig. 1, and the results for other cases
with larger N are qualitatively similar.

III. PHASE DIAGRAM

The phase diagram can be first understood in the atomic
limit, when the hopping processes are turned off (by setting
t = 0). Then the occupancy of each site is determined by its
on-site potential energy Vi − μ. If Vi − μ < 0, a hardcore
boson would be added to the site. For the N = 3 case studied
here, a ρ = 1

3 insulator forms when 0>μ>−V0 and a ρ = 2
3

insulator forms when V0 > μ > 0.
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FIG. 2. The phase diagram in (μ, V0) plane, which contains
superfluid and insulators at various fillings.

When hopping is turned on, we find that naturally the
range of the chemical potential for the above atomic insulators
decreases and completely disappear at a critical value of t/V0

(which depends on the specific insulator state). The phase
diagram obtained from QMC simulations is shown in Fig. 2.
One observes that the ρ = 1

3 and ρ = 2
3 atomic insulators

persist at large V0. Besides, there also appear insulators at
the fillings ρ = 1

6 , 1
2 , 5

6 . These insulators are separated by
incommensurate superfluid regions.

The phase diagram in Fig. 2 is obtained by explicitly
calculating the average density ρ =

∑
i ni

Ns
and the superfluid

density ρs in the QMC simulation. Here, the superfluid density
is evaluated using the standard formula [31,32]

ρs = W 2

2βt
, (2)

where W is the winding number and β the inverse tem-
perature. An insulator is characterized by a plateaus in the
density ρ and by ρs = 0. As shown in Fig. 3, the average
density exhibits a series of plateaus at commensurate fillings,
on which the superfluid density vanishes. So these plateaus
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FIG. 3. (a) The average density and superfluid density as a
function of μ for V0 = 3. (b) The splitting of the ρ = 0.5 plateau at
different temperatures under open boundary condition, which tends
to be vertical in the limit β → ∞(T = 0).

correspond to the incompressible insulator phases, whose
gaps are given by the widths of the plateaus. Between the
insulators, the average density increases continuously with
the chemical potential. For small V0, the superfluid density
is finite implying the system is in a superfluid phase. For large
V0, the superfluid density with ρ < 1

6 and ρ > 5
6 is zero (see

Fig. 3 where V0 = 3). This can be understood by noticing that
the large V0 isolates the sites 3 and 4 in the unit cell, which
form a dimer. So for ρ < 1

6 , some of the dimers are occupied
and the system becomes a dimer insulator.

The ρ = 1
6 , 1

2 , 5
6 insulator states are interesting, because

they have no corresponding atomic limits. We now explore
their nature. We calculate the local densities with periodic
boundary condition using QMC. The local density varies
inside the unit cell (along y axis), but is uniform along the 1D
ribbon. For the ρ = 1

6 insulator, with V0 > 0, one hardcore
boson would mainly distribute on sites 3 and 4. The sites 3
and 4 can be thought as being largely isolated by the applied
potential V , and form a dimer. This approximation becomes
exact in the limit of V0 → ∞. Thus the ρ = 1

6 insulator is
reminiscent of the insulator comprising of isolated dimers.
With this scenery, the starting μ for the ρ = 1

6 plateau can
be estimated to be −V0 − t , which approaches the exact
value −t −

√
V 2

0 + 2t2 at large V0 (see the Appendix for the
derivation). The ρ = 5

6 insulator can be analyzed in a similar
way using the hole representation.

The ρ = 1
2 insulator is the most interesting. Using an

argument similar to that mentioned above, we see that this
state is adiabatically connected to a chain insulator containing
the sites 2, 3, 4, and 5 in the large-V0 limit. We shall look into
this phase in more detail in the next section.

IV. TOPOLOGICAL MOTT INSULATOR

It has been shown that armchair GNRs can be topologically
nontrivial, depending on the type of termination. We consider
two terminations A and B, as sketched in Fig. 1. For the
fermionic case, the applied electric field (which produces
the potential Vi) can drive topological phase transitions. In
the following, we investigate whether the analogous effect
happens for our bosonic system at half filling.

Let us first investigate termination A. The ρ = 1
2 insulator

that appears at large V0 is a bosonic Mott insulator. To check
whether there exist nontrivial end states, we recalculate the
ρ-μ curve under the open boundary condition. Figure 3(b)
shows that the plateau of the ρ = 1

2 insulating phase is altered:
the plateau splits into two pieces with a jump at a critical
chemical potential in the middle. One of the split plateaus has
ρ1 = 0.495 833, while the other has ρ2 = 0.504 167. Noticing
that Ns (ρ2 − ρ1) = 2, one sees that the jump corresponds to
the filling of two in-gap states, which can only be located
at the two ends of the system, since the bulk is insulating.
Moreover, our calculation shows that the jump tends to be
vertical in the limit of zero temperature. These results imply
that there appear two in-gap degenerate states for the open
ribbon.

We further verify that these in-gap states are located at
the two ends. The distributions of the harcore bosons under
open boundary condition for two representative points on the
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FIG. 4. The local density under open boundary condition: (a)
μ = −0.27 approximately in the middle of the lower plateau; (b)
μ = 0.27 approximately in the middle of the upper plateau. (c) The
difference of the local densities in (a) and (b). Here U0 = 3 and
β = 100.

split plateaus are calculated and plotted in Figs. 4(a) and 4(b).
One observes that the distribution of the bulk sites are nearly
unchanged between the lower and the higher plateaus. The
filling of the in-gap states happens only at the boundaries.
When none of the in-gap states are filled (the lower plateau),
there is 1

2 fractional boson less at each boundary compared
to the bulk sites. After both are filled (the higher plateau),
there is 1

2 fractional boson more. The difference in the local
density between the upper and lower plateaus is shown in
Fig. 4(c). This clearly demonstrates that the in-gap states are
located near the ends. Thus our results provide clear evidence
showing that the ρ = 1

2 insulator is a topological bosonic
Mott insulator. The above discussion is for termination A. In
comparison, we do not observe the splitting of plateaus and
end states for termination B, which indicates that it is a trivial
insulator.

Topological states are generally characterized by topolog-
ical invariants defined for the bulk. The ρ = 1

2 topological
Mott insulator here is characterized by a nontrivial Berry
phase (or 1D winding number) defined for the many-body
ground state with the twisted boundary phase [33–35]:

γ = i

∮
〈ψθ | d

dθ
|ψθ 〉dθ, (3)

where θ , varying from 0 to 2π, is the twisted boundary phase
connecting the two ends of the system, and ψθ is ground-state
wave function corresponding to a particular θ . We find that the
Berry phase takes a nontrivial value of π in the topological
Mott insulator state. Note that, for the current system, the
Berry phase is quantized in units of π due to the presence
of a mirror symmetry Mx . Thus, the insulator phase here is
a symmetry-protected topological phase. Here, the boundary
termination affects the obtained Berry phase, because the dif-
ferent termination corresponds to different choice of the unit
cell in the bulk (see Fig. 1). Our result shows that termination
A gives a nontrivial Berry phase whereas termination B gives
a trivial Berry phase, consistent with the conclusion regarding
the presence of end states.

As stated in the previous section, the topological Mott
insulator state at half filling is adiabatically connected to the
limiting case with V0 going to infinity. It is intuitive and

simple to understand the nontrivial topology in this limit.
When V0 → ∞, the occupied two rows with sites 2, 3, 4,
and 5 can be viewed as isolated and forming a 1D chain.
With Jordan-Wigner transformation b

†
i = c

†
i e

iπ
∑i−1

k=1 c
†
kck (c†i the

fermion creation operator), the effective Hamiltonian can be
mapped to a noninteracting fermionic one. For termination A,
the obtained fermionic model reads

H̃ = −t
∑

j

(c†j cj+1 + H.c.) − V0

∑
i=4k+2,4k+3

c
†
i ci , (4)

where cj and c
†
j are fermionic operators and k = 0, 1, 2, . . .

is an integer. Using a four-site unit cell, the Hamiltonian in the
momentum space can be expressed as

H̃(kx ) =

⎡
⎢⎣

0 −t 0 −te−ikx

−t −V0 −t 0
0 −t −V0 −t

−teikx 0 −t 0

⎤
⎥⎦. (5)

Then the energy spectrum can be obtained directly and the gap
at 3

4 filling (corresponding to ρ = 1
2 for the original lattice) is

� =
√

(U0 + 2t )2 + 4t2 −
√

(U0 − 2t )2 + 4t2. (6)

The phase at 3
4 filling is insulating for any U0 > 0. By calcu-

lating the Berry phase, we find that the insulator is topological
and a pair of degenerate in-gap states appear under the open
boundary condition, consistent with the results from QMC.

V. EFFECT OF NEAREST-NEIGHBOR INTERACTION

So far, we have considered the hardcore boson interaction,
which is of on-site type. In practice, there may also be
interactions between bosons at different sites. Whether these
interactions would affect the stability of the topological Mott
insulator phase is an interesting question to explore. To study
this, we include in our model Eq. (1) a nearest-neighbor
interaction term given by

Hnn = λ
∑
〈i,j〉

ninj , (7)

with λ the strength of the interaction.
We perform the QMC simulation with this interaction term

added. Figure 5(a) shows the average density as a function of
μ under the open boundary condition with λ = 1, 2, 3. When
the interaction is relatively weak (e.g., λ = 1), the pattern of
split plateaus remains and the jump tends to be vertical in
the T = 0 limit [see Fig. 5(b)]. This demonstrates that the
topological end states are robust against weak interactions.
Nevertheless, one observes that the width of the lower plateau
is shortened, implying that the gap size is reduced by the
interaction. Increasing the interaction strength to λ = 2, the
pattern of split plateaus disappears. A new plateau at ρ = 0.5
emerges and its width increases as the interaction is further
increased. This result shows that a large enough interaction
will completely destroy the nontrivial gap and a new insulator
favored by the interaction would then be developed.
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FIG. 5. The average density as a function of μ under open
boundary condition. (a) Various λ (increasing from left to right) at
fixed β = 100. (b) Different inverse temperatures at fixed λ = 1.

VI. DISCUSSION AND CONCLUSION

In this work, we propose a simple quasi-1D topological
bosonic model. Our model consists of hardcore bosons loaded
onto a ribbon of honeycomb lattice. The properties of this
model is studied using the quantum Monte Carlo approach.
The superfluid and insulator phases at various fillings are
identified and the phase diagram is mapped out. It is found
that the insulator at half filling is a bosonic topological Mott
insulator state, which is characterized by a nontrivial Berry
phase and a pair of topological end states. We show that the
bosonic topological Mott insulator is adiabatically connected
to a limiting case that can be well understood using a related
noninteracting fermionic model. It is also shown that the
topological end states are robust against weak interactions
beyond the hardcore repulsion.

Regarding the experimental study of our proposed model,
we note that the experimental setup with cold atoms in optical
lattice can be an ideal choice to realize the Bose-Hubbard
model. An optical lattice with the honeycomb geometry has
been demonstrated in experiment [36]. Moreover it is feasible

to confine cold atoms to a specific region and subject them to
an external potential like Vi in our model. Hence, the experi-
mental technique for realizing our model, Eq. (1), is available.
Furthermore, recently, the Berry phase for cold atoms in an
optical lattice was directly measured using a combination of
Bloch oscillations and Ramsey interferometry [37]. Thus, the
bosonic topological Mott insulator phase we discussed might
be directly probed in experiment.
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APPENDIX: THE BAND STRUCTURE
OF THE HONEYCOMB RIBBON

The starting μ for ρ �= 0 can be analytically determined
by the band bottom of the honeycomb ribbon. One hardcore
boson has exactly the same energy as one fermion due to
the absence of exchanging statistics. The Hamiltonian in the
momentum space is written as

H (kx ) =

⎡
⎢⎢⎢⎢⎢⎣

V0 −t 0 0 0 −t

−t 0 −t 0 −te−ikx 0
0 −t −V0 −t 0 0
0 0 −t −V0 −t 0
0 −teikx 0 −t 0 −t

−t 0 0 0 −t V0

⎤
⎥⎥⎥⎥⎥⎦.

(A1)

The energy spectrum contains six branches, which are
E1,2 = ±t , E3,4 = ±(t −

√
2t2 + V 2

0 ), and E5,6 = ±(t +√
2t2 + V 2

0 ) for kx = 0. The band bottom is located at kx = 0.
The value of the band bottom −(t +

√
2t2 + V 2

0 ) gives the
lower boundary of the ρ = 1

6 region in the phase diagram.
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