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Adiabatic entangling gate of Bose-Einstein condensates based on the minimum function

Sergi Ortiz,1,2,3,4 Yilun Song,2 June Wu,2,5 Valentin Ivannikov,1,2 and Tim Byrnes2,1,6,3,7,*

1State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University,
Shanghai 200062, China

2New York University Shanghai, 1555 Century Ave., Pudong, Shanghai 200122, China
3National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

4Polytechnic University of Catalonia, 31 Jordi Girona, 08034 Barcelona, Spain
5Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

6NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
7Department of Physics, New York University, New York, New York 10003, USA

(Received 7 January 2018; published 15 October 2018)

A scheme is presented to perform an entangling gate between two atomic ensembles or Bose-Einstein
condensates in a optical cavity with a common optical mode. The method involves using a generalized stimulated
Raman adiabatic passage (STIRAP) to adiabatically evolve the ground state. We show that dark states exist for
any atom number within the cavities and find that the operation produces an unusual type of evolution where the
minimum of the number of atoms between two level transitions to another state. This produces an unconventional
type of entangling Hamiltonian which creates a phase depending on the minimum operation. We analyze its
reliability under a variety of conditions ranging from the ideal decoherence-free case to that including photon
loss and spontaneous emission. Ways of combating decoherence are analyzed, and the amount of entanglement
that is generated is calculated.
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I. INTRODUCTION

Entanglement is one of the defining features of quantum
mechanics and is known to be an essential ingredient in
performing tasks beyond classical physics, such as quantum
algorithms, quantum metrology, and quantum communication
[1]. In the context of quantum metrology, multipartite entan-
glement is used to beat the standard quantum limit where the
limits of precision scale as ∼1/

√
N , toward the Heisenberg

limit which scales as ∼1/N , where N is the number of parti-
cles in the system [2]. The Heisenberg limit can be approached
using entangled states such as NOON states and squeezed
states, which reduce the noise fluctuations in the signal. In
this context the entanglement properties in an ensemble of
qubits has been studied for some time now with many ex-
perimental realizations of entangled multipartite states. For a
single ensemble or Bose-Einstein condensate (BEC), entan-
gled states have also been realized where squeezed states and
non-Gaussian states have been experimentally realized [3–7].

Multiensemble entanglement has been relatively less stud-
ied. Experimentally, entanglement between two ensembles
has been pioneered by Polzik and co-workers in the form
of a two-mode squeezed state [8,9]. This was used to re-
alize quantum teleportation between two ensembles [10,11].
Recently, entanglement between two spatial regions of
Bose-Einstein condensates was measured in a single Bose-
Einstein condensate [12–14]. To date, however, there is no
experimental demonstration of entanglement between two
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independent BECs. Theoretically, there have been many pro-
posals for entanglement generation between ensembles, such
as optical-cavity-mediated methods [15,16], directly interact-
ing the atoms using state-dependent forces [17], and Rydberg
excitations [18]. Many of these proposals generate a Sz

1S
z
2-

type interaction, where Sz
1,2 is the z component of the total

spin for two BECs. This is known to produce initially a
correlation between the Sz

1 and S
y

2 observables between the
ensembles and produce a “devil’s crevasse” entanglement
structure [17,19]. Such multiensemble entanglement could be
used for the purposes of quantum metrology [20] and quantum
information processing [21,22].

In this paper, we introduce a method of entangling two
BECs or ensembles which gives rise to an unconventional
effective interaction. This is performed using a geometric
phase technique, where a stimulated Raman adiabatic pas-
sage (STIRAP) is applied onto two ensembles mediated by
photons. The geometric or Berry phase [23] is acquired in
addition to the dynamic phase in an adiabatic system that
undergoes a closed path and has been extensively studied for
general purposes and adiabatic quantum computation [24].
The STIRAP method consists of an adiabatic and robust
transfer of particles between ground states without populating
the excited states [25,26]. This is advantageous in terms of
spontaneous emission, as this is one of the serious decoher-
ence channels for Bose-Einstein condensates in particular,
which is enhanced by a factor of N due to superradiance.

This paper is organized as follows: In Sec. II we describe
the general procedure to generate entanglement in our scheme.
As the type of entanglement that is generated has not been
analyzed before in the literature, we describe the nature of the

2469-9926/2018/98(4)/043616(12) 043616-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043616&domain=pdf&date_stamp=2018-10-15
https://doi.org/10.1103/PhysRevA.98.043616


ORTIZ, SONG, WU, IVANNIKOV, AND BYRNES PHYSICAL REVIEW A 98, 043616 (2018)

entanglement. In Sec. III we show the features of the phase
gate without decoherence using a STIRAP and geometric gate
scheme. In Sec. IV we test the robustness of the scheme by
direct numerical simulation. Finally, in Sec. VI we summarize
our findings.

II. OPTICAL CAVITY ENTANGLEMENT USING STIRAP

A. Experimental configuration

In this section we describe our scheme for generating
entanglement between two ensembles. We consider that the
ensembles are placed in an optical cavity and coupled with
optic fibers in a similar configuration to that discussed in
Ref. [15]. Each of the atoms are assumed to possess several
ground states that can be used to store quantum information,
labeled by ai, bi, ci , where the labels on the ensemble are i =
1, 2. The pairs (a1, c1) and (b2, c2) are the states that are used
as the “logical” states and have relatively long storage and
decoherence times. The remaining levels b1, a2, ei are used
for the purposes of the entangling operation and do not nec-
essarily have to have good storage or decoherence properties
as they are only populated for short durations of time. For
example, for 87Rb the logical states may be the magnetically
trapped hyperfine states a1 = |F = 1,mF = −1〉 and c1 =
|F = 2,mF = 1〉 [34–36] and the second ground state are
b1 = |F = 2,mF = 2〉 for the first ensemble. For the second
ensemble, we may use a2 = |F = 1,mF = −1〉, b2 = |F =
2,mF = 1〉, and c2 = |F = 2,mF = 0〉. An excited state ei

is available on each ensemble which allows for a Raman
transition between levels ai and bi . The cavity is coupled to
the transition bi ↔ ei and produces or absorbs a common
cavity photon mode p. Strong coupling of optical photons
to ensembles and BECs has been realized in a variety of
configurations, varying from cavities in magneto-optical traps
(MOTs) to atom chip systems [27–31]. The transition ai ↔ ei

is controllable via a polarized laser and is assumed to be
controllable in terms of the pulses that can be generated.

The basic idea of our scheme is then to perform a STI-
RAP sequence with the Raman transition between levels ai

and bi , in the presence of the coupled cavity system. While
the configuration has similarities to previous works such as
Ref. [15], we will see that this produces an unconventional
type of effective interaction Hamiltonian between the two
ensembles with rather different properties. The Hamiltonian
of the above scheme is

H = Hlas + Hcav + H�, (1)

Hlas = h̄
∑
i=1,2

�i (t )(a†
i ei + e

†
i ai ), (2)

Hcav = h̄
∑
i=1,2

Gi (b
†
i eip

† + pe
†
i bi ), (3)

H� = h̄�e(e†1e1 + e
†
2e2), (4)

where p is a common photonic mode that is shared between
the ensembles. A common photonic mode can be approxi-
mated if the coupling between the cavity photons and the
photon mode in the fiber is sufficiently strong as shown in
Ref. [15]. Alternatively, the two ensembles may be placed
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FIG. 1. (a) Energy levels and states involved in adiabatic gate for
entangling two spinor Bose-Einstein condensates (BECs). The BECs
are placed in an optical cavity, in the strong-coupling regime, allow-
ing for coherent transfer between the cavities. The cavity couplings
are G1, G2 between a cavity photon and optical transition between
the ground states bi ↔ ei . The classical laser field amplitudes �i

between levels ai ↔ ei are marked. (b), (c) Typical STIRAP pulse
sequence for the two-ensemble entanglement. (b) Amplitudes for
the pulses on the two ensembles �1 and �2. The pulse duration τ ,
displacement parameter δt , and the time between the two STIRAP
sequences �T are as marked. (c) The STIRAP pulse sequence in
terms of the parametrization G1,2 = G0 cos θ, �1 = �0 sin θ sin φ,
and �2 = e−iξ�0 sin θ cos φ. We take �0/G0 = 0.1 here.

within the same cavity. In this case, the BECs should be
positioned in spatial points where the cavity field is compa-
rable. The parameter �1,2 is the amplitude of the laser fields
inducing a transition between ai ↔ ei, G1,2 is the atom cavity
mode coupling, and �e is the detuning between the excited
and the ground states for both the cavity and the laser pulses.

A typical pulse sequence for the laser fields is shown in
Fig. 1(b). We assume a functional form of the pulses to take a
form

�1(t ) = A(t − δt ) + A(t − �T + δt ),

�2(t ) = e−iωt [A(t ) + A(t − �T )], (5)

where a single pulse of length τ and amplitude �0 takes a
form

A(t ) ≡
{
�0 sin2

(
πt
τ

)
0 � t � τ

0 otherwise
(6)

and ω is the frequency variation of the �2 pulse. As is typical
of STIRAP sequences, a “counterintuitive” sequence is used,
where first the laser with zero population is switched on. The
second laser pulse is then turned on corresponding to where
the atoms are populated. We point out that unlike a standard
STIRAP pulse, the lasers are applied on different ensembles.
Due to the presence of the cavity, the excitations (defined as
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either an atom in ei or a photon) couple to quantum states that
link these two states.

B. Dark states: Qubit case

We now show that dark states are present in the Hamilto-
nian as given in (1), which will justify the STIRAP entangling
procedure. We first derive explicit expressions for the dark
states for qubits N1 = N2 = 1, which will help to introduce
the more general ensemble case in the next section. The
scheme in this case reduces to that introduced in Ref. [32].
We assume that initially the state is prepared on the long-lived
logical states c1, a1, c2, b2. For concreteness, let us say the
initial state is

|ψ (t = 0)〉 = 1
2 (|c1〉 + |a1〉)(|c2〉 + |b2〉)

= 1
2 (|c1c2〉 + |c1b2〉 + |a1c2〉 + |a1b2〉), (7)

which is an unentangled state. The aim of the procedure
will be to generate entanglement between the qubits. Each of
the terms in (7) follow a different time evolution under the
Hamiltonian (1). We now discuss the effect on each of the
terms.

For the term |c1c2〉, the Hamiltonian performs no operation
on this state as it is completely decoupled from both the laser
transitions and the cavity coupling. Likewise, the state |c1b2〉
undergoes no evolution as in order to excite the state b2 to
e2 a cavity photon is required, and none are present. Writ-
ing the projection operators Pc1c2 = |c1c2〉〈c1c2| and Pc1b2 =
|c1b2〉〈c1b2|, the projections of the Hamiltonian are

Hc1c2 = Pc1c2HPc1c2 = 0, (8)

Hc1b2 = Pc1b2HPc1b2 = 0, (9)

and hence there is no time evolution of this particular state.
For the term |a1c2〉, the laser on atom 1 can create an

excitation to state e1, which can in turn transition to b1 with
the emission of a cavity photon. On atom 2, there is no
effect as the state of the atom is in the decoupled state c2.
Thus we may write the Hamiltonian in the space of the states
{|a10〉, |e10〉, |b11〉} as

Ha1c2 = Pa1c2HPa1c2 = h̄

⎛
⎝ 0 �1 0

�1 �e G1

0 G1 0

⎞
⎠, (10)

where second index labels the photon Fock states

|l〉 = 1√
l!

(p†)l|0〉 (11)

and Pa1c2 is defined as

Pa1c2 = |a10〉〈a10| + |e10〉〈e10| + |b11〉〈b11|. (12)

This Hamiltonian has an eigenstate with zero energy, i.e., a
dark state, of the form

|D1〉 = 1√
N1

(G1|a10〉 − �1|b11〉), (13)

where N1 is a suitable normalization constant. Such a state
which does not involve any excited states can be used in a
STIRAP procedure. Initially when the laser is off, �1 = 0 and

the ground state is simply |a10〉. When the laser is turned on,
the state adiabatically follows (13) until the laser is turned off
again, where it returns to |a10〉.

For the term |a1b2〉, the Hamiltonian in this case may be
written as

Ha1b2 = Pa1b2HPa1b2 = h̄

⎛
⎜⎜⎜⎝

0 �1 0 0 0
�1 �e G1 0 0
0 G1 0 G2 0
0 0 G2 �e �2

0 0 0 �2 0

⎞
⎟⎟⎟⎠,

(14)

where Pa1b2 is defined as

Pa1b2 = |a1b20〉〈a1b20| + |e1b20〉〈e1b20| + |b1b21〉〈b1b21|
+ |b1e20〉〈b1e20| + |b1a20〉〈b1a20|. (15)

This has a dark state,

|D2〉= 1√
N2

(G1�2|a1b20〉− �1�2|b1b21〉+ G2�1|b1a20〉),
(16)

where N2 is a suitable normalization constant. At the begin-
ning of the STIRAP evolution, only �2 is turned on and hence
the dark state is |D2〉 = |a1b20〉. The STIRAP procedure then
adiabatically evolves this state such that finally �1 is turned
on, and �2 = 0, which corresponds to |D2〉 = |b1a20〉. Thus
in this case there is a transition which swaps the ground states
ai → bi and bi → ai .

Now that we have derived the effect of the first STIRAP
pair, let us consider the effect of the second STIRAP pair.
Clearly as this is the same operation but time reversed, this
will simply evolve the states back to their original config-
uration. We may thus summarize the effect of the STIRAP
sequence (dropping the photon numbers l, which are zero
everywhere):

STIRAP 1 STIRAP 2

|c1c2〉 −→ |c1c2〉 −→ |c1c2〉
|c1b2〉 −→ |c1b2〉 −→ |c1b2〉
|a1c2〉 −→ |a1c2〉 −→ eiγ1 |a1c2〉
|a1b2〉 −→ |b1a2〉 −→ eiγ2 |a1b2〉, (17)

where we have added phases γ1,2 to the evolutions of the
|a1c2〉, |a1b2〉 states as there is a Berry phase due to the
adiabatic evolution. These will be derived in Sec. II D.

C. Dark states: Ensemble case

We now show an explicit form of the dark states for the
ensemble case. We assume firstly that the number of atoms in
each ensemble is fixed, and no particle loss occurs throughout
the process. This implies that

Ni = c
†
i ci + a

†
i ai + b

†
i bi + e

†
i ei , (18)

where Ni for i = 1, 2 are constants. We observe from Fig. 1(a)
that the levels ci are completely decoupled from the transi-
tions. Hence throughout the STIRAP operation the numbers
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FIG. 2. Effect of STIRAP pulses for Fock states. The labeling convention for Fock states as given in (20) is given. Labels in brackets
refer to the associated bosonic operators, while remaining labels give the number occupying each state in the Fock basis. (a) The effect of
the STIRAP pulses for n1 > n2. This shows the particular case of N1 = 4, N2 = 5, n1 = 3, n2 = 2. The initial state has k1 = k2 = 0 which
transitions to k1 = k2 = min(n1, n2) = 2. (b) The effect of the STIRAP pulses for n1 < n2. This shows the particular case of N1 = 3, N2 =
5, n1 = 1, n2 = 3. The initial state has k1 = k2 = 0 which transitions to k1 = k2 = min(n1, n2) = 1. In both cases the excited states m1,2 are
unoccupied during the STIRAP sequence. The cavity photon number l increases during the procedure but is zero at the beginning and the end.

on the ci and remaining levels is conserved as follows:

ni = a
†
i ai + b

†
i bi + e

†
i ei ,

Ni − ni = c
†
i ci . (19)

We may thus consider each subparticle number space ni

separately. This is the same procedure as the previous section
where we considered the four terms in (7) separately.

Let us now establish some notation for the basis states to
describe the quantum state of the system. Define the Fock
states of the system as

|k1,m1, k2,m2, l〉n1n2

= (a†
1)n1−k1−m1 (b†1)k1 (a†

2)k2 (b†2)n2−k2−m2

√
(n1 − k1 − m1)!k1!k2!(n2 − k2 − m2)!

× (e†1)m1 (e†2)m2 (p†)l (c†1)N1−n1 (c†2)N2−n2

√
m1!m2!l!(N1 − n1)!(N2 − n2)!

|0〉, (20)

where the number of particles in each state is labeled accord-
ing to Fig. 2. We label the ni variables as subscripts, as they
are effectively conserved numbers throughout the STIRAP
evolution, and hence the dynamics only involve the change
of the remaining labels. The initial state of the system before
the STIRAP sequence is described as some superposition of
states where only the states a1, c1, b2, c2 are occupied, with
zero photons in the cavity, implying ki = mi = l = 0. It then
follows that the initial-state wave function is written

|ψ (0)〉 =
N1∑

n1=0

N2∑
n2=0

ψn1n2 |0, 0, 0, 0, 0〉n1n2 . (21)

From such an initial state, during the STIRAP operation
the photon number l becomes determined entirely by the ki

parameters. In the first ensemble, one cavity photon is emitted
for each atom that is present in level b1, from Hcav in (1).
Similarly, every atom that leaves level b2 reduces the cavity
photon by 1. This means that given a starting state with zero
cavity photons, the number is fixed to

l = k1 − k2 − m2. (22)

We may now construct the dark state in terms of these basis
states. A dark state by definition only involves the ground
states of the atoms, which are the levels ai, bi, ci . Let us again
find the dark state for a particular subparticle number sector
n1, n2 [i.e., each term in (21)]. Assuming that initially there
are no photons, the dark state should involve the states

|D〉n1n2 =
n1∑

k1=0

k1∑
k2=0

D
(n1n2 )
k1k2

|k1, 0, k2, 0, k1 − k2〉n1n2 , (23)

where D
(n1n2 )
k1k2

are coefficients to be determined. Here we
note that we require k1 � k2 as the photon number cannot
be negative. As a dark state should be an eigenstate of a
Hamiltonian with zero eigenvalue, applying (1) to the above
should result in all terms canceling exactly. This allows us to
obtain the wave function analytically. Let us first apply the
Hamiltonian to a Fock state involved in the dark state (23):

H |k1, 0, k2, 0, k1 − k2〉n1n2

= G1

√
(k1 − k2)k1|k1 − 1, 1, k2, 0, k1 − k2 − 1〉n1n2

+G2

√
(k1 − k2)(n2 − k2)|k1, 0, k2, 1, k1 − k2 − 1〉n1n2

+�1

√
n1 − k1|k1, 1, k2, 0, k1 − k2〉n1n2

+�2

√
k2|k1, 0, k2 − 1, 1, k1 − k2〉n1n2 . (24)
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Using this we may find the effect of applying H to (23)
directly, which gives

H |D〉n1n2 =
n1∑

k1=0

k1∑
k2=0

[(
D

(n1n2 )
k1+1k2

G1

√
(k1 − k2 + 1)(k1 + 1)

+D
(n1n2 )
k1k2

�1

√
n1 − k1

)|k1, 1, k2, 0, k1 − k2〉n1n2

+ (
D

(n1n2 )
k1k2−1G2

√
(k1 − k2 + 1)(n2 − k2 + 1)

+D
(n1n2 )
k1k2

�2

√
k2

)|k1, 0, k2 − 1, 1, k1 − k2〉n1n2

]
,

(25)

where we have shifted the indices by 1 for the terms propor-
tional to Gi . Setting the coefficients for the states to zero gives
us the conditions required for a dark state:

D
(n1n2 )
k1+1k2

D
(n1n2 )
k1k2

= − �1
√

n1 − k1

G1
√

(k1 − k2 + 1)(k1 + 1)

D
(n1n2 )
k1k2+1

D
(n1n2 )
k1k2

= −G2
√

(k1 − k2)(n2 − k2)

�2
√

k2 + 1
. (26)

Using these relations it is possible to find a closed expression
for the coefficients of the dark states, which is given by

D
(n1n2 )
k1k2

= (−1)k1+k2

√
N

(
�1

G1

)k1
(

G2

�2

)k2

√ (
n1

k1

)(
n2

k2

)
(k1 − k2)!

, (27)

where N is a suitable normalization constant and only terms
with k1 � k2 and 0 � ki � ni are defined.

Let us now examine the limiting behavior of this dark state.
Initially �2 is turned on, and �1 = 0. Due to the �

k1
1 term, the

only nonzero terms are those with k1 = 0. Furthermore, since
we require k1 � k2, this also sets k2 = 0. Thus the dark state
initially for �1/�2 → 0 is

|D〉n1n2 = |0, 0, 0, 0, 0〉n1n2 �1/�2 → 0. (28)

Next consider the reverse limit where �2 	 �1. Furthermore,
let us work in a regime such that �1,�2 	 G1,G2. First let
us examine the case when n1 > n2. In this case the largest

coefficient in (27) is obtained by making the ( G2
�2

)
k2 term large,

which is achieved by making the k2 coefficient as large as
possible, which corresponds to k2 = n2. Since k1 � k2, the

valid range of k1 is n2 � k1 � n1. Due to the ( �1
G1

)
k1 term,

the largest coefficient favors small k1; hence in this limit the

state approaches k1 = k2 = n2. For n2 > n1, due to the ( G2
�2

)
k2

term again the largest coefficient is obtained by making k2

large. However, since k1 � k2 and k1 can only be n1 at most,

the largest term is k2 = n1. To maximize the ( �1
G1

)
k1 term,

again small k1 is needed, so in this case the state approaches
k1 = k2 = n1. In summary, after the STIRAP evolution the
minimum of the total subparticle number evolves to levels b1

and a2 (see Fig. 2):

|D〉n1n2 = |min(n1, n2), 0, min(n1, n2), 0, 0〉n1n2

�2/�1 → 0. (29)

Here we have not kept track of the phases which evolve on
each state. This will be examined in the next section.

D. Berry phases due to STIRAP evolution

We have shown in the previous sections that the action of
the STIRAP is to move the minimum of the number of atoms
that populates levels a1 and b2 to levels b1 and a2, respectively.
This can be the basis of an entangling gate based on geometric
phases that are produced by the adiabatic process. In this
section we derive the phases that are produced by this process
and derive an effective entangling Hamiltonian.

Let us first examine the case of qubits to understand the
basic mechanism of the phases that are produced. Consider
again the four terms in (7) which evolve separately through-
out the STIRAP pulse. For the states |c1c2〉 and |c1b2〉, the
Hamiltonian (1) has no effect on the states, and hence there is
no phase that is picked up during the evolution. For the state
|a1c2〉, we have established that the dark state is

|D1〉 = cos θ |a10〉 + sin θ |b11〉, (30)

where we have parameterized G1 = cos θ and �1 = sin θ and
assumed that there is no phase difference between them. In
this case the Berry phase is

γ1 = i

∫ θf

θi

dθ〈D1| ∂

∂θ
|D1〉 = 0 (31)

since the integrand is zero.
Turning now to the remaining term |a1b2〉, we may write

the dark state in this case as

|D2〉 = 2√
sin2 2θ + sin4 θ sin2 2φ

× [cos θ sin θ cos φ|a1b2〉 − sin2 θ sin φ cos φ|b1b2〉
+ eiξ cos θ sin θ sin φ|b1a2〉], (32)

where we have parameterized

G1,2 = G0 cos θ, �1 = �0 sin θ sin φ,

�2 = e−iξ�0 sin θ cos φ. (33)

We work in the regime where G0 
 �0; hence with these
parameters during the STIRAP pulse θ 	 1. During the first
STIRAP pulse initially �2/�1 = 0, which then changes to
�1/�2 = 0, and finally reverts back to �2/�1 = 0; hence φ

changes from 0 → π/2 → 0 [see Fig. 2(d)]. The Berry phase
for this state is

γ2 = i

∫ θf

θi

dθ〈D2| ∂

∂θ
|D2〉 + i

∫ φf

φi

dφ〈D2| ∂

∂φ
|D2〉

+ i

∫ ξf

ξi

dξ 〈D2| ∂

∂ξ
|D2〉. (34)

Evaluating the integrand for the first two terms in (34) give
zero and the third term gives

γ2 = −
∫ ξf

ξi

dξ
sin2 φ sin2 2θ

sin2 2θ + sin4 θ sin2 2φ
. (35)

As θ, φ, ξ are all time dependent, they are all implicitly
dependent on each other. From (5) the phase on �2 takes a
form

ξ = ωt. (36)
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We then obtain

γ2 ≈ −ω

∫ tf

ti

dt sin2 φ(t ), (37)

where we have used the fact that θ 	 1. Let us further assume
that the time between the pulses in (5) are much longer than
that of the pulse durations �T 
 τ . In this case, the dominant
part of the integral in (37) is during the two STIRAP pulses
and we may approximate

γ2 ≈ −ω(�T + τ ), (38)

where we have taken the time duration between the STI-
RAP to be the point where φ(t ) = π/4. Equation (38) has
the simple interpretation that the state picks up a phase γ2

according to how long level a2 is occupied. This gives rise
to an entangling gate for the qubit case as shown in (17), as
the only phase that is picked up is on the state a1b2.

For the general ensemble case, we obtain similar results.
Using the same parametrization as (33), substituting into (27)
gives

D
(n1n2 )
k1k2

= (−1)k1+k2

√
N

√ (
n1

k1

)(
n2

k2

)
(k1 − k2)!

× eiξk2 tank1−k2 θ sink1 φ cos−k2 φ. (39)

In the regime of G0 
 �0, we have θ 	 1 and we can say
that the largest terms come from k1 = k2,

|D〉 ≈ 1√
N

min(n1,n2 )∑
k=0

eiξk tank φ

√(
n1

k1

)(
n2

k2

)
, (40)

where the upper limit on the sum comes from similar argu-
ments as those at the end of Sec. II C. Evaluating the Berry
phase (34) and using this expression for the dark state we
obtain

γ (n1, n2) = − ω

N

∫ tf

ti

dt

min(n1,n2 )∑
k=0

k tan2k φ

(
n1

k1

)(
n2

k2

)
,

(41)

where the normalization in this case is N =∑min(n1,n2 )
k=0 tan2k φ(n1

k1
)(n2

k2
). Interpreting the tan2k φ(n1

k1
)(n2

k2
)/N

as a probability distribution, we see that this is strongly peaked
at k = 0 for φ = 0 and the maximal value k = min(n1, n2)
when φ = π/2. This therefore gives the same basic effect as
for the qubit case, where the Berry phase is picked up between
the two STIRAP pulses. We may therefore approximate

γ (n1, n2) = −ω min(n1, n2)(�T + τ ). (42)

We thus see that a phase is picked up on states depending upon
the minimum of the subparticle sector in which the state is.
For the special case of qubits, n1, n2 = 0, 1; hence we see that
the only case that a phase is picked up is when n1 = n2 = 1.
This corresponds to the state |a1b2〉 and agrees with (31) and
(38). We summarize the general phase transformation of the
two STIRAP pulses according to

|0, 0, 0, 0, 0〉n1,n2 → | min(n1, n2), 0, min(n1, n2), 0, 0〉n1,n2

→ eiγ (n1,n2 )|0, 0, 0, 0, 0〉n1,n2 . (43)

Taking the whole operation together, one may write an effec-
tive Hamiltonian for the process

Heff/h̄ = ω min(n1, n2), (44)

which is evolved for a time �T + τ .

III. ENTANGLEMENT PROPERTIES
OF THE MINIMUM GATE

We now discuss some of the basic properties of the entan-
gled state that is produced by the effective Hamiltonian de-
rived in the previous section. The Hamiltonian (44) produced
by the adiabatic procedure produces a phase depending on the
minimum of the number of bosons occupying levels a1 and b2.
Let us consider initially preparing the state in an Sx eigenstate
with respect to the logical states

|ψ (t = 0)〉 =
∣∣∣∣ 1√

2
,

1√
2

〉〉
1

∣∣∣∣ 1√
2
,

1√
2

〉〉
2

, (45)

where the spin coherent states are defined as

|α, β〉〉1 = 1√
N1!

(αa
†
1 + βc

†
1)N1 |0〉 (46)

= 1√
N1!

N1∑
n1=0

√(
N1

n1

)
αn1βN1−n1 |n1〉 (47)

for the first ensemble and

|α, β〉〉2 = 1√
N2!

(αb
†
2 + βc

†
2)N2 |0〉 (48)

= 1√
N2!

N2∑
n2=0

√(
N2

n2

)
αn2βN2−n2 |n2〉 (49)

for the second ensemble. Here we defined the Fock states

|n1〉 = 1√
n1!(N1 − n1)!

(a†
1)n1 (c†1)N1−n1 |0〉

|n2〉 = 1√
n2!(N2 − n2)!

(b†1)n2 (c†2)N2−n2 |0〉. (50)

According to the discussion of the previous section, after
the two STIRAP pulses, the state evolves to

|ψ (t )〉 = 1√
2N1+N2

[
N2∑

n2=0

N1∑
n1=n2

√(
N1

n1

)(
N2

n2

)
ein2t |n1n2〉

(51)

+
N1∑

n1=0

N2∑
n2=n1+1

√(
N1

n1

)(
N2

n1

)
ein1t |n1n2〉

]
, (52)

where the phase depending on min(n1, n2) was used.
First let us verify that an entangled state is produced by

the gate. For a pure bipartite ensemble system as we consider
here, the von Neumann entropy

E = −ρ1 log2 ρ1 = −
∑

j

λj log2 λj (53)
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FIG. 3. Entanglement produced by the minimum gate as a func-
tion of entangling time. Subfigures show (a) the total amount of
entanglement and (b) the normalized entanglement relative to the
maximally entangled state Emax = log2(N + 1). We assume particle
numbers as marked and N1 = N2 = N .

quantifies the entanglement, where ρ1 is the density matrix
with a partial trace taken over ensemble 2,

ρ1 = Tr2|ψ (t )〉〈ψ (t )| =
N2∑

n2=0

〈n2|(|ψ (t )〉〈ψ (t )|)|n2〉, (54)

and λj are the eigenvalues of ρ1. In Fig. 3(a) we show the
entanglement generated by the minimum gate. We see that
entanglement is generated between the ensembles, with the
maximum value occurring at t = π , with a periodicity of
t = 2π . The amount of entanglement increases with parti-
cle number, which is expected as the dimensionality of the
systems increases with particle number, allowing for a larger
capacity of entanglement. For qubits N1 = N2 = 1, a Bell
state is produced at t = π , which is a maximally entangled
state. For larger ensembles, the gate does not produce a maxi-
mally entangled state [Fig. 3(b)]. One example of a maximally
entangled state is

|ψmax〉 = 1√
N + 1

N∑
n=0

|nn〉, (55)

which has an entanglement equal to

Emax = log2(N + 1), (56)

where we have assumed that N1 = N2 = N . Other maximally
entangled states can be produced by local operations on (55).
The minimum gate cannot produce such maximally entangled
states but still produces significant amounts of entanglement
between the ensembles. The type of entanglement is a non-
local variety as opposed to entanglement between particles
within the same ensemble, as has been observed to date
in BECs [7,20]. However, unlike Sz

1S
z
2 interactions which

produce a complex “devil’s crevasse” structure in the entan-
glement [19], this interaction produces a smooth increase and
decrease in the entanglement.

We may also analyze the type of state that is produced via
the Q functions, which plots a quasiprobability distribution
according to the overlap with spin coherent states. Due to
the two ensembles involved, in general the Q function in-
volves four real variables (θ1, φ2, θ2, φ2) corresponding to the
parametrization

α1 = cos
θ1

2

β1 = sin
θ1

2
eiφ1

FIG. 4. Conditional Q functions as defined in (59). The mini-
mum gate is evolved for parameters (a) t = π/2, n2 = 0; (b) t =
π/2, n2 = N ; (c) t = π/2, n2 = N/2; and (d) t = π, n2 = N/2.
Particle numbers N1 = N2 = 20 are used for all plots.

α2 = cos
θ2

2

β2 = sin
θ2

2
eiφ2 , (57)

and overlaps are taken with the spin coherent states (46). For
the sake of visualization, we therefore plot the states where
the projection is taken on various Sz

2 eigenstates:

Pn2 = |n2〉〈n2|. (58)

We thus define the conditional Q function as

Qn2 (θ1, φ1) = 〈〈α1, β1|Pn2 |ψ (t )〉〈ψ (t )|Pn2 |α1, β1〉〉, (59)

where the parametrization (57) is implicit. We may also define
the marginal Q function where the partial trace is taken over
one of the ensembles:

Q1(θ1, φ1) = 〈〈α1, β1|ρ1|α1, β1〉〉. (60)

Figure 4 shows the conditional Q function for various
choices of n2, the projection parameter. We can interpret each
of the graphs as being the particular type of state that a given
|n2〉 state is entangled with. For a choice n2 = 0, the state
on ensemble 1 is unchanged from the initial state. It is a Sx

1
eigenstate centered around θ1 = π/2, φ1 = 0. On the other
hand, for n2 = N2, the state is rotated around the equator of
the Bloch sphere by an angle equal to t , the interaction time.
At intermediate n2, there is a combination of the two effects,
where the Gaussian is “sliced” into two parts, determined by
the n2 chosen. The upper half of the Gaussian rotates by an
angle t , whereas the lower half is left unrotated.

The marginal Q functions give distributions which give a
probabilistic sum of the conditional Q functions, weighted by
the probabilities (Fig. 5). The typical Q distribution appears
located in two locations. The upper half of the Gaussian
rotates on average an angle t , while the lower half remains
on average in the same position. The distributions have a non-
Gaussian form for entangling times that rotate the distribu-
tions to a significant extent, which occur for times t � 1/

√
N .

We may thus say that the minimum gate produces entangled
states with highly non-Gaussian characteristics.
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FIG. 5. Marginal Q functions as defined in (60). The minimum
gate is evolved for parameters (a) t = 0, (b) t = 1/

√
N , (c) t = π/2,

(d) t = 3π/4, (e) t = π , and (f) t = 3π/2. Particle numbers N1 =
N2 = 20 are used for all plots.

IV. NUMERICAL EVOLUTION OF STIRAP GATES

In order to demonstrate the theory of the previous sec-
tions, we numerically time evolve the Hamiltonians for small
system sizes. In a real experimental situation decoherence
will be inevitably present. In our scheme the most important
decoherence channels to consider are spontaneous emission
of the atoms from the excited state ei to the ground states,
and photon loss. However, taking this into account greatly
increases the numerical overhead of the simulation, as it
becomes necessary to simulate the evolution of a density
matrix instead of a wave function. For this reason we simulate
both the case with and without decoherence, first to analyze
the adiabadicity of the STIRAP gates, and then to see the
robustness of the gates under decoherence.

For the case not involving decoherence, we may simply
evolve the Schrodinger equation as the state is always pure.
The coherent evolution of our state under STIRAP is de-
scribed by

dψn

dt
= − i

h̄

∑
n′

Hnn′ψn′ , (61)

where we define

|n〉 = |k1,m1, k2,m2, l〉n1n2

ψn = 〈n|ψ〉
Hnn′ = 〈n|H |n′〉. (62)

To numerically solve (61) we diagonalize the matrix Hnn′ and
obtain the state at time t according to

ψn =
∑

n′
e−iεn′ t/h̄〈n|εn′ 〉〈εn′ |ψ (0)〉, (63)

where |εn〉 is the eigenstate with eigenvalue εn and the initial
state |ψ (0)〉 is given by (21).

To include the effects of spontaneous emission and photon
loss, we must evolve the master equation with the correspond-
ing Lindblad terms, written as

dρ

dt
= − i

h̄
[H, ρ] + �s

2

∑
i=1,2

(D[F−
a,i]ρ

+D[F−
b,i]ρ) + �γ

2
D[c]ρ, (64)

where the basis states of the density matrix ρ are taken to be
Fock states (20) and the Hamiltonian H is given by Eq. (1).
In the master equation, the first term describes the coherent
evolution of the system and the second term describes spon-
taneous emission, where we assume that the excited state |ei〉
decays to both |ai〉, |bi〉 with the same rate for simplicity. The
last term describes photon loss through the mirrors at a rate
�γ . The Lindblad superoperator is

D[O]ρ ≡ 2OρO† − O†Oρ − ρOO† (65)

for an arbitrary operator O and we have defined

F−
a,i ≡ a

†
i ei

F−
b,i ≡ b

†
i ei . (66)

To solve (64) we use a numerical differential equation solver
in MATHEMATICA with the initial state

ρ(t = 0) = |ψ (t = 0)〉〈ψ (t = 0)| (67)

where the state is given in (45). We note that it has recently
been found that the dephasing for the ac Stark shift using
a non-Markovian calculation has been found to be greatly
suppressed [33]. Thus although we make a Markovian as-
sumption here, in practice the amount of decoherence could
be less than what is estimated in our simulations.

Due to the number of levels involved, the dimension of
the Hilbert space quickly increases with boson numbers N1,2.
To make the problem more tractable, we tried to use several
approximations to reduce the dimensionality. As our approach
is to use an adiabatic transition to evolve the state along
the ground state, we would like to effectively capture the
dark states of the system. From (23), the dark state should
only involve Fock states taking the form |k1, 0, k2, 0, k1 −
k2〉, which requires k1 � k2 and has zero population of the
excited and photon states. We may thus take these and their
adjacent states to reduce the computational overhead. For
example, the excited states can be limited to states l, m1,2 ∈
[0,mcut] instead of the full range, where we take mcut = 1
in our simulations. We check that the truncation procedure
has not resulted in any change in the results by increasing
the cutoff where the states are truncated and checking the
fidelity between the two results. The truncation procedure is
very effective in reducing the Hilbert space size and enables a
several orders of magnitude reduction.

V. RESULTS OF NUMERICAL TIME EVOLUTION

In this section we show our numerical results for our
entangling procedure between the atomic ensembles. We first
verify that it is possible to perform the STIRAP process
adiabatically by analyzing the fidelity between the initial and
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2| |2

 =103 =500

 

| |2

FIG. 6. Performance of the STIRAP sequence with no sponta-
neous emission and no cavity loss. (a), (b) Fidelity between the initial
state and final state F = |〈0, 0, 0, 0, 0|ψ (t = tf )〉|2. Dependence on
the (a) number of atoms n = n1 = n2 and (b) the amplitude of
the STIRAP pulses �0τ are shown. (c), (d) Distribution of Fock
states |ψn|2 as given in (62) for n1 = n2 = 10. Solid lines show
the various Fock states and dotted lines show the position of the
pulses (amplitude is arbitrary). (c) Nonadiabatic case �0τ = 200; (d)
adiabatic case �0τ = 103. Common parameters used in the plots are
δt/τ = 0.6, �T/τ = 3, G1τ = G2τ = �0τ, �e = 0.

target states without the presence of spontaneous emission and
cavity loss. We then examine the problem where both deco-
herence effects—spontaneous emission and photon loss—are
included.

A. Fidelity of adiabatic evolution

As discussed in Sec. II and Fig. 2, after the first STIRAP
pair the minimum of the number of atoms between levels a1

and b2 is transferred to each of the levels b1 and a2. The
second STIRAP pair then reverses the evolution such that
the initial state is again recovered. To verify that this process
is being performed adiabatically, we calculate the fidelity
between the numerically evolved state and the theoretically
predicted state, given by

F = (Tr
√√

ρ(t = tf )ρ(t = 0)
√

ρ(t = tf ))
2, (68)

where tf is the time after the STIRAP pulses are complete.
Since the Hamiltonian is block diagonal in terms of the total
particle numbers in levels ai, bi, ei , we evolve just a particular
subsector with particle number n1, n2. The initial state is then
chosen to be the Fock state

ρ(t = 0) = |0, 0, 0, 0, 0〉n1n2〈0, 0, 0, 0, 0|n1n2 . (69)

Figure 6 shows typical results of the numerical evolution.
As we see from the simulations, generally high fidelities close
to 1 are possible in most of the parameter range with suitable
parameters. Figure 6(a) shows the scaling of the fidelity with
respect to the particle number n = n1 = n2. On first glance,
the scaling with n appears to be rather poor, with the fidelity
generally dropping exponentially as the boson number is
increased. It should, however, be pointed out that for a larger
system it is easier for the system to lose fidelity due to the

larger number of states that are available. This is a natural
consequence of using a larger system and has been seen
to occur in similar situations [34,35]. The larger number of
states also allows for potentially more types of states to be
entangled and so does not necessarily signal that the scheme
is intractable. As can be seen in Fig. 6(c), in the nonadiabatic
case there is a population of states that do not get returned to
the original states. Such states can potentially still contribute
to entanglement between the systems.

The poor scaling can be countered by increasing the am-
plitude of the STIRAP pulses �0, or equivalently, increasing
the pulse duration τ . As seen in Fig. 6(b), this has the effect of
exponentially improving the fidelity. We find that to achieve
a similar fidelity, the increase with �0τ is roughly linear
with n due to both effects being exponential. While there are
always experimental bounds to what laser amplitude, cavity
coupling, and duration can be achieved, the overall scaling
with n appears to be effectively linear. For fidelities close to
1, the population curves typically appear as Fig. 6(d), with a
single Fock state before and after each STIRAP pair.

B. Including spontaneous emission and cavity loss

An optimum choice of the laser transition amplitude �0

exists such that both adiabaticity is maintained and the pho-
tonic population is suppressed. According to Fig. 6(b) we
see that in the interest of maintaining adiabaticity, generally
a larger �0 is desirable. While this is effective in reducing the
excited-state population e1,2, this can result in a significant
population of the cavity photon state. This can be seen from
the form of (16) for the qubit case, where the intermediate
term |b1b21〉 contains a cavity photon. During the adiabatic
transition cavity photon loss may occur which will contribute
to decoherence. To reduce the contribution of this term, one
can choose �0 	 G1,2, which reduces the weight of the
intermediate terms. Figure 7(a) shows an effective choice of
parameters where both adiabaticity and suppression of the
cavity photon population is maintained. Here we see that only
the states with zero excited states and zero cavity photons
have significant populations during the adiabatic evolution.
Such a parameter regime is most desirable for completing the
adiabatic evolution with a high fidelity. Figure 7(b) shows the
dependence of the final fidelity with �0 for various boson
numbers with spontaneous emission parameters chosen as
G/�s = G/�γ ∼ 103. For small values of �0 we see good
performance, with near unit probabilities of returning to the
ground state.

We find that the parameters necessary to obtain a high-
probability population transfer back to the ground state are
in the vicinity of G/�s = G/�γ ∼ 103. Unfortunately this
exceeds typical cavity parameters, which are in the vicinity
of G/�s = G/�γ ∼ 10 (see, e.g., Ref. [27]). Figures 7(c) and
7(d) show the time dependence of the population of the initial-
state and final fidelities with parameters G/�s = G/�γ = 10.
As expected, the performance is degraded considerably, as
would be expected by including decoherent processes. We
observe that an optimum value of �0τ ≈ 250 is present for
various boson numbers n, in accordance with an optimal
value that both suppresses the photonic and excited-state
populations.
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FIG. 7. Performance of the STIRAP sequence with various pa-
rameters. (a) Population of the adiabatic evolution for the case n1 =
n2 = 2. Labeled states have m1,2 = 0 and l = 0. All other unla-
beled states have negligible population. Parameters used are �0τ =
200, �sτ = �γ τ = 0, �eτ = 0. (b) Fidelity between the initial state
and final state F = |〈0, 0, 0, 0, 0|ψ (t = tf )〉|2 with �sτ = �γ τ =
1, �eτ = 0. (c) Population for the state |0, 0, 0, 0, 0〉 with n1 = n2 =
2 with �0τ = 200, �sτ = �γ τ = 100, �eτ = 0. (d, e, f) Fidelity be-
tween the initial state and final state F = |〈0, 0, 0, 0, 0|ψ (t = tf )〉|2.
Parameters used are (d) �sτ = �γ τ = 100, �eτ = 0; (e) �sτ =
�γ τ = 1, �0τ = 250; and (f) �γ = �s , �0τ = 250, �eτ = 0. The
common parameters for all plots are G1τ = G2τ = 103, δt/τ =
0.5, �T/τ = 2.

In Fig. 7(e) we show the dependence of the fidelity with
the detuning �e. We find that introducing detuning does not
effectively improve the fidelity, with poor performance being
attained for large values. We therefore focus on the optimal
parameters �0τ ≈ 200 and zero detuning, unless otherwise
stated. In Fig. 7(f), we show the dependence of the fidelity
on the spontaneous emission rate. As expected, the fidelity
decreases with �s . We observe that the rate of decrease is
larger for larger boson numbers. This is also expected due to
the bosonic enhancement effects of decoherence with large
boson number. The scaling with n appears to be rather poor,
with a decoherence rate scaling approximately linearly. We
thus observe that despite using the STIRAP scheme it is still
difficult to suppress it effectively for larger boson numbers.
This appears to be a poor result, given that in realistic BECs
one will have typically n > 100. We shall, however, see in
the following section that, despite the poor fidelity scaling,
surprisingly robust entanglement still can be present in the
system.

C. Entanglement

We now calculate the entanglement generated by the
scheme. In order to generate entanglement, a time-dependent
phase e−iωt is required in (5) to add an entangling phase

to the STIRAP evolution. We start from the state (45) and
evolve the full density matrix, including spontaneous emission
and cavity loss. The entanglement is calculated using the
logarithmic negativity defined as

E = log2 ||ρT1 || = log2

∑
i

|λi |, (70)

where ρT1 is the partial transposed density matrix with respect
to ensemble 1, the || · || takes the trace norm of a matrix, and
λi are the eigenvalues of ρT1 . The logarithmic negativity is a
sufficient condition for entanglement, meaning that a nonzero
value guarantees entanglement is present, whereas a zero
value is inconclusive [36]. Previous studies with similar types
of entanglement have shown that the logarithmic negativity
gives qualitatively similar results as the von Neumann entropy
and has the same maximum value of Emax = log2(N + 1)
[19].

Due to the large number of levels involved (see Fig. 2),
we were only able to simulate the entanglement directly for
relatively small boson numbers N1,2 � 2. Figure 8(a) shows
our results for the optimal parameters as discussed in the
previous section. We see that generally the same behavior
as Fig. 3 is obtained, where the negativity has a periodic
structure with a periodicity that is controlled by ω. In Fig. 8(b)
we calculate results for cavity parameters corresponding to
experimentally achieved values in the range G/�s = G/�γ ∼
10. We see that this surprisingly has a rather good scaling
with larger values of decoherence. Even for values that are
100× the limit where one would obtain good results based
on the results of fidelity, one obtains significant amounts of
entanglement. We attribute this to the fact that states other than
those intended by the scheme (i.e., a1 and c1; b2 and c2) can
contribute to the entanglement. The decoherence terms can
result in an inadvertent population of these other states, which
are counted in the negativity calculation.

In order to explore larger values of N1,2, we use an approx-
imate scheme to verify that the correct behavior to the entan-
glement is indeed generated by the scheme. Evolving the pure
state (61) requires far fewer resources than evolving the den-
sity matrix directly and larger values can be calculated. Our
procedure is to start from the state (45) and calculate the Berry
phase numerically for each of the Fock states in the expansion
(47) and (49). This (pure) state is then substituted into (70) to
obtain the negativity. Figure 8(c) shows our results. It shows
the scaling of the entanglement with respect to the boson
number N = N1 = N2. The effective linear scaling when N

is large shows that the entanglement procedure also works
well for large boson systems. The difference with poor scaling
in Fig. 7(d) can be explained by again the contribution of
states that do not return to the original state but still contribute
to the entanglement. We see that the same general behavior
is obtained as in Fig. 3(a) with a logarithmic increase in
negativity.

While an explicit calculation of the entanglement for large
N1,2 is difficult due to the numerical overhead, the results
of Fig. 8(b) for large values of decoherence are encouraging
due to the general expectation that decoherence effects are
enhanced for larger boson numbers. Generally, due to superra-
diance, spontaneous emission is enhanced by a factor of N due
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FIG. 8. The logarithmic negativity (70) for the STIRAP sequence including spontaneous emission and cavity photon loss with (a) �sτ =
�γ τ = 1, �eτ = 100; (b) N1 = N2 = 1, �γ = �s , �eτ = 100; (c) N = N1 = N2, �sτ = �γ τ = 0, �eτ = 0; and �T is optimized such that
the maximal entanglement is given. Common parameters used are �0τ = 200, δt/τ = 0.5, G1τ = G2τ = 1000, ωτ = 1, mcut = 1.

to bosonic enhancement. The cavity photon loss, on the other
hand, is not enhanced because we always work in a regime
where the cavity photon population is small. In this regard,
it is more important to overcome the spontaneous emission,
which the STIRAP is effective at doing. As long as the cavity
photon population is suppressed to levels such as those shown
in Figs. 8(a) and 8(b), we expect that the scheme can produce
entanglement even in the case of a large number of atoms. For
the best results, the scheme apparently requires rather good
cavities with parameters in the range G/�s = G/�γ ∼ 103.

VI. SUMMARY AND CONCLUSIONS

We have proposed a method for entangling two ensembles
using an adiabatic evolution involving a common cavity mode
to mediate the interaction. The scheme possesses a dark state
for all particle numbers in the cavities, including the case
N1 = N2 = 1, which reduces to a qubit case. While we have
been primarily concerned with creating entanglement between
ensembles, this can be equally be applied for standard qubits
linked by a common cavity mode. The presence of the dark
state allows for an adiabatic evolution to produce a geometric
phase gate for superposition states between ground states of
the atoms. The geometric phase produced by the adiabatic
evolution has an unusual form, depending on the minimum of
the number of atoms on one of the logical states on each of the
ensembles. One of the main benefits of using the dark states
is that it helps to overcomes spontaneous emission, one of the
main decoherence channels for schemes using excited states
in ensembles. We find that in our numerical simulations on
small systems it is possible to generate significant amounts of
entanglement, even in the presence of spontaneous emission
and cavity photon loss. The best results are obtained for cav-
ities with very strong coupling, where G/�s = G/�γ ∼ 103,
but entanglement is still produced in cavities with parameters
in the currently realizable range G/�s = G/�γ ∼ 10. The
key to this is to use an optimized laser amplitude which works
in an adiabatic regime but has �0 	 G1,2, which suppresses
the cavity photon population. One of the difficulties we en-
countered was the numerical complexity of simulating the

system for large ensemble populations. While this prevented
us from directly simulating the entanglement, the results of
Fig. 8(b) are encouraging, as significant amounts of entan-
glement are present even for imperfect adiabatic transitions.
Alternative numerical methods based on stochastic evolution
[37] may be a way to improve on the numerical results given
here.

The form of the effective interaction Hamiltonian Heff =
min(k1, k2) is interesting not only from an entanglement point
of view, but also for computational purposes. The minimum
operation is a key operation in constraint programming used
in sophisticated algorithms such as next algorithm search,
next greater element, or cycle algorithms [38,39]. These are
equivalent to the Hamiltonian path problem [40], which is
a type of NP-complete problem. The minimum operation is
one of the necessary algorithms to solve such problems. One
possible way that our gate could be used in this context
is to use the logical states of the ensemble as a quantum
register, after which our proposed scheme could be applied
to calculate the minimum with quantum parallelism. This
may be incorporated as a logical primitive for optimization
problems and may be applicable to problems such as quantum
machine learning [41].

ACKNOWLEDGMENTS

We would like to thank Marek Narozniak, Joan Vazquez,
Daniel Rosseau, and Sandrine Idlas for useful discussions.
S.O. thanks the National Institute of Informatics (NII) for
its International Internship Program. This work is supported
by the Shanghai Research Challenge Fund; New York Uni-
versity Global Seed Grants for Collaborative Research; Na-
tional Natural Science Foundation of China (61571301); the
Thousand Talents Program for Distinguished Young Scholars
(D1210036A); the NSFC Research Fund for International
Young Scientists (11650110425); the NYU-ECNU Institute
of Physics at NYU Shanghai; the Science and Technology
Commission of Shanghai Municipality (17ZR1443600); and
the China Science and Technology Exchange Center (NGA-
16-001).

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. (Cambridge
University Press, New York, 2011).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,
222 (2011).

043616-11

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35


ORTIZ, SONG, WU, IVANNIKOV, AND BYRNES PHYSICAL REVIEW A 98, 043616 (2018)

[3] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P.
Treutlein, Nature (London) 464, 1170 (2010).

[4] C. Gerving, T. Hoang, B. Land, M. Anquez, C. Hamley, and
M. Chapman, Nat. Commun. 4, 1928 (2013).

[5] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
L. Pezze, A. Smerzi, and M. K. Oberthaler, Science 345, 424
(2014).

[6] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Rev. Mod. Phys. 90, 035005 (2018).

[7] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P.
Treutlein, and N. Sangouard, Science 352, 441 (2016).

[8] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)
413, 400 (2001).

[9] J. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, and E. S.
Polzik, J. Phys. B 41, 223001 (2008).

[10] H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen,
T. Fernholz, and E. S. Polzik, Nat. Phys. 9, 400 (2013).

[11] X.-H. Bao, X.-F. Xu, C.-M. Li, Z.-S. Yuan, C.-Y. Lu, and J.-W.
Pan, Proc. Natl. Acad. Sci. USA 109, 20347 (2012).

[12] P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T.
Gasenzer, M. Gärttner, and M. K. Oberthaler, Science 360, 413
(2018).

[13] M. Fadel, T. Zibold, B. Décamps, and P. Treutlein, Science 360,
409 (2018).

[14] K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apel-
laniz, M. Kleinmann, G. Toth, and C. Klempt, Science 360, 416
(2018).

[15] A. N. Pyrkov and T. Byrnes, New J. Phys. 15, 093019 (2013).
[16] M. I. Hussain, E. O. Ilo-Okeke, and T. Byrnes, Quantum Inf.

Process. 14, 943 (2015).
[17] H. Kurkjian, K. Pawłowski, A. Sinatra, and P. Treutlein, Phys.

Rev. A 88, 043605 (2013).
[18] S. Idlas, L. Domenzain, R. Spreeuw, and T. Byrnes, Phys. Rev.

A 93, 022319 (2016).
[19] T. Byrnes, Phys. Rev. A 88, 023609 (2013).
[20] C. Gross, J. Phys. B 45, 103001 (2012).
[21] T. Byrnes, D. Rosseau, M. Khosla, A. Pyrkov, A. Thomasen,

T. Mukai, S. Koyama, A. Abdelrahman, and E. Ilo-Okeke,
Opt. Commun. 337, 102 (2015).

[22] T. Byrnes, K. Wen, and Y. Yamamoto, Phys. Rev. A 85,
040306(R) (2012).

[23] M. V. Berry, Proc. R. Soc. London, Ser. A, 392, 45 (1984).
[24] D. Møller, Ph.D. thesis, University of Aarhus, 2008.
[25] K. Bergmann, H. Theuer, and B. Shore, Rev. Mod. Phys. 70,

1003 (1998).
[26] B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley-

VCH, Weinheim, Germany, 1990), p. 774.
[27] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and

J. Reichel, Nature (London) 450, 272 (2007).
[28] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Rep.

Prog. Phys. 69, 1325 (2006).
[29] H. J. Kimble, Nature (London) 453, 1023 (2008).
[30] L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev.

Lett. 85, 5643 (2000).
[31] A. Abdelrahman, T. Mukai, H. Hartmut, and T. Byrnes, Opt.

Express 22, 195 (2014).
[32] M. Amniat-Talab, S. Guérin, and H.-R. Jauslin, Phys. Rev. A

72, 012339 (2005).
[33] M. Q. Lone and T. Byrnes, Phys. Rev. A 92, 011401 (2015).
[34] A. N. Pyrkov and T. Byrnes, New J. Phys. 16, 73038

(2014).
[35] E. O. Ilo-Okeke and T. Byrnes, Phys. Rev. Lett. 112, 233602

(2014).
[36] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[37] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of

Markovian and non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics (Springer Science &
Business Media, New York, 2004), Vol. 56.

[38] P. Van Hentenryck, Principles and Practice of Con-
straint Programming–CP 2002: 8th International Conference
(Springer, New York, 2003), Vol. 2470.

[39] S. Brand, R. Gennari, and M. De Rijke, in Principles and
Practice of Constraint Programming–CP 2003 (Springer, New
York, 2003), pp. 795–800.

[40] N. Beldiceanu and E. Contejean, Math. Comput. Modell. 20, 97
(1994).

[41] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Nature (London) 549, 195 (2017).

043616-12

https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/ncomms2849
https://doi.org/10.1038/ncomms2849
https://doi.org/10.1038/ncomms2849
https://doi.org/10.1038/ncomms2849
https://doi.org/10.1126/science.1250147
https://doi.org/10.1126/science.1250147
https://doi.org/10.1126/science.1250147
https://doi.org/10.1126/science.1250147
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1088/0953-4075/41/22/223001
https://doi.org/10.1088/0953-4075/41/22/223001
https://doi.org/10.1088/0953-4075/41/22/223001
https://doi.org/10.1088/0953-4075/41/22/223001
https://doi.org/10.1038/nphys2631
https://doi.org/10.1038/nphys2631
https://doi.org/10.1038/nphys2631
https://doi.org/10.1038/nphys2631
https://doi.org/10.1073/pnas.1207329109
https://doi.org/10.1073/pnas.1207329109
https://doi.org/10.1073/pnas.1207329109
https://doi.org/10.1073/pnas.1207329109
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1088/1367-2630/15/9/093019
https://doi.org/10.1088/1367-2630/15/9/093019
https://doi.org/10.1088/1367-2630/15/9/093019
https://doi.org/10.1088/1367-2630/15/9/093019
https://doi.org/10.1007/s11128-014-0907-7
https://doi.org/10.1007/s11128-014-0907-7
https://doi.org/10.1007/s11128-014-0907-7
https://doi.org/10.1007/s11128-014-0907-7
https://doi.org/10.1103/PhysRevA.88.043605
https://doi.org/10.1103/PhysRevA.88.043605
https://doi.org/10.1103/PhysRevA.88.043605
https://doi.org/10.1103/PhysRevA.88.043605
https://doi.org/10.1103/PhysRevA.93.022319
https://doi.org/10.1103/PhysRevA.93.022319
https://doi.org/10.1103/PhysRevA.93.022319
https://doi.org/10.1103/PhysRevA.93.022319
https://doi.org/10.1103/PhysRevA.88.023609
https://doi.org/10.1103/PhysRevA.88.023609
https://doi.org/10.1103/PhysRevA.88.023609
https://doi.org/10.1103/PhysRevA.88.023609
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1038/nature06331
https://doi.org/10.1038/nature06331
https://doi.org/10.1038/nature06331
https://doi.org/10.1038/nature06331
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevLett.85.5643
https://doi.org/10.1103/PhysRevLett.85.5643
https://doi.org/10.1103/PhysRevLett.85.5643
https://doi.org/10.1103/PhysRevLett.85.5643
https://doi.org/10.1364/OE.22.003501
https://doi.org/10.1364/OE.22.003501
https://doi.org/10.1364/OE.22.003501
https://doi.org/10.1364/OE.22.003501
https://doi.org/10.1103/PhysRevA.72.012339
https://doi.org/10.1103/PhysRevA.72.012339
https://doi.org/10.1103/PhysRevA.72.012339
https://doi.org/10.1103/PhysRevA.72.012339
https://doi.org/10.1103/PhysRevA.92.011401
https://doi.org/10.1103/PhysRevA.92.011401
https://doi.org/10.1103/PhysRevA.92.011401
https://doi.org/10.1103/PhysRevA.92.011401
https://doi.org/10.1088/1367-2630/16/7/073038
https://doi.org/10.1088/1367-2630/16/7/073038
https://doi.org/10.1088/1367-2630/16/7/073038
https://doi.org/10.1088/1367-2630/16/7/073038
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474



