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SU(3) topological insulators in the honeycomb lattice
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We investigate realizations of topological insulators with spin-1 bosons loaded in a honeycomb optical lattice
and subjected to a SU(3) spin-orbit coupling—a situation which can be realized experimentally using cold
atomic gases. In this paper, we focus on the topological properties of the single-particle band structure, namely,
Chern numbers (lattice with periodic boundary conditions) and edge states (lattice with strip geometry) and
their connection to time-reversal symmetry and the sublattice symmetry. While SU(2) spin-orbit couplings
always lead to time-reversal symmetric tight-binding models, and thereby to topologically trivial band structures,
suitable SU(3) spin-orbit couplings can break time-reversal symmetry and lead to topologically nontrivial bulk
band structures and to edge states in the strip geometry. In addition, we show that one can trigger a series
of topological transitions (i.e., integer changes of the Chern numbers) that are specific to the geometry of the
honeycomb lattice by varying a single parameter in the Hamiltonian.
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I. INTRODUCTION

Over the last few years, the continuous progress in the
degree of control, tunability, and flexibility of ultracold atomic
gases experiments [1–3] has opened the laboratory door to
a whole class of model Hamiltonians, as witnessed, for ex-
ample, by the recent implementation of artificial gauge fields
[4–10]. Some of these model Hamiltonians are directly inher-
ited from condensed-matter physics, for instance, the integer
and fractional quantum Hall effects [11–13]. More saliently,
physicists have further proposed new theoretical ideas and
physical situations, such as topological phases [14–19], non-
Abelian particles [20], or mixed dimensional systems [21–25],
that could be tested in the laboratory. In particular, experi-
ments involving spinors, either made of bosons or fermions
in different Zeeman sublevels, are now able to implement and
study Abelian and non-Abelian gauge fields [17,26–29], even
though the latter have not yet been implemented in a lattice
geometry. In these systems, the kinetic energy term in the
Hamiltonian allows for a modification of the internal degrees
of freedom as the particle propagates [30,31], leading to a
rich class of nontrivial physical phenomena, especially with
interactions. In two-dimensional lattices, and in particular
when spin-orbit coupling is present, the corresponding non-
Abelian gauge fields induce nondiagonal hopping matrices
in the tight-binding Hubbard Hamiltonian that mix and flip
the spin degrees of freedom [30,31]. Two-component bosonic
and fermionic gases (in the bulk or in a lattice) have been
the subject of many recent analytical and numerical studies
[32–46].

In marked contrast, three-component bosonic or fermionic
gases subjected to a SU(3) gauge field have been much
less studied: the experimental realization is more compli-
cated [30,47,48] and their theoretical studies are more in-
volved, the gauge field group being much larger [49–53].
On the other hand, tight-binding models with a SU(3) spin-
orbit coupling can break time-reversal symmetry and lead to
topological insulators: the bulk band structure is topologically
nontrivial (nonzero Chern numbers) and edge states develop
for a strip geometry [49]. Such a situation cannot occur
in any kind of SU(2) models, as we will explain later. In
addition, since SU(3) has a more complex group structure
than SU(2), one expects a larger variety of spin textures for
interacting particles. These spin textures are associated to
different homotopy groups and appear both in the ground state
and in the excitations above the ground state [19,50–54].

Our paper consists of three main parts. In Sec. II, we give
some general properties of SU(N ) tight-binding models and
describe the SU(3) tight-binding model on the honeycomb
lattice that we consider. In contrast to previous studies on sim-
ilar systems [49,52], we especially focus on its time-reversal
properties and the interplay with the unique band structure
of the honeycomb lattice and its Berry curvature [55]. Con-
sequently, we study the topological properties of the band
structure obtained for a lattice with periodic boundary condi-
tions and compute the corresponding Chern numbers [56–59]
in Sec. III. Next we study the edge states that are expected
in the lattice strip geometry, as inferred from the bulk-edge
correspondence [60–64]. In Sec. IV, we show how to trigger
a series of topological transitions in the band structure of our
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SU(3) model (i.e., integer changes in the Chern numbers) by
varying a single parameter in the Hamiltonian. The variety of
such topological transitions is richer on the honeycomb lattice
than on the square lattice. In Sec. V, we summarize our results
and conclude with some perspectives.

II. SU(N ) TIGHT-BINDING MODELS AND
TIME-REVERSAL SYMMETRY

A. Some general properties

The general tight-binding Hamiltonian for noninteracting
particles with spin s on a two-dimensional lattice has the
following form:

Ĥ = −
∑
〈i,j〉

ψ̂
†
i Tij ψ̂ j , (1)

where the sum is carried over all nearest-neighbor lattice site

pairs 〈i, j 〉 and where ψ̂
†
i = (ψ̂†

i,s , . . . , ψ̂
†
i,−s ) is the (2s +

1)-component row-spinor built at each lattice site i on the
creation operators ψ̂

†
i,σ for each spin component σ (|σ | � s).

The (2s + 1) × (2s + 1) hopping matrix Tij is connecting
the different spin components at site j to the different spin
components at site i. Since the Hamiltonian Ĥ is Hermitian,
one has Tji = T

†
ij . SU (N ) tight-binding models (N = 2s + 1)

are obtained with Tij = tijUij , where tij are real positive
numbers and where the matrices Uij ∈ SU (N ) describe the
unitary transformation of the spin states between sites j and i.

When the system is invariant under a certain discrete trans-
lation group Tr, the spectrum of the Hamiltonian Ĥ exhibits
a band structure. Note that Tr can differ from the Bravais
translation group of the underlying lattice itself. (This is the
case, for example, in the presence of an external magnetic
field with rational flux per plaquette.) Each band n is described
by its eigenvalues εn(k) and eigenvectors |n, k〉 for all Bloch
wave vectors k in the first Brillouin zone BZ defined by the
translation group Tr. For an isolated band, one can define the
first Chern number as [58,59,65,66]

Cn = 1

2π

∫
BZ

d2k �n(k), (2)

where �n(k) is the Berry curvature of the nth band,

�n(k) =

⎛
⎜⎝∇k × i〈n, k|∇k|n, k〉︸ ︷︷ ︸

An (k)

⎞
⎟⎠ · ez, (3)

and An is the Berry connection of the nth band [58]. Being an
integer, the Chern number can only change when two bands
touch, that is, when a gap closes. Chern numbers of a given
tight-binding Hamiltonian satisfy a “zero-sum rule”: they all
add up to zero. For inversion-symmetric systems (resp. for
time-reversal invariant systems), it is well known that the
Berry curvature is even (resp. odd) in the BZ:

�n(k) =
{+�n(−k) inversion symmetry
−�n(−k) time reversal symmetry .

These two properties show that (i) the Berry curvature itself
identically vanishes if Ĥ is invariant under both space inver-
sion and time reversal, and (ii) Chern numbers of time-reversal

invariant Hamiltonians are necessarily vanishing. Therefore,
only systems that break time-reversal symmetry can have
nontrivial topological properties, i.e., nonvanishing Chern
numbers.

At the single-particle level, and up to an inessential overall
phase factor, the (anti-unitary) time-reversal operator is de-
fined as � = e− iπ

h̄
Jy K , where Jy is the projection of the spin

operator J of the particle on the y direction and where K is
the complex conjugation operator. One has �2 = 1 for integer
spins and �2 = −1 for half-integer spins [67]. Under time
reversal the tight-binding Hamiltonian becomes [68]

�Ĥ�−1 = −
∑
〈i,j〉

ψ̂
†
i �Tij�

−1ψ̂j , (4)

such that the topological properties of a tight-binding Hamil-
tonian Ĥ depend crucially on the behavior of the different Tij

under time reversal. In particular, when the matrices Tij are
all even under time reversal, the corresponding tight-binding
model is topologically trivial [65,66].

The hopping matrices Tij can be expanded over the unit
matrix and the N2 − 1 (Hermitian) generators Tn of the Lie
algebra of SU(N ),

Tij = τ
(0)
ij 1 + i

N2−1∑
n=1

τ
(n)
ij Tn. (5)

The behavior of Tij under time reversal can be directly in-
ferred from that of the generators Tn and the N2 complex
coefficients τ

(n)
ij . For instance, for spin- 1

2 systems, the gen-
erators of SU(2) are the Pauli matrices which are odd under
time-reversal symmetry (� = −iσyK). Therefore Tij will be
even under time reversal if and only if all coefficients τ

(n)
ij are

real. As a result, for SU(2) tight-binding models, the hopping
amplitudes are given by

Tij = tij exp [iα · σ ] = tij

(
cos α1 + i

sin α

α
α · σ

)
, (6)

where α is a real vector and α = |α|. This shows that SU(2)
tight-binding models are invariant under time reversal and
thereby topologically trivial.

On the contrary, for N � 3, that is for spins s � 1, the dif-
ferent generators have different behavior under time-reversal
symmetry, allowing SU(N ) tight-binding Hamiltonians to
break this symmetry and to have a topologically nontrivial
band structure. In this paper, we are considering a SU(3)
system, i.e., spin-1 particles. In this case, the time-reversal
operator is � = JK with

J =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠, (7)

and the generators of the SU(3) group are the Gell-Mann
matrices λa (see Appendix A). As explained above, the hop-
ping amplitude can be written as Tij = τ

(0)
ij 1 + iτ ij · λ, where

τ ij is an eight-component vector and λ the Gell-Mann vector
made of the eight Gell-Mann matrices λa .

From the transformation properties of the Gell-Mann ma-
trices under time reversal, Tij can be split among the odd and
the even sectors, Tij = τ

(0)
ij 1 + iτ

(o)
ij · λ(o) + iτ

(e)
ij · λ(e), such
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that Tij will be invariant under time reversal if and only if τ
(0)
ij ,

τ
(o)
ij , and iτ

(e)
ij are real coefficients. One finds that the even

sector is spanned by λ4, λ5, λ1 − λ6, λ2 − λ7, and λ8 − √
3λ3,

while the odd sector is spanned by the three spin components√
2Jx = λ1 + λ6,

√
2Jy = λ2 + λ7, and 2Jz = λ3 + √

3λ8.
As explained above, the hopping matrices Tij in the case of

a SU(N ) tight-binding model are expressed as tijUij , where
Uij is a unitary matrix with Uij = exp (iAij ). The Aij are N ×
N traceless Hermitian matrices reading Aij = ∑N2−1

n=1 γ
(n)
ij Tn,

with real coefficients γ
(n)
ij . The matrices Aij represent the

gauge field acting on the system and non-Abelian SU(N )
models are obtained when the matrices Uij for the different
links do not commute, that is, when the matrices Aij do not
commute, meaning that a non-Abelian gauge field is acting
on the system. The time-reversal operation reads

�Uij�
−1 = e�iAij �

−1 = e−i�Aij �
−1

, (8)

such that the tight-binding model is automatically (but not
exclusively) invariant under time reversal when the matrices
Aij are odd under time reversal, i.e., when they have a (real)
expansion in the odd sector of the generators Tn only. (They
cannot have a complex expansion on the even sector because
of the Hermiticity condition.) This property is the main reason
for the difference between SU(2) and SU(3) tight-binding
models: for SU(2) the even sector is empty and one can only
have odd non-Abelian gauge field matrices Aij and thereby
only time-reversal invariant hopping matrices; on the contrary,
for SU(3) (and more generally SU(N ), with N � 3), the
even sector is not empty such that one can have non-Abelian
gauge field matrices Aij resulting in hopping matrices Tij =
tij exp (iAij ) that break time-reversal symmetry and in poten-
tially topologically nontrivial band structures. In Appendix B,
we give convenient parametrizations of unitary U(3) matrices
which are even or odd under time reversal.

Note, however, that while time-reversal invariance of the
system can be directly and safely inferred from gauge fields
that reside only in the odd sector, there are cases where time-
reversal symmetry is not broken, even though the gauge fields
are even under time reversal. For even Aij , time-reversal in-
variance e�iAij �

−1 = eiAij implies that exp(2iAij ) = 1. For in-
stance, the gauge field Aij = π√

5
[(λ1 − λ6) + (λ2 − λ7) + λ4]

leads to

Uij = exp(iAij ) = 1

5

⎛
⎝ −1 2 + 2i −4i

2 − 2i −3 −2 − 2i

4i −2 + 2i −1

⎞
⎠, (9)

and one has �Uij�
−1 = Uij . In other words, the time-reversal

properties of the Hamiltonian are not simply in one-to-one
correspondence with those of the gauge field matrices Aij ,
and ultimately one has to check the property of the hopping
matrices Tij themselves.

In conclusion, by choosing suitable Aij having nonvanish-
ing components in the even sector, one can produce hopping
matrices Tij that break time-reversal symmetry. This leads
to topologically nontrivial spin-1 tight-binding models with
a band structure yielding nontrivial Chern numbers [49].

FIG. 1. The non-Abelian SU(3) model on the honeycomb lattice
that we investigate. The honeycomb lattice is obtained by repeated
translations along Bravais vectors a1 and a2 of a unit cell containing
two inequivalent sites labeled A and B. We assign different spin-orbit
couplings on the different A-B links of the honeycomb lattice. The
inset shows the nearest-neighbor SU(3) hopping matrices acting on
the spin states of the particles: 1 along link vectors δ1, diagonal
hopping phase matrix D along link vectors δ2, and nondiagonal
hopping matrix U along link vectors δ3. See main text for their
expressions.

B. Non-Abelian SU(3) model on the honeycomb lattice

In the following, we investigate a SU(3) topological in-
sulator consisting of noninteracting spin-1 bosonic particles
moving on a honeycomb lattice. Our system and some of the
results are similar to those studied in Ref. [49] on the square
lattice, where differences are mostly due to the fact that the
honeycomb lattice has a two-site unit cell. We are interested in
the interplay of the topological properties of the gauge fields
with the unique band structure and non-trivial Berry curvature
of the honeycomb lattice [55]. The honeycomb lattice is a
triangular Bravais lattice obtained by repeated translations
R(n1, n2) = n1a1 + n2a2 (n1 and n2 integers) of a unit cell
containing two inequivalent sites denoted by A and B, see
Fig. 1. Of importance for the following are the link vectors δ1,
δ2, and δ3 connecting any site A to its three nearest-neighbor
sites B. They satisfy δ1 − δ2 = a1, δ1 − δ3 = a2, and δ1 +
δ2 + δ3 = 0, see Fig. 1. With our choice of origin in Fig. 1,
the positions of all sites A and B in the lattice are labeled
by RA

n1,n2
= R(n1, n2) − δ1/2 and RB

n1,n2
= R(n1, n2) + δ1/2.

In the following we fix the unit length by setting the lattice
constant to unity, i.e., |δa| = 1 (a ∈ {1, 2, 3}).

We now assign the hopping matrices T1 = −t 1 along links
δ1, T2 = −t D along links δ2, and T3 = −t U along links
δ3, with t a (real) hopping rate. The SU(3) matrices D =
exp (− 2πi

3 Ŝz) and U = exp [− 2πi

3
√

3
(λ2 − λ5 + λ7)] read

D =
⎛
⎝j ∗ 0 0

0 1 0
0 0 j

⎞
⎠ U =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (10)
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FIG. 2. (a) Bulk spectrum of the Bloch Hamiltonian Hk given by Eq. (14) in the first Brillouin zone BZ (|k1,2| � 1/2). Since the full
spectrum is symmetric with respect to the zero-energy plane, we only plot the three negative bands ε1 � ε2 � ε3 � 0 in units of the tunneling
rate t . The small black circles point out the location of Dirac points occurring between the energy bands ε3 and ε4. (b) Band structure of
graphene. The small black circles point out the location of the two Dirac points of graphene. Without the spin-orbit coupling term, our
system is equivalent to graphene with threefold degenerate bands (i.e., one copy of the graphene band structure per spin component). The
spin-orbit terms couple these three bands, eventually lifting their degeneracy and leading to the spectrum shown in (a). Due to the particular
choice of the spin-orbit coupling terms U and D, the band structure has the additional translation symmetry: εn(k1, k2) = εn(k1 + 1/3, k2) =
εn(k1, k2 + 1/3).

where j = exp(2iπ/3). From these expressions, one can
check that T3 is breaking time-reversal symmetry, which gives
rise to a band structure with nonvanishing Chern number
(see Sec. III below). While spin states are unaffected when
particles hop along link vectors δ1, they acquire spin-state-
dependent phases when particles hop along link vectors δ2

and they undergo a circular permutation 1 → 0 → −1 → 1
when particles hop along the link vectors δ3. Note that since
these matrices fulfill D3 = U3 = 1, a spin state is mapped
back to itself after three consecutive hoppings along a given
link vector δ2 or δ3. On the contrary, since D and U do
not commute, the present spin-orbit coupling configuration
corresponds to a genuine non-Abelian SU(3) model on the
honeycomb lattice: the corresponding gauge fields A2 and
A3 defined by Ta = −teiAa (a = 2, 3) do not commute and,
therefore, the transport of a spin state around a hexagon leads
to a nontrivial Wilson loop value W = 3 exp (2πi/3) [69].

III. TOPOLOGICAL PROPERTIES

A. Infinite system–Bulk spectrum

Since the unit cell of the honeycomb lattice hosts two
inequivalent sites, it is customary to distinguish the bosonic
annihilation and creation operators on A and B sites: â†

n1,n2

denotes the creation operator on the site RA
n1,n2

and b̂†
n1,n2

denotes the creation operator on the site RB
n1,n2

. Each of them
is a spinor of dimension 3 accounting for the three spin states
of the spin-1 bosonic particles considered in our model.

Being translation invariant along the Bravais vectors a1 and
a2, the lattice Hamiltonian is diagonal in momentum space,
Ĥ = ∑

k∈BZ Ĥk, where

Ĥk = −t (b̂†
kMkâk + H.c.), (11)

Mk = eik·δ1 1 + eik·δ2 D + eik·δ3 U . (12)

âk (resp. b̂k) is the Fourier transform of ân1,n2 (resp. b̂n1,n2 );
the Bloch wave vector k belongs to the first Brillouin zone
and reads

k = k1b1︸︷︷︸
k1

+ k2b2︸︷︷︸
k2

, |k1,2| � 1/2, (13)

where the honeycomb reciprocal lattice vectors b1 and b2 are
defined by ai · bj = 2πδij . Note that with this definition k1

and k2 are dimensionless. This parameterization of k, in turn,
allows us to compute a dimensionless Berry curvature, see
Eq. (3).

Further defining �̂
†
k = (â†

k, b̂†
k ), one can recast this Hamil-

tonian under the form Ĥk = �̂
†
kHk�̂k where

Hk = −t

(
0 M

†
k

Mk 0

)
. (14)

Diagonalizing the Bloch Hamiltonian Hk yields six bands
ε1(k) � · · · � ε6(k) where the three (negative) lower bands
are mirror images of the three (positive) upper bands with
respect to the zero-energy plane, see Fig. 2. This mirror
symmetry originates from the bipartite nature of the honey-
comb lattice and is also found in the usual band structure of
graphene: eigenvalues come in opposite pairs. This is because
PHkP = −Hk, where P is the diagonal matrix with entries
1 and −1 corresponding to the sublattice or chiral symmetry
[65,66]. Noting that

H2
k = t2

(
N

†
kNk 0
0 NkN

†
k

)
, (15)

where Nk = exp(−ik · δ1) Mk, it is easy to show that ε2
n (k) =

μ2
a (k) t2 (a ∈ {1, 2, 3}), where μ2

3(k) � μ2
2(k) � μ2

1(k) are
the eigenvalues of N

†
kNk (and also of NkN

†
k). We thus

get the band structure ε1,2,3 = −t μ1,2,3 and ε4,5,6 = t μ3,2,1,
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highlighting the mirror symmetry of the bands with respect to
the zero-energy plane.

Dirac points are found at points k ∈ BZ where two eigen-
values of N

†
kNk coalesce [70]. Noting that N

†
k = SN−kS,

where S is the antidiagonal matrix with unit entries, we see
that N

†
kNk and N−kN

†
−k, and thus N

†
−kN−k, have the same

spectrum. This shows that the Dirac points must come in op-
posite pairs in the Brillouin zone. In contrast to the graphene
band structure which exhibits only one pair of such Dirac
points, we get nine pairs of Dirac points here, obtained when
μ3(k) = 0, that is, between bands ε3(k) and ε4(k). The other
bands remain fully isolated. Hence, just like graphene, our
system is a semimetal. We note that getting nine pairs of Dirac
points is not generic but specific to our SU(3) model. It arises
from an additional symmetry in our Hamiltonian due to our
particular choice of the hopping matrices U and D. We point
out that this is not because of a smaller effective Brillouin zone
since our Hamiltonian, as can be seen from the expression
of Mk above, is invariant under Bravais translations only.
Instead, one can show that

Nk+b1/3 = UNkU†, (16)

Nk+b2/3 = D†NkD, (17)

meaning that the matrices Nk+bi /3 (i = 1, 2) and Nk are
unitarily equivalent. Thus, up to a global gauge transform,
the two Hamiltonians Hk+b1/3 and Hk are identical. The
same conclusion holds true for Hamiltonians Hk+b2/3 and Hk.
Going back to the direct lattice, these global gauge transforms
amount to a “rotation” of the spin degrees of freedom on
each individual lattice site by the same unitary matrix. This
shows that the Hamiltonians Hk+b1/3, Hk+b2/3, and Hk have
the same spectra. We thus infer that εn(k) = εn(k + b1/3) =
εn(k + b2/3) for each energy band.

Note that a mass term such as �(n̂A − n̂B )/2 breaks
the chiral symmetry of the lattice Hamiltonian, since
PHk(�)P = −Hk(−�), and lifts the degeneracies between
the two middle bands. Indeed, it adds the terms �/2 and
−�/2 on the diagonal entries of Hk, Eq. (14), and the
constant term �2/4 on the diagonal entries of H2

k, leading
to εn(k,�) = ±t

√
μ2

a (k) + (�/2t )2 and thus to εn(k,�) =
−ε7−n(k,�). Therefore, even though the chiral symmetry is
broken, the band structure is still symmetric E ↔ −E. In
addition, a closer look at the Bloch wave functions shows
that the Berry connections for the band n and 7 − n have the
following structure:

An(k,�) = Fn(k) + �

εn(k,�)
Gn(k),

A7−n(k,�) = Fn(k) − �

εn(k,�)
Gn(k). (18)

Although straightforward to derive, the explicit expres-
sions for Fn(k) and Gn(k) are quite involved. It is im-
portant to note, though, that only Fn(k) contributes to
the Chern number, since the second term Gn/εn can be
shown to be a periodic function of k. Alternatively, since
�

∮
∂BZ

dk · Gn(k)/εn(k,�) has to be a multiple of 2π for
all values of �, the only possibility is that it has a vanishing

value. Note that the structure [�/εn(k,�)]Gn(k) is very
similar to the one found in the usual mass-imbalanced time-
reversally symmetric model on a two-site lattice having van-
ishing Chern numbers [55,71].

This shows that even though the Berry connections and
Berry curvatures for the band n and 7 − n are different for
a finite value of �, the Chern numbers come in equal pairs
Cn(�) = C7−n(�) [72]. Because of this symmetry, the total
zero-sum rule of Chern numbers boils down to two separate
zero-sum rules C1 + C2 + C3 = C4 + C5 + C6 = 0 for all
values of �. Note that for � = 0, one recovers the well-known
result that a Hamiltonian invariant under chiral symmetry is
topologically trivial only if the number of occupied bands is
equal to the number of empty bands, i.e., at half-filling. In this
case it belongs to the class AIII of Refs. [65,66]. Otherwise,
away from half-filling, the system can be topologically non-
trivial, belonging to the class A of Refs. [65,66].

We now turn to the numerical computation of the Chern
numbers. Strictly speaking, Cn, as given by Eq. (2), is only
well-defined for an isolated band. Since the two middle bands
ε3 and ε4 are touching, we add a small mass term � = 0.1t

such that the six bands are fully isolated. Following [73],
this allows one to safely compute Cn for each band and
quantify the topology of the band structure. Alternatively, one
could also adjust the grid used to compute the Chern number
in [73] as to avoid the Dirac points. The latter approach has
been checked by calculating the combined two-band Chern
number C34 for these two middle bands [73]. According to
the sublattice symmetry, it should be twice the individual band
Chern numbers, i.e., C34 = 2C3 = 2C4. Both the finite mass
method and the adjusted grid method confirm this result. For
our SU(3) model, we find C1 = 3, C2 = −6, and C3 = 3 [74].
These nonzero values signal nontrivial topological properties
of the bulk band structure.

B. Finite system–Edge states

As is well known, a lattice Hamiltonian having a band
structure with nonvanishing Chern numbers exhibits edge
states in a strip geometry [64]. We consider such a finite lattice
strip for our SU(3) model and compute the spectrum for open
boundary conditions in the a1 direction (0 � n1 � N ) and
periodic boundary conditions in the a2 direction (unrestricted
n2). The lattice strip we consider has left and right zigzag
boundaries. Since the Hamiltonian is still invariant under
lattice translations along a2, the Bloch wave vector along b2

remains a good quantum number. Therefore, we introduce the
Fourier transform operators ân1,k2 and b̂n1,k2 along a2. The
Hamiltonian, for a given Bloch wave vector k2, now reads

Ĥk2 = − t

N∑
n1=0

b̂†
n1,k2

(eik2·δ11 + eik2·δ3U ) ân1,k2

− t

N∑
n1=1

b̂†
n1−1,k2

eik2·δ2D ân1,k2
+ H.c., (19)

with |k2| � 1/2. By diagonalizing Ĥk2 , we obtain the band
spectrum shown in Fig. 3. This spectrum has to be compared
to the bulk spectrum, shown in Fig. 4, that has been obtained
for the same number of cells N along a1 but with periodic
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FIG. 3. Spectrum εn in units of the tunneling rate t , obtained
by diagonalizing the Hamiltonian Eq. (19) describing a finite lattice
strip with N = 25 cells, i.e., 50 sites, along a1 (open boundary
conditions) and periodic boundary conditions along a2. The mass
term is � = 0.1. Compared to Fig. 4, we see the appearance of
topological edge states in the gaps between the bulk bands with
different Chern numbers. No such edge states develop between bulk
bands ε3 and ε4 since they have equal Chern numbers. The color scale
on the right side shows the average position dn of the eigenstates
along a1. The dotted blue lines (resp. dashed red lines) correspond
therefore to edge states localized on the left (resp. right) side of the
strip. As one can see, the topological states connecting two bands live
on either side of the strip while the other bulklike states spread over
the whole strip. Comparing this band structure to a similar system
on the square lattice [49], we find that the lower three bands in this
figure and the edge states between them are largely the same as on
the square lattice. This is confirmed by the same Chern numbers of
both cases. Due to the two-site unit cell of the honeycomb lattice,
this band structure is mirrored around ε = 0, resulting in six bands
in our case. Where the two middle bands are touching, artefacts of
the original honeycomb lattice remain in the form of Dirac cones
(see also Figs. 2 and 4).

boundary conditions. As expected from our analysis of the
bulk spectrum [60–64], we indeed find additional states in
the gaps between bands with different Chern numbers, that
is, between the first and second bands, between the second
and third bands, and, by symmetry, between the fourth and
fifth bands and between the fifth and sixth bands. The states
between the third and the fourth band, on the other hand, are
topologically trivial edge states that are characteristic to the
single-particle band structure of the honeycomb lattice [75].
Their spatial behavior depends on the shape of the edge of
the honeycomb strip and they become flat in the limit of the
semi-infinite plane. Their wave functions are not localized on
a given edge but are generally symmetric around the middle
of the lattice strip, with more weight on the edges than in the
bulk. Due to this symmetry, these edge states are trivial in the
sense that they lack the chirality of the topological edge states.
This is consistent with the fact that the third and the fourth
band have equal Chern numbers.

We define the position xi (xi = 1, . . . , 2N ) of the sites
along a given horizontal zigzag chain crossing the lattice strip
from left to right and we denote by Pn(xi, k2) the spatial

FIG. 4. Bulk spectrum, in units of the tunneling rate t , obtained
by diagonalization of the Hamiltonian Eq. (14) with periodic bound-
ary conditions both along a1 and a2. The number of cells along a1

is N = 25 and the mass term is � = 0. The color scale shows the
average position dn of the eigenstates along a1. All eigenstates are
spread out over the lattice, and their average position dn is the middle
of the lattice.

distribution of the eigenstate with eigenvalue εn(k2) along this
chain. The color scale of Fig. 3 shows the average position

dn =
∑

i

xiPn(xi, k2) (20)

of the eigenstate in the strip. We see that states chosen within
the bulklike bands spread uniformly over the whole lattice
strip, and dn lies at the center of the lattice strip. On the con-
trary, states connecting bulklike bands with different Chern
numbers are either strongly localized on the left boundary
(black) or on the right boundary (green) of the lattice: these
are the celebrated edge states. We also see that, in our system,
edge states within a given gap are localized on one side of the
strip when their group velocity is positive and on the other
side of the strip when their group velocity is negative. This
one-to-one correspondence between the sign of the slope of
the energy dispersion relation of an edge state and its spatial
localization changes from one gap to the other. This feature,
particular to our system, emphasizes the chiral character ex-
pected for particle transport at the boundaries. Interestingly,
one can recover the values of the Chern numbers of our bulk
system from the bulk-edge correspondence [60–62]. Within
a given gap, one counts the number of edge states N+ and
N− with positive and negative group velocities that give rise
to a localization on the right side of the strip. The difference
(N+ − N−) is then equal to the sum of the Chern numbers of
all the bands below the gap considered. This recipe allows one
to reconstruct all Chern numbers with their sign. It is easy to
check that we recover the values computed in the preceding
paragraph. For instance, the absence of edge states linking the
third and the fourth bands (N+ = N− = 0) is in agreement
with the fact that the sum of the Chern numbers of the three
lowest bands vanishes, N+ − N− = C1 + C2 + C3 = 0.

The probability distribution Pn(xi, k2) ∝ eγxi of an edge
state decays exponentially with xi when it is localized at
xi = 0 (γ < 0) and grows exponentially with xi when it is

043614-6



SU(3) TOPOLOGICAL INSULATORS IN THE HONEYCOMB … PHYSICAL REVIEW A 98, 043614 (2018)

localized at xi = 2N (γ > 0). The (positive or negative) value
of the characteristic scale 1/γ depends both on the edge
state considered and on the Bloch wave vector k2. This is
emphasized in Fig. 5(b), where we plot γ as a function of k2

for the edge states with the dispersion relation highlighted in
Fig. 5(a). As one can see, the state is localized on the left side
of the strip (xi = 0) as long as its group velocity is negative.
For values of k2 roughly in the range 0.3–0.4, the state
dives into the bulk band and becomes delocalized. The decay
coefficient γ then vanishes. For larger k2 values, the group
velocity becomes positive and the state is now localized on the
right side of the strip (xi = 2N ). Finally, Fig. 5(c) shows the
probability distribution Pn for the different edge states shown
in Fig. 5(a) for a given value of k2 � 0.458. Here again, one
can see the correlation observed in our system between the
sign of the group velocity and the localization center of the
edge state.

IV. TOPOLOGICAL TRANSITIONS

The Chern number of a given isolated band is an invariant
integer-valued topological quantity. Its value can only change
when the band comes in contact with another one. A closing
gap can be achieved by changing parameters in the Hamilto-
nian, for example, the strength of the spin-orbit coupling. In
general, the hopping matrices along links δa can be written
as Ta = −t exp (iAa ) (a ∈ {1, 2, 3}). The traceless Hermitian
gauge field can be written as Aa = αa · λ, where αa is a real
eight-component vector and λ is the eight-component vector
made of the Gell-Mann matrices. We have first monitored
the band structure, gaps, and Chern numbers by considering
various configurations of the three vectors αa . However, for
all configurations that we tested, we could only recover the
set of Chern numbers (3,−6, 3) already found in Sec. III for
the three negative bands, or the opposite set (−3, 6,−3). The
same result was obtained by allowing for imbalanced tunnel-
ing amplitudes, that is, Ta = −ta exp (iAa ), and by varying ta .

More saliently, we found other topological transitions giv-
ing rise to different sets of Chern numbers by adding a spin-
dependent chemical potential term −∑

σ (μσ
An̂σ

A + μσ
Bn̂σ

B )
with spin σ ∈ {−1, 0, 1} to the Hamiltonian. The chemical
potential for A sites reads μσ

A = −�/2 + σδμA and μσ
B =

�/2 + σδμB for B sites. Note that � is the usual (spin-
independent) mass term (see Sec. III). All in all, we found that
the two following spin-dependent chemical potential configu-
rations:

1. δμB = −δμA = �S/2 (spin-dependent mass imbal-
ance)

2. δμB = δμA (spin-dependent local potential)
with an additional spin-orbit coupling along δ1 giving rise
to a larger variety of Chern numbers. We point out that
without this additional spin-orbit coupling, one can still find
Chern numbers differing from ±(3,−6, 3), but only for some
particular values of the spin-orbit couplings along δ2 and δ3.
The additional spin-orbit coupling modifies the value of the
Wilson loop around an elementary plaquette: W ≈ 0.38 − i ×
0.67. Note that in this case |W | < 3, emphasizing that one is
in a non-Abelian regime.

As an example, we consider a system with spin-dependent
mass imbalance (�S = 0) and non-Abelian hopping matrices
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FIG. 5. Localization properties of edge states. (a) Zoom of the
band structure shown in Fig. 3 in terms of the tunneling rate t . We
consider the edge states associated to the eigenvalues highlighted in
red (thick line) and the edge states 1, 2, 3, and 4 (green dots) obtained
at the particular value k2 � 0.458. Edge states 1 and 3 have positive
group velocities, while states 2 and 4 have negative group velocities.
The probability distribution Pn(xi, k2) of these states behave like
exp(γ xi ) with γ � 0 when the state is localized on the right side
of the lattice strip and γ � 0 when it is localized on its left side.
(b) Plot of γ (k2) for the edge states with energy dispersion relation
highlighted in red in panel (a). As one can see, states with negative
group velocities are localized at xi = 0 and γ < 0. For values of
k2 roughly between 0.3 and 0.4, the states dive into the bulk band,
become delocalized, and γ vanishes. For larger k2 values, the group
velocity becomes positive, and the edge states are now localized at
xi = 2N and γ > 0. (c) Plot of ln Pn as a function of xi along a
horizontal zigzag chain crossing the lattice strip for the edge states
1 (light colored line, right side), 2 (dark colored line, left side),
3 (dark colored line, right side), and 4 (light colored line, left side)
indicated in panel (a). Their localization is correlated with the sign
of their group velocity. We see that the closer the state to the bulklike
band, the smaller γ .
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FIG. 6. Chern numbers Cn and band gaps gn+1,n = Min[εn+1(k,�S ) − εn(k, �S )] (in units of the tunneling rate t) as functions of the
spin-dependent mass imbalance �S/2 (in units of the tunneling rate t). Many topological transitions are observed, resulting in various integer
changes of the Chern number values, which are no longer restricted to ±(3, −6, 3) (see text). The red-dotted vertical lines are guides to the
eye emphasizing that a change in Chern numbers is always associated with a vanishing gap between two bands. Gap g23 between 0.3 and
1.3 (and g45 between −0.3 and −1.3) is generally open although amplitudes are small. It closes at the points of transitions between different
sets of Chern numbers, but also at �S/2 ≈ 0.84t . In this case, even though the gap closes and the Chern numbers become ill defined as in a
true topological transition, the Chern numbers remain the same on either side of that critical point. Since H (�S ) maps to −H (�S ), we have
C7−n(�S ) = Cn(−�S ) (see text). For �S = 0, one recovers the expected set of Chern numbers (−3, 6, −3).

T1 = −t V = −t exp (iA1), where A1 = 2π

3
√

3
(λ1 + λ4 + λ6),

T2 = −t D, and T3 = −t U . For the sake of simplicity, we also
choose � = 0. Figure 6 shows the six Chern numbers Cn and
the different band gaps that are obtained as a function of �S .

As one can see, we get new sets of Chern numbers now and
not just ±(3,−6, 3), see Table I. The vertical lines in Fig. 6
are guides to the eye that mark a gap closing between two
adjacent bands. We see that the different gaps do not close
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TABLE I. The different sets of Chern numbers obtained for
the three upper bands for increasing values of �S (see Fig. 6). At
�S = 0, one recovers the expected set of Chern numbers
(−3, 6, −3). The values for the three lowest bands are obtained
from the symmetry relation C7−n(�S ) = Cn(−�S ). They satisfy the
zero-sum rule C6 + C5 + C4 = 0 for each value of �S (see text).

C6 0 −1 −2 −3 −2 −1 0

C5 0 1 2 3 4 5 6 5 4 3 2 1 0
C4 0 −1 −2 −3 −2 −1 0

at the same time. This emphasizes that it is only the pair of
Chern numbers Cn+1 and Cn of the bands involved in the gap
closing gn+1,n = 0 that can change. One has

(Cn+1 + Cn)after = (Cn+1 + Cn)before, (21)

with the other Chern numbers remaining unaffected.
This process can be witnessed in Fig. 7, where we plot

the two topmost bands of the spectrum and the edge states
in between over a topological transition achieved by varying
�S/2. For smaller |�S/2|, we see that the bands are gapped
and the edge states are connecting neighboring bands. For
larger |�S/2| the edge states coincide with the two neigh-
boring bulk bands at their band-touching point. This is the
topological transition point. For even larger |�S/2| the bulk
bands open up again and the edge states move up in sync with
the upper band, no longer connecting neighboring bands. Now
there is one pair of edge states less, that formerly connected
two bands of the spectrum, and we know from the bulk-edge
correspondence that this process must have changed the Chern
number.

Note that this is a purely local process that is responsible
for the change of a global quantity—the Chern number. This is
shown in Fig. 8, where we plot the exponent γ that describes
the decay of the localized edge wave functions for the two
edge states at k2 = 0.16 in Fig. 7. This point in the Brillouin
zone is close to, but not exactly at the transition point. The
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FIG. 8. Edge-state behavior close to the topological transition
point (k2 = 0.16). As shown in Fig. 5, the probability distribution
Pn(xi, k2) of these states behaves like exp(γ xi ), with γ � 0 when
the state is localized on the right side of the lattice strip and γ � 0
when it is localized on its left side. Considering the two edge states
shown in the left half of the plots in Fig. 7, we plot γ over the
spin-dependent mass imbalance �S/2 in units of the tunneling rate
t over the topological transition shown in Fig. 7. The red (dashed)
line corresponds to the edge state localized on the right side (dn ≈
199) of the lattice (Fig. 7), and the blue (solid) line corresponds
to the edge state localized on the left side (dn ≈ 0) of the lattice.
We notice that away from the transition point the edge state wave
function has a smooth behavior during a topological transition. The
insets show the corresponding wave functions for �S/2 = −0.65t

and �S/2 = −0.5t . The wave functions of the same state (red and
blue, respectively) have qualitatively the same shape with only slight
variations in the exponent on both sides of the topological transition.

blue line corresponds to the edge state in Fig. 7 that is
localized on the left dn ≈ 0 side of the lattice strip (blue line).
The red line corresponds to the edge state localized on the
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1.5

1.6

1.7

1.8

1.9

2.0

0.16 0.18 0.20 0.22 0.24 0.16 0.18 0.20 0.22 0.24
0

50

100

150

199

(a) (b) (c)

FIG. 7. Spectrum εn in units of the tunneling rate t during a topological transition. We plot the envelopes of the two uppermost bands
(5th and 6th) and the edge states in between. dn denotes the average localization of the states [Eq. (20)], where the edge states in the gap
are localized on either side of the lattice while the bulk states in the bands are spread out over the whole lattice. The dotted blue lines (resp.
dashed red lines) correspond therefore to edge states localized on the left (resp. right) side of the strip. During a topological transition, crossing
edge states split up at the same point where the bands are touching. The spectra are plotted for N = 100 cells and mass terms �/2 = 0.1t .
(a) �S/2 = −0.43t , (b) �S/2 = −0.56t , (c) �S/2 = −0.71t .
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right dn ≈ 199 side of the lattice strip (red line) accordingly.
The edge-state wave functions at k2 = 0.16 change smoothly
with �S/2, even though a topological transition takes place in
its immediate vicinity.

Although a topological transition takes place in the close
vicinity of the quasimomentum k2 that we choose to plot the
edge-state wave functions for, the edge-state wave functions
change smoothly over the interval of the spin-dependent mass
imbalance �S/2 triggering the topological transition.

Like in Sec. III, finite values of � or �S break the chiral
symmetry, but one has PHk(�,�S )P = −Hk(−�,−�S ).
As a consequence, changing the sign of all the mass im-
balances amounts to flipping the sign of the eigenvalues of
the Hamiltonian, εn(k,−�,−�S ) = − ε7−n(k,�,�S ), and
thereby one can derive that C7−n(�,�S ) = Cn(−�,−�S ).
This symmetry in the Chern numbers can be readily checked
in Fig. 6, obtained for � = 0. One also confirms that gaps
have the same symmetry, gn+1,n(�S ) = g7−n,6−n(−�S ), from
which one concludes that g43 is symmetric in �S . We also note
that the gap g43 only closes at �S = 0 but that this degeneracy
does not modify C3 and C4. As a consequence, the change
in Chern numbers after a gap closing can only occur within
the subset (C1, C2, C3) or within (C4, C5, C6). The Chern
numbers thus satisfy again the separate zero-sum rules C1 +
C2 + C3 = C4 + C5 + C6 = 0. Finally, all bands eventually
reach a vanishing Chern number for large enough values of
|�S |, even though the Berry curvatures neither vanish nor
display any particular symmetry. Figure 9 shows a plot of the
Berry curvature of the second band ε2(k,�S ) in the Brillouin
zone obtained for �S = −2.6t where C2 = 1 (top plot) and
for �S = −4t where C2 = 0 (bottom plot). In both cases, the
Berry curvatures exhibit qualitatively similar structures.

As explained above, such a rich variety of Chern numbers
and topological transitions have been obtained by imposing
spin-dependent chemical potentials on sites A and B and
different spin-orbit couplings along the three links, keeping
intact, at the same time, the underlying triangular Bravais
symmetry of the honeycomb lattice. We have studied the
same situation on the square lattice (not shown here) but
were not able, in general, to find such a rich variety of
Chern numbers and topological transitions. More precisely,
for the honeycomb lattice, a generic configuration, i.e., chosen
at random, of different spin-orbit couplings along the three
links together with spin-dependent chemical potential almost
always leads to Chern numbers differing from ±(−3, 6,−3).
The situation is the opposite for the square lattice: for random
spin-orbit couplings and spin-dependent chemical potentials,
a lot of configurations still correspond to Chern numbers
equal to ±(3,−6, 3). From that point of view, the SU(3)
model on the honeycomb lattice exhibits a band structure with
richer topological properties. Another argument is that tight-
binding models have a finite number of bands and the Chern
numbers sum up to 0. Since the square lattice has three bands,
leading to C1 + C2 + C3 = 0, and the honeycomb lattice has
six, leading to C1 + C2 + C3 + C4 + C5 + C6 = 0, the set
of all possible Chern numbers is obviously larger for the
honeycomb lattice than for the square lattice.

A similarly rich variety of topological transitions and
Chern numbers is obtained by allowing for complex αa in
the gauge fields Aa = αa · λ. However, this situation, even if

FIG. 9. Plot of Berry curvature �2(k, �S ) and the level curve
�2 = 0 for the second band ε2(k, �S ), see Fig. 6. Positive regions
are marked by “+” signs and negative regions by “–” signs. Top
plot: �S = −2.6t (C2 = 1). Bottom plot: �S = −4t (C2 = 0). Both
Berry curvatures exhibit qualitatively similar structures. In particular,
there is no obvious particular pattern or symmetry explaining why C2

vanishes when �S = −4t .

experimentally feasible, does not correspond to a pure SU(3)
gauge potential anymore.

We emphasize that the bulk bands remain well isolated
for a large variety of gauge fields Aa and for many values
of the spin-dependent mass imbalance �S . However, even
though the bands do not touch at any point in the Brillouin
zone, they can still overlap on the energy axis, which means
that there is no charge gap separating them. This situation is
depicted in Fig. 10 for � = �S = 0, T1 = −t U , T2 = −t D,
and T3 = −t V . But, since the Chern numbers are still well
defined, topological edge states linking the different bands
still appear in the strip lattice configuration. On the other hand,
the absence of charge gaps prevents the system from behaving
like a Chern insulator and no Hall plateaus are expected in
transverse conductance measurements.

V. CONCLUSION

We have studied time-reversal symmetry and topological
properties of a noninteracting tight-binding model on the
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FIG. 10. Band structure εn (in units of the tunneling rate t) for the
strip lattice configuration when � = �S = 0, T1 = −tU , T2 = −tD,
and T3 = −tV (see text). Even though the bulklike bands (their
envelopes plotted in gray here) are well isolated and thus never touch
anywhere in the Brillouin zone, there is no finite charge gap sepa-
rating them anymore. The Chern numbers being well defined, edge
states are still present and link the different bands. The color scale
on the right side shows the average position dn of the eigenstates
along a1. The dotted blue lines (resp. dashed red lines) correspond
therefore to edge states localized on the left (resp. right) side of the
strip. Because of the absence of a charge gap, the system is not a
Chern insulator.

honeycomb lattice with SU(3) spin-orbit couplings. We have
emphasized that, in marked contrast with lattice SU(2) models
which are always topologically trivial, these SU(3) models
can break time-reversal invariance. As a consequence, their
bulk band structure becomes topologically nontrivial: bulk
bands have nonzero Chern numbers and chiral edge states
develop in a lattice strip configuration with open boundary
conditions. We have also shown that SU(3) models on the
honeycomb lattice allow for a larger variety of sets of Chern
numbers than on the square lattice [49], where Chern numbers
are mostly multiples of 3. This is due to the topology of the
honeycomb lattice, which has two sites per cell and three
nonequivalent links, allowing for three different spin-orbit
couplings, whereas the square lattice only allows for two
spin-orbit couplings on two different links.

A natural extension of the present work is to include
interactions in our model and understand their impact on the
topological properties of our system. In particular, one expects

the emergence of nontrivial spin textures in the ground state
to break the translation symmetry of the lattice [32,33,50,52],
and because SU(3) is a larger gauge group than SU(2), we
expect a much larger variety of topological properties for these
spin textures [19,54]. In addition, the topological properties of
the band structure of the noninteracting system are expected
to translate into topological properties of the band structure
of the low-energy excitations: magnons in Mott phases and
Bogoliubov modes in the superfluid phases [55].
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APPENDIX A: GELL-MANN MATRICES

The generators of the SU(3) group are ga = λa/2, where
the λa are the Gell-Mann matrices:

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ (A1)

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ (A2)

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ (A3)

λ7 =
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠ λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A4)

They satisfy Tr(λaλb ) = 2δab. One can easily check that

�λ1�
−1 = −λ6 �λ2�

−1 = −λ7 �λ4�
−1 = λ4

�λ5�
−1 = λ5 �λ6�

−1 = −λ1 �λ7�
−1 = −λ2

�λ3�
−1 = λ3 − √

3λ8

2
�λ8�

−1 = −λ8 + √
3λ3

2
.

(A5)

APPENDIX B: TIME-REVERSAL AND
UNITARY MATRICES

Time-reversal symmetric unitary matrices U ∈ U(3) have
a parametrization Ueven = ± 1

1+cos2 φ
Meven with

Meven =

⎛
⎜⎜⎝

2 cos2 φeiχa 2 sin φ cos φe
i
2 (χa+χb )eiπn sin2 φeiχb

−2 sin φ cos φe
i
2 (χa−χb )eiπn 2 − 3 sin2 φ 2 sin φ cos φe− i

2 (χa−χb )e−iπn

sin2 φe−iχb −2 sin φ cos φe− i
2 (χa+χb )e−iπn 2 cos2 φe−iχa

⎞
⎟⎟⎠, (B1)

where the angles φ, χa , and χb are arbitrary real parameters and n is an arbitrary integer. Since Det(�Ueven�
−1) = Det(U ∗

even) =
(Det Ueven)∗ = Det Ueven, we conclude that Det Ueven is real and Ueven is unimodular: Det Ueven = ±1. This can be directly
checked from the matrix expression given above. This result is in fact general: any unitary N × N matrix which is even under
time reversal is unimodular.
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If U is odd under time reversal, a convenient parametrization is Uodd = ± 1
1+cos2 φ

Modd with

Modd =

⎛
⎜⎜⎝

2 cos2 φeiχa 2 sin φ cos φe
i
2 (χa+χb )eiπn sin2 φeiχb

−2i sin φ cos φe
i
2 (χa−χb )eiπn i(2 − 3 sin2 φ) 2i sin φ cos φe− i

2 (χa−χb )e−iπn

− sin2 φe−iχb 2 sin φ cos φe− i
2 (χa+χb )e−iπn −2 cos2 φe−iχa

⎞
⎟⎟⎠. (B2)

Now we have (Det Uodd)∗ = Det(−Uodd) = −Det Uodd, and
Det Uodd = ∓i is purely imaginary (as can be directly checked
with the above matrix expression). As a consequence, Uodd

does not belong to SU(3). Alternatively, SU(3) matrices
breaking time-reversal invariance (�U�−1 = U ) cannot be
odd. This result holds true for any unitary N × N ma-
trix which is odd under time reversal provided N is odd.
Indeed, (Det Uodd)∗ = Det(−Uodd) = (−1)NDet Uodd shows

that Det Uodd is purely imaginary when N is odd. Thus Uodd

cannot belong to SU(N ), and SU(N ) matrices breaking time-
reversal invariance cannot be odd when N is odd. When N

is even, Uodd is unimodular. This means that it is possible to
have SU(N ) matrices which are odd under time reversal when
N is even, with the notable exception of N = 2, as shown in
the paper.
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