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Momentum-resolved detection for high-precision Bragg atom interferometry
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We demonstrate a momentum-resolved detection technique in a sensitive Bragg atom interferometer, where
the populations of the atomic final states are measured by the Raman spectroscopy method. This method avoids
cross-couplings due to the space overlapping of atomic states and significantly increases the fringe visibility
without requiring spatial separation. Thanks to this detection method, we are able to achieve the high fringe
visibility of greater than 80% at an interrogation time of T = 1 ms. With T = 250 ms and a visibility of 10%,
it shows an improved resolution for gravity measurements at the level of 7×10−10g in an integration time of
1000 s. This work can be applied in developing compact portable sensing devices or improving the precision of
tests on fundamental physics.
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I. INTRODUCTION

The cold-atom interferometer has achieved outstanding
performance for high-precision measurements, such as mea-
surements of gravity [1–3] and its gradients [4], the Sagnac
effect [5], the fine-structure constant α [6], Newton’s gravi-
tational constant G [7], the magnetic field [8], and tests of
fundamental physics [9–13]. For such interferometers, mea-
surement of the populations in each final state was achieved
with low-noise atom detection methods. Standard detec-
tion strategies for atomic final-state detection include mea-
suring scattered fluorescence [14] or optical absorption
[15,16], whose signal-to-noise ratio (SNR) can be as high
as several hundreds or even better. Based on these two
detection strategies, there are many implementations for
different experimental apparatuses, such as two-state se-
quential detection [17], two-state simultaneous detection
[18], frequency modulation imaging [19], and Raman spec-
troscopy (RS) imaging [20,21]. Each individual detec-
tion technique is best suited for a particular system. Re-
cently, Bragg atom interferometers have received more
and more attention due to their property of multiphoton
momentum transfer and unchanged internal atomic states
[22–25]. However, the accompanying problem is that the
interferometer’s output ports cannot be separated enough in
space to identify them independently, due to the thermal
expansion of the atomic cloud and the short flight time be-
fore arriving at the detection region [26,27]. More important,
because Bragg transitions usually couple multiple momentum
states, an impure detection also induces a multistate Bragg
interferometer and results in systematic phase shifts [24,28].
Therefore, a suitable detection technique is essential in a high-
precision Bragg atom interferometer. As we know, coupling
atomic ground states with counter-propagating laser beams in
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Raman transitions is very efficient and can happen in a narrow
atom velocity distribution that meets the resonant condition.
Thus, the interferometer’s output states at different velocities
can be imaged in RS by scanning the frequency difference of
Raman beams.

In this paper, we perform a momentum-resolved detection
scheme based on RS for the Bragg atom gravimeter. This
scheme measures the atomic momentum distribution in the
frequency domain and completely identifies the overlapped
atomic cloud in momentum space without requiring an ex-
tremely long flight time. To simplify practical experiments,
we propose and demonstrate a compact and robust laser
system used to perform both Bragg and Raman transitions
with a single laser source. Compared with time-of-flight
(TOF) detection, RS detection greatly improves the fringe
visibility, especially at long interrogation times 2T , allowing
a high fringe visibility, greater than 80%, to be observed. In
particular, we explore the effect of the Raman pulse duration
on the fringe contrast, and the experimental results are in
agreement with the theoretical model. Finally, we demonstrate
a high-sensitivity Bragg atom interferometer based on the RS
detection method, which achieves a short-term sensitivity of
1.9×10−8g/

√
Hz for gravity measurements.

II. THEORY

In nth-order Bragg diffraction, the atom coherently scatters
2n photons from a pair of counterpropagating laser beams,
without changing its internal state. The atom thereby acquires
a momentum of 2nh̄k, where h̄k is the photon momentum. If
nth-order Bragg diffraction acts as atom-optic beam splitters
(π/2 pulses) and mirrors (π pulses) in the Mach-Zehnder
(π/2-π -π/2) configuration, the mean transition probability
Pn to the final state |p − 2nh̄k〉 is determined by the inter-
ference phase shift �� as Pn = [1 + C cos(��)]/2, where
C is the contrast of the interferometry fringe. The normal-
ized transition probability Pn is given by Pn = Np−2nh̄k/

(Np−2nh̄k + Np ), where Np and Np−2nh̄k denote the atomic
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FIG. 1. (a) TOF detection scheme for the Bragg atom interferom-
eter. (b) Expected time interval �t for atoms in different momentum
states as a function of the atomic free fall distance between moments
of the final π/2 pulse and the atoms reaching the center of the
detection region. Here, the initial velocity of the atoms at the moment
of the final π/2 pulse is v0 = 1.88 m/s. With a typical free-fall
height of H0 = 0.3 m, the interferometer’s output states with low-
order diffraction (n � 5) are not sufficiently separated before being
detected. (c) Atomic velocity spread and its corresponding effective
frequency width, as a function of the Raman-pulse duration. The
dashed line represents the theoretical calculation, which is a good fit
for the experimental results (red circles). (d) Theoretical RS of atoms
under quasi-Bragg diffraction. The detecting Raman pulse duration
is 100 μs in the simulation. The three signals (black, dashed red, and
dashed blue lines) indicate the atomic momentum distribution in the
frequency domain, which includes the 0h̄k, 2h̄k, and 4h̄k outputs,
respectively.

population of the interferometer’s output states |p〉 and
|p − 2nh̄k〉, respectively. They can be directly detected in
the form of TOF signal by photodetectors [26,29] and can be
expressed as

Np =
∫ ∞

−∞
Vp(t )dt,

Np−2nh̄k =
∫ ∞

−∞
Vp−2nh̄k (t + �t )dt. (1)

Vp(t ) and Vp−2nh̄k (t ) are the detected TOF signals for the |p〉
and |p − 2nh̄k〉 momentum states, respectively, and �t is the
time interval between the |p〉 and the |p − 2nh̄k〉 momentum
states arriving at the center of the detection region from the
final π/2 pulse. Figure 1(a) shows the TOF detection scheme
of our experimental apparatus. Once the final π/2 pulse is
completed, atoms with different momentum states begin to
separate in space until they reach the detection region. When
the atoms reach the center of the detection region with a
free-fall height of H0 between the last interferometer pulse
and the center of the detection region, the equation of motion
can be written as

H0 = (v0 − 2nvr )tn + 1
2gt2

n , (2)

where v0 is the initial velocity of the atoms at the moment
of the final π/2 pulse, and tn is the mean flight time for the
|p − 2nh̄k〉 momentum state with a free-fall height of H0. By
solving Eq. (2), tn can be written as

tn = −v0 + 2nvr +
√

2gH0 + (v0 − 2nvr )2

g
. (3)

Then the time interval �t can be calculated as �t = tn − t0
and developed further as

�t =
√

2gH0 + (v0 − 2nvr )2 −
√

2gH0 + v0
2 + 2nvr

g
. (4)

For a high initial velocity v0 compared to the recoil velocity
of multiphotons (v0 � 2nvr ), Eq. (4) can be rewritten as

�t = 2nvr

g
. (5)

There is a limit to the time interval �t , which is proportional
to Bragg orders n. In other words, if the two output states
need to be clearly identified in the TOF signal, their diffraction
order must be high enough. Moreover, for a compact interfer-
ometer, the available free-fall distance for spatial separation is
also limited.

In our apparatus, the atomic source is launched to a height
of 0.66 m above the magneto-optical trap (MOT) center, the
center of the detection region is 0.18 m above the MOT center,
and the 1/e2 Gaussian width of the falling TOF signal is w =
2.3 ms. The initial velocity of the atoms at the moment of the
final π/2 pulse is v0 = 1.88 m/s. The two output states of the
interferometer can be spatially identified only when their time
interval is set to �t � 2w. Figure 1(b) shows the expected
time interval �t as a function of the atomic free-fall distance
H0 for a variety of Bragg orders n, according to Eq. (4).
With a typical free-fall height of H0 = 0.3 m, the interfer-
ometer’s output states with low-order diffraction (n � 5) are
not sufficiently separated before being detected. Specifically,
if the two output states (n = 0 and n = 5) in a fifth-order
Bragg atom interferometer need to be clearly identified, then
an extra flying distance of 3 m is required. Obviously, this will
further enlarge the whole vacuum chamber and is inadvisable,
especially for a compact quantum sensor. But if we employ
the RS method, the problem of requiring a long flight time
will no longer exist because RS is sensitive to the momentum
of atoms and is able to clearly identify the population of the
wave packet in frequency domain.

The RS method is based on two-photon-stimulated Raman
transitions [30], which are usually used to coherently manip-
ulate atomic wave packets in the atom interferometer. In our
apparatus, a prevelocity selection Raman pulse is applied to
atoms in the state preparation stage, which ensures that the
width of the atoms’ velocity spread in the vertical direction
is smaller than the recoil velocity vr . As shown in Fig. 1(c),
the width of the velocity spread σv is about 0.3vr (30 kHz)
in the case of a Raman pulse duration of 100 μs. When the
atoms fall back to the detection chamber, Raman beams are
used again to measure the atomic momentum distribution in
the frequency domain. For a typical three-level system, we
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define the detuning δ for two-photon transitions as

δ = ωeffR −
(

ωba + pkeffR

m
+ h̄k2

effR

2m

)
, (6)

where the effective laser frequency ωeffR is defined as ωeffR =
ωL1 − ωL2, ωL1 and ωL2 are the frequencies of two counter-
propagating Raman beams, the effective wave vector keffR of
Raman beams is defined as keffR = kL1 + kL2 ≈ 2k, kL1 and
kL2 are the wave vectors of two counter-propagating Raman
beams, pkeffR/m is the Doppler shift, and h̄k2

effR/2m is the
recoil shift. A Doppler-sensitive configuration with counter-
propagating Raman beams is chosen for velocity selection.
Atoms with a certain velocity component parallel to the
Raman beams will be exactly in resonance when the Doppler
shift compensates the detuning. Theoretical calculations of
the velocity selection with different pulse durations have been
performed [27,31]. In our experiments, the theoretical curve
(dashed curve) is a good fit for the experimental results (red
points) as shown in Fig. 1(c). We find that the effective fre-
quency width (1/e2 Gaussian width) of the Raman transitions
can reach a few kilohertz with long-pulse durations, which
is a key component for identifying atomic momentum states
in RS.

In quasi-Bragg diffraction [32], the adjacent momentum
states have a momentum difference of �p = 2h̄k, corre-
sponding to a frequency difference in RS detection of

�ωeffR = keffRvr, (7)

where vr ≈ 5.9 mm/s is the single-photon recoil velocity on
the 87Rb D2 line, and the corresponding frequency interval of
the adjacent momentum states is calculated to be �ωeffR =
2π×30.1 kHz. In fact, the width of the Raman transition in
the frequency domain can be several times smaller than the
frequency interval �ωeffR, when the Raman pulse duration τ

is long enough. A theoretical RS of quasi-Bragg diffraction
up to second order with a detecting Raman pulse duration
of 100 μs is shown in Fig. 1(d). It shows that adjacent
momentum states can be clearly resolved in the frequency
domain. With this method, the final superposition states can
be identified without requiring a long flight time any more,
and their respective populations can be obtained from RS.

III. EXPERIMENTS

A. The laser system

Extra Raman beams are required for the present detection
technique. Figure 2(a) shows a schematic of the laser system,
based on a frequency-doubled technique, used to drive both
the Bragg transitions and the Raman transitions with a single
laser source. The 1560-nm seed laser injects an Er-doped fiber
amplifier with a peak emission power of 30 W. The output
beam from the Er-doped fiber amplifier is then frequency dou-
bled through a periodically poled magnesium-oxide-doped
lithium niobate (PPMgO:LN) crystal and stabilized with a red
detuning of 3.2 GHz to the |F = 1〉 → |F ′ = 2〉 transition in
the 87Rb D2 line. Going through the same optical path, the
Bragg beams and the Raman beams can be realized, respec-
tively, by choosing whether or not to modulate the frequency
of the seed laser. Bragg beams require a small frequency

FIG. 2. (a) Optics of the Raman beams and Bragg beams. An
external cavity diode laser (ECDL) at 780 nm is locked to the
|F = 2〉 → |F ′ = 3〉 transition in the 87Rb D2 line. The ECDL
is then used as an frequency reference to lock the frequency of
distributed feedback (DFB) laser at 1560 nm. Finally, the doubled
frequency of the DFB laser is stabilized with a red detuning of
3.2 GHz to the |F = 1〉 → |F ′ = 2〉 transition in the 87Rb D2 line.
The Raman beams are generated by adding sidebands on the seed
laser with an electro-optic modulator (EOM) driven by a dielectric
resonator oscillator (DRO) operating at 6.8 GHz. The Bragg beams
require a small frequency difference between the two light fields; this
is realized by two acousto-optical modulators (AOM1 and AOM2).
A third, AOM3, shapes the Bragg pulses with a Gaussian ampli-
tude profile and the Raman pulses with a square-wave amplitude
profile. (b) Experimental time sequence for Raman spectroscopy
detection with multiple launches (RSML). Complete RS requires
multiple launches, and the whole time used for a single run is 1 s.
(c) Experimental time sequence for Raman spectroscopy detection
with a single launch (RSSL). The delay time between the two Raman
pulses is about 14 ms.

difference between the two light fields; it is realized by two
acousto-optical modulators (AOM1 and AOM2, respectively)
with perpendicular polarizations. Raman beams are generated
by adding sidebands with an electro-optic modulator driven
by a dielectric resonator oscillator operating at 6.8 GHz.
Simultaneously, the AOM2 is closed to avoid the effect of
multiple frequencies. With this Raman-beam scheme, one can
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ensure a high power and avoid the problem of phase noise due
to variations of optical paths. Compared to the usual method
of using at least two lasers for those frequency components
[26], this compact scheme for high-power Bragg beams and
low-phase-noise Raman beams uses only a single laser source.

B. Atom interferometry

The Bragg atom interferometer is based on interfering en-
sembles of 87Rb atoms in an atomic fountain configuration [3].
Initially, about 109 atoms are trapped within 200 ms in a three-
dimensional magneto-optical trap (3D-MOT) from the intense
beam of a 2D-MOT. The trapped atoms are then further
cooled down in a moving optical molasses to a temperature of
9 μK. When the atoms arise to the detection region, a com-
bination of microwave and optical Raman pulses is applied
to prepare about 106 atoms in the magnetic-field-insensitive
state |F = 1,mF = 0〉 with a typical vertical velocity spread
of about 0.3vr . Once the atoms are prepared with a narrow
velocity spread, the sample is ready for interferometry using
Bragg diffraction.

The resonance condition for Bragg diffraction is δB =
ω0 + 4nωr , where ω0 is the Doppler frequency shift due to
free fall, ωr is the single-photon recoil frequency, and n is
the order of diffraction. In order to maximize the diffraction
efficiency, the Bragg pulses are shaped into a Gaussian am-
plitude profile by controlling the radio-frequency power of
the AOM3 driver. The Bragg beams and Raman beams reach
the vacuum chamber via a polarization-maintaining fiber and
are collimated at a 1/e2 intensity diameter of 18 mm. For
four-photon Bragg transitions, each Bragg beam has a peak
power of 200 mW and a π pulse duration of στ = 15 μs.
In particular, to decrease the power instability and increase
the long-term stability of gravity measurements, the power of
each Bragg beam is locked separately. To suppress the residual
vibration noise of the Bragg mirror, an ultralow-noise active
vibration isolator system is employed in our apparatus [3].

When the atoms reach the elongated magnetically shielded
interferometry region, we constructed a Mach-Zehnder in-
terferometer by applying the π/2-π -π/2 sequence of three
Bragg pulses. The interference phase �� is connected to the
local gravitational acceleration g by �� = n(keffBg − α)T 2,
where keffB is the effective wave vector of Bragg transitions,
α is the sweeping rate, and T is the time of free evolution
between pulses. Since the interference phase �� is propor-
tional to n, the resolution of g measurements can be increased
with n.

To measure the population of the interferometer’s output
states independently, the RS detection method is used to
detect the falling atoms, on the basis of two-state sequential
detection [33]. Previously, all atoms were populated in state
|F = 1〉. Once the interference finishes, the detecting Raman
pulse with a frequency ωeffR is switched on. Then the selected
atoms at a specific velocity are imaged in state |F = 2〉,
and their transition probability is obtained by the normalized
detection method. Finally, the RS of atomic distribution is
obtained by sequentially scanning the effective Raman fre-
quency ωeffR. In this way, a complete RS detection requires
multiple launches, and the time sequence of RS detection
with multiple launches (RSML) is shown in Fig. 2(b). The

FIG. 3. Typical TOF signals of the first-order interferometer
using RSSL detection.

population of final states |p〉 and |p − 2nh̄k〉 can be obtained
by integrating the atomic distribution in RS. This RS tech-
nique provides a tool for momentum-resolved detection. Still,
the low sampling rate due to the RSML method limits the
bandwidth and sensitivity of our system.

In order not to reduce the sampling rate, a scheme of RS
detection with a single launch (RSSL) is designed for the two
output states, whose corresponding time sequence is shown
in Fig. 2(c). Here, a first-order interferometer is taken as our
example. When the output states fall back to the detection
region, the detection beam resonant with the transition of
|F= 2〉 → |F ′= 3〉 is switched on. The n = 0 order atoms
are then imaged in the |F = 2〉 state window by the first de-
tecting Raman pulse, which has an optimal Raman resonance
frequency for n = 0 order atoms and pumps the n = 0 order
atoms from the |F = 1〉 to the |F = 2〉 state. Similarly, the
n = 1 order atoms are correspondingly imaged in the |F = 1〉
state window by the second detecting Raman pulse. Typical
TOF signals with RSSL detection are shown in Fig. 3. In this
way, the interferometer’s output states are separately imaged
in a single passing detection region. Compared to traditional
TOF detection, RSSL detection does not reduce the sampling
rate and helpfully selects more purity clouds for detection.
Moreover, the repumping beam is no longer needed in this
detection scheme.

IV. RESULTS AND DISCUSSION

A. The contrast

The contrast of the interferometer is mainly dependent on
the efficiency of the Bragg mirrors and beam splitters. In the
quasi-Bragg regime, we set the pulse’s amplitude and duration
appropriately to optimize the efficiency of Bragg transitions.
Direct measurement of the momentum distribution of the first-
order Bragg diffraction has been performed using the RSML
method, and the adjacent momentum states in the frequency
domain are completely separated as shown in Fig. 4(a). By
integrating the atomic distribution, a π pulse efficiency of
88% and a π/2 pulse efficiency of 50% are achieved for
first-order Bragg diffraction.

043611-4



MOMENTUM-RESOLVED DETECTION FOR HIGH- … PHYSICAL REVIEW A 98, 043611 (2018)

FIG. 4. (a) RS curves of Bragg transitions with n = 1, which
represent the atomic distribution of the Bragg π/2 pulse (red curve)
and π pulse (black curve). (b) Typical Bragg atom interferometer
fringes (black points) for n = 1 at T = 1 ms. The solid red line is a
least-squares sinusoidal fitting to the experimental data. One fringe
consists of 40 points, and every point is obtained from the Raman
spectroscopy as the shaded region in the fringe.

Because of the high efficiency of low-order Bragg transi-
tions, most experiments have observed a high fringe contrast
[34–36]. Using the RSML method, we perform the inter-
ference experiment by applying the π/2-π -π/2 sequence of
three Bragg pulses. Figure 4(b) shows the high visibility
of 81% for n = 1 at T = 1 ms, approaching the case of a
Bose-Einstein condensate source [37]. The high diffraction
efficiency and efficient RS detection contribute to this high
visibility. The least-squares sine fitting of the fringe gives an
uncertainty of 8 mrad, indicating that this detection method
can be applied to some precision measurements.

In the Bragg atom interferometer, to increase the sensitiv-
ity, it is imperative to maintain a high fringe visibility at a
large value of T . However, there are many factors contributing
to the loss of fringe visibility at a long interrogation time
T , such as thermal expansion, wavefront distortions of the
Bragg beams, and the tilt of the fountain. In addition, when
the Raman pulse duration for RS detection is not large enough,
the neighboring momentum states will be detected simultane-
ously, and the corresponding fringe contrast will be reduced.
In this subsection, we study the fringe contrast theoretically
and experimentally as a function of the detecting Raman
pulse duration τ . In particular, we analyze the dependence
of the fringe visibility on the interrogation time T using RS
detection, compared with traditional TOF detection.

The velocity distribution of atoms in momentum state
|p − 2nh̄k〉 is a Gaussian lineshape as

gn = 1√
2πσv

e
− [v−(vd −2nvr )]2

2σv2 , (8)

where vd − 2nvr is the center of the velocity family dis-
tribution and σv is its width. Initially, the ensemble is in
the |F = 1〉 state. After a Raman pulse, the pulse-dependent
probabilities PF=2(τ ) of occupying the internal states |F = 2〉
are after Ref. [31],

PF=2(τ ) = |�1|2|�2|2
4�̄2�2

sin2

(
�̄τ

2

)
, (9)

where �1 and �2 are the single-photon Rabi frequencies
of the two Raman beams, respectively, and �̄ is the two-
photon Rabi frequency driven by a Raman pair. Here, the
Raman frequency ωeffR (ωeffR = 2πf ) is introduced by the
two-photon Rabi frequency �̄ and can be written as

�̄2 =
( |�1|2

4�
− |�2|2

4�
− δ

)2

+ |�1|2|�2|2
4�2

,

δ = ωeffR − (ωba + keffRv + keffRvr ). (10)

Considering the atomic velocity distribution gn, the lineshape
of the RS for the momentum state |p − 2nh̄k〉 can be written
as

g′
n(f ) =

∫ +∞

−∞
PF=2(τ )gndv

=
∫ +∞

−∞

|�1|2|�2|2
4�̄2�2

sin2

(
�̄τ

2

)
1√

2πσv

e
− [v−(v0−2nvr )]2

2σv2 dv.

(11)

The population of nth-order atoms can be calculated by

Pn =
∫ fn+σ

fn−σ

g′
n(f )df, (12)

where fn is the resonance frequency of nth-order atoms, and
a 2σ frequency width of RS covers most the atoms. For
quasi-Bragg diffraction, the normalized populations P0 and
Pn, respectively, denote the atomic population of the orders of
0 and n. In fact, besides the detected atoms of the target states,
there are some mixed adjacent-state resonant atoms due to the
short Raman pulse duration used in detection, which decreases
the contrast. Here, we take n = 0 order atoms, for example.
After a pulse duration τ , the populations of n = 0 order atoms
in RS are

P ′
0 =

∫ f0+σ

f0−σ

(g′
0(f ) + g′

±1(f ) + . . . g′
±n(f ))df. (13)

For the nth-order Bragg process, the contrast C can be
given as the difference between maximum and minimum
normalized populations when observing n = 0 order atoms:

C = P0 max − P0 min

P0 max + P0 min
. (14)

Considering that atoms in momentum states for n = ±2 are
less involved in interference, we mainly consider the effect of
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FIG. 5. Comparison between the theoretical simulation and the
experimental data for the fringe contrast.

n = ±1 order atoms and treat them as the background atoms.
Therefore, the contrast of the RS detection is calculated via
the expression

Cdet = C

1 + 2AP+1 + 2BP−1
, (15)

where A and B are coefficients proportional to the num-
ber of n = +1 and n = −1 order atoms. Figure 5 shows
experimental data (red circles) illustrating the fringe contrast
Cdet as a function of the detecting Raman pulse duration τ .
The fringe contrast is observed with n = 2 at an interroga-
tion time of T = 60 ms. Using Eqs. (11)–(15) and a rough
estimate of the frequency width (σ = 1/τ ), the simulation
results shown in Fig. 5 (dashed black curve) agree well with
the experimental results. The fringe contrast increases rapidly
with increasing Raman pulse duration τ in detection, until the
duration is more than 100 μs, at which the contrast does not
increase due to the lower number of overlapped atoms in the
RS.

In order to maximize the visibility, a 100-μs detecting
Raman pulse is selected for the Bragg atom interferometer.
Figure 6 shows the fringe visibility for first and second Bragg
order as a function of the interrogation time T using RS
detection, compared with traditional TOF detection. Bene-
fiting from the momentum-resolved detection, the visibility
obtained with RS detection is significantly higher than that
with TOF detection. At a visibility of 10%, we have achieved a
Bragg atom interferometer with the long interrogation time of
up to T = 250 ms for n = 1 and T = 180 ms for n = 2, which
provides an important guarantee for high-sensitivity Bragg
atom interferometry. In our apparatus, the fringe visibility at a
short interrogation time is mainly limited by the efficiency of
the π pulse, and at a long interrogation time is mainly limited
by the thermal expansion of the atomic cloud.

B. The sensitivity

In multiphoton Bragg diffraction, the sensitivity of the
interferometer is proportional to nT 2. Therefore, we struggle
to achieve high-precision measurements both with a high-

FIG. 6. (a) First-order fringe visibility for RS detection and TOF
detection (filled and open blue circles, respectively) as a function
of the interrogation time T . (b) Second-order fringe visibility for
RS detection and TOF detection (filled and open blue squares,
respectively) as a function of the interrogation time T . The visibility
obtained with RS detection is higher than that with TOF detection.
Due to the limitation of the pulse efficiency, the interferometer with
n = 1 has a higher visibility and longer interrogation time T than the
one with n = 2.

order n and with a long interrogation time T . Constrained
by the atomic source’s momentum distribution, we have at-
tained a π pulse efficiency of 81% with n = 2 and the long
interrogation time of T = 180 ms with a fringe visibility of
about 10%–15%. By recording the long-term interferometer
phase using RSSL detection, a sensitivity of up to �g/g =
4.0×10−8/

√
Hz is achieved. For the Bragg atom interfer-

ometer, it should be noted that while the estimated phase
noise is proportional to n, the sensitivity of the interferometer
does not depend on n. In fact, we have achieved a T = 250
ms, n = 1 interferometer, which possesses nearly the same
accumulated phase as the T = 180 ms, n = 2 interferometer
but has a smaller phase noise contribution for the sensitivity.
Using the fringe-locked method, we achieved a continuous
g measurement over 22 h as shown in Fig. 7(a). This figure
shows that the experimental data with a 60-s averaging period
(blue points) are consistent with the theoretical model of
solid Earth tide (red curve), indicating that the Bragg atom
interferometer using RSSL detection is robust in continuous
measurements. The residual of the experimental data and tidal
model is shown in Fig. 7(b). The Allan standard deviation
of the residual acceleration is shown in Fig. 7(c). It shows
that this device has achieved a gravitational acceleration sen-
sitivity of �g/g = 1.9×10−8/

√
Hz. After an integration time

of 1000 s, the resolution of 7×10−10g can be achieved. By
comparison, using traditional TOF detection we have only
achieved a maximum interrogation time T = 200 ms for the
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FIG. 7. (a) Continuous gravity measurements of more than
22 h operated by our gravimeter on 23 August 2017. Each data point
(blue point) represents an average of 60 individual measurements
in 60 s. The red curve is the theoretical model of solid Earth tide.
(b) Residual of the experimental data and the solid Earth tide theory.
(c) Allan deviation of the g measurement.

first-order interferometer, with a gravitational acceleration
sensitivity of �g/g = 3.2×10−8/

√
Hz.

We have demonstrated a Bragg atom interferometer with a
high fringe visibility and sensitivity by using the RS detection
method and solved the detection problem of overlapped output
states. However, with an increase in the diffraction order n,
the maximum diffraction efficiency and interrogation time T

decrease, and the corresponding detection noise increases. We
attribute this consequence to the transverse momentum spread
of the atomic source. In future work, we expect to improve the
diffraction order by reducing the transverse momentum spread
of the samples.

C. The noise of RSSL detection

A detection system with a high SNR is required in a
precision atom interferometer. The detection noise consists
of three main parts [17,33]: the quantum projection noise
σP (QPN), the electronic noise of the photodiodes σP (EN), and
the contribution of the frequency and intensity noise of de-
tection beams σP (DN). The quantum projection noise σP (QPN)

and the electronic noise σP (EN) are related to the number
of detected atoms. In our experiment, about 105 atoms fall
back to the detection region after the interference. For the
traditional TOF detection method, σP (QPN), σP (EN), and σP (DN)

are measured to be 0.16%, 0.21%, and 0.18%, respectively.

FIG. 8. Allan standard deviation of the transition probability σP

for RSSL detection.

For the typical RSSL detection, when the atoms fall back
to the detection region, two Raman π pulses are used to
select the atoms of n = 0 and n = 1 order, respectively. In the
selection, atoms in state |F = 1〉 are pumped to state |F = 2〉
by the Raman beams. The efficiency of Raman transitions is
about η = 30%, which further reduces the actual number of
atoms detected for each state. In this case, we estimate that
σP (QPN) and σP (EN) are limited to 0.29% and 0.7% for 3×104

atoms, respectively, and σP (DN) remains the same at 0.18%.
In addition, the fluctuations in transition probability be-

tween the two detecting Raman pulses also contribute to the
detection noise and can be calculated by

�P = P i
1 − P i+1

1 ≈ P1(1 − P1)
�η

η
, (16)

where P i
1 is the ith measurement of the Bragg transition

probability for n = 1 order, and �η is the transition probabil-
ity’s fluctuations in the Raman pulses between two adjacent
launches. According to Eq. (9), we get that the fluctuations in
transition probability �η are mainly composed of three parts:
the fluctuations in the Raman pulse duration, the intensity
noise of Raman beams, and the frequency noise of Raman
beams. From the measurement of these three noise sources of
Raman beams, �η is determined to be 0.16%, which induces
a detection noise of �P = 0.13%.

In total, the estimative detection noise of RSSL detection
is 0.79%. We have also measured the detection noise with the
method referred to in [39]. Figure 8 shows the measured Allan
standard deviation of the transition probability σP , giving
σP = 0.76% in 1 s, which is close to the expected detection
noise. The resulting observed SNR for RSSL detection is
130:1 in 1 s. (The SNR is given by SNR = 1/σP , in Ref. [38].)

The variances of the interference phase are related to the
standard deviation σP by the formula σϕ = 2σP /C, with C the
contrast of the interferometer. Considering a typical contrast
of 9% for the T = 250 ms, n = 1 interferometer, a detection
noise of 169 mrad/

√
Hz can be obtained, corresponding to an

acceleration sensitivity of 1.7×10−8g/
√

Hz, which sets the
actual limit on our interferometer sensitivity.
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Another important contribution to the interferometer noise
is the laser phase noise of the passive Bragg laser system.
Usually, we use the sensitivity function [25,39] to calculate
the contribution of the interferometer phase noise. With the
sensitivity function and the power spectral density of phase
noise of the Bragg beams, the contribution to the interferome-
ter phase noise is calculated as 149 mrad/

√
Hz, corresponding

to an acceleration sensitivity of 1.5×10−8g/
√

Hz.

V. CONCLUSION AND OUTLOOK

We have presented a simple and practical detection method
based on RS for a Bragg atom interferometer. With this
method, the interferometer’s output states are imaged in a
narrow frequency domain, which not only improves the fringe
visibility but also avoids multistate effects in the interferom-
eter phase. With these advantages, we have demonstrated a
short-term sensitivity of �g/g = 1.9×10−8/

√
Hz in a Bragg-

type atom gravimeter. For an integration time of 1000 s,
the resolution reaches 7×10−10g. This resolution is currently
limited by the detection noise and the laser phase noise.

In recent years, significant efforts have been made to
develop a compact system that incorporates ultracold atomic
ensembles as a portable sensing device [40,41]. Using the
technique of large-momentum-transfer beam splitting in the
small-volume apparatus will be a significant advantage, and
this momentum-resolved detection demonstrates a proven and
ultrastable detection technique that does not require a space
separation for the atomic cloud. Similarly, this detection
method also allows improved detection of atom interferom-
etry based on Bragg transitions in an optical cavity with a
compact size and low power [42,43]. In addition, this detec-
tion method can be used in fundamental physics experiments
such as detection of gravitational waves [44] and tests of the
Einstein equivalence principle [45].
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