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Quantum dynamics of Bose-Fermi mixtures via the stochastic-wave-function approach
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We present a reformulation of the nonrelativistic many-body quantum dynamics of Bose-Fermi mixtures via
stochastic wave functions. We show that, within a wide range of two-particle interactions and a certain class of
greater-than-two-particle interactions, the quantum dynamics can be mapped exactly onto a set of single-particle
wave functions, with their evolution governed by a stochastic process.
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I. INTRODUCTION

In recent years, considerable progress has been made in
simulating the dynamics of many-body systems via stochas-
tic equations. In the case of bosons, extensive use of the
positive P representation has been made (see Ref. [1] and
references therein). This representation allows for exact refor-
mulation of the many-body quantum dynamics via stochastic
equations if certain conditions are met. A different (tech-
nically simpler) derivation of similar stochastic equations
using so-called stochastic wave functions has been presented
in Ref. [2]. These stochastic equations have been used in
simulating many-body quantum dynamics of interacting ul-
tracold bosonic gases [3]. In the fermionic case, there are
formulations of quantum dynamics using a stochastic-wave-
function approach [4–8]. The stochastic equations obtained
were rederived by using generalized phase-space represen-
tations [9]. A different approach was presented in Ref. [10]
and uses Gaussian phase-space representations for fermions.
There, within two-body interactions, the authors of Ref. [10]
mapped quantum operator evolution onto stochastic processes
in phase space. This method was generalized to Bose-Fermi
systems and applied to the dissociation of bosonic molecules
into a pair of fermionic atoms [11]. Apart from these methods
there exists a variety of other methods simulating quantum
many-body dynamics. We mention recently developed time-
dependent variational Monte Carlo methods [12] and real-
time full configuration Monte Carlo [13].

In the present paper, we generalize the stochastic-wave-
function approach to Bose-Fermi mixtures. We show that
the evolution under a Hamiltonian with a wide-range two-
body interaction can be represented by stochastic equations.
Additionally, we extend such a representation to a special
form of greater-than-two-body interactions.

The method presented below uses many-body states of the
particularly simple form

|�s〉 = |ψ,Nb〉|{φ}, Nf 〉, (1)

where |ψ,Nb〉 = |ψ〉⊗Nb is a product of single-particle or-
bitals |ψ〉 of Nb bosons while |{φ}, Nf 〉 denotes a Slater
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determinant of Nf single-particle orbitals {φ}. The first in-
gredient of the method is based on the fact that the temporal
evolution under a single-particle operator transforms such
state into the same kind of state with single-particle orbitals
changed (in the fermionic case such a statement is called
Thouless’s theorem [14]). Such an evolution is easy to im-
plement numerically because we only need to evolve 1 + Nf

single-particle orbitals (one for bosons and Nf for fermions)
and not whole many-body states (which is usually impossible
to even keep in computer memory).

The second idea of the method presented is to represent the
evolution under two-body and greater-than-two-body opera-
tors as a sum over evolutions under single-particle operators.
Here comes the stochastic ingredient of the method: In each
time step �t of the evolution, the single-particle operator is
multiplied by a variable chosen by a random draw from a
given probability distribution. In a finite time, there are many
random draws of variables, which constitutes a stochastic
process. Thus, the evolution under the full Hamiltonian is
represented as a sum over stochastic processes, each of them
given by a single-particle evolution. A single component of
such a sum transforms the initial state |�s〉 given by Eq. (1)
into a state of the same form |� ′

s〉. Thus, taking |�s〉 as an
initial many-body state, the quantum evolution leads to a state

|�〉 = lim
M→∞

1

M

M∑
j=1

|� ′
s,j 〉, (2)

where M denotes the number of stochastic trajectories. Each
of the functions |� ′

s,j 〉 is obtained via single-particle evolution
defined by a stochastic process (i.e., the single-particle orbitals
defining state |� ′

s〉 depend of the values of the variables drawn
in a single realization of the process), so |� ′

s,j 〉 is called a
“stochastic wave function” and the whole method is called the
“stochastic-wave-function approach.” We now describe each
of the ingredients of the method in more detail.

II. DECOMPOSITION OF QUANTUM EVOLUTION

We now focus our attention on the decomposition of the
evolution under the Hamiltonian into a sum of evolutions
under single-particle operators. First, let us analyze the evo-
lution under a quite general two-particle interaction. The first
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step is to decompose the interaction part of the Hamiltonian
into single-particle operators. To do it, let us first consider a
two-particle interaction potential V1,2 where 1 and 2 denote
the first and second particle degrees of freedom (position,
spin projection). In the Appendix we show (repeating the
reasoning given in Refs. [4,5]) that, for general boson-boson
and fermion-fermion interaction potentials, V (1, 2) can be
decomposed as

V (1, 2) =
∑

r

ωrO
r (1)Or (2), (3)

where ωr is real number and Or are functions of position
and spin projection. In the case of boson-fermion interactions
we restrict our considerations to the potentials of the form
given by Eq. (3). From now on, we use the second-quantized
form of the Hamiltonian and all operators. The formulation
of the method in this language is easier since it takes into
account symmetry properties. As shown in the Appendix the
decomposition given by Eq. (3) enables us to decompose the
two-body-interaction Hamiltonian as

Ĥ2 =
∑

r

ωr;bÔ
r
bÔ

r
b +

∑
r

ωr;f Ôr
f Ôr

f

+
∑

r

ωr;bf Ôr
b;bf Ôr

f ;bf + Ĥ1,ad ,

where the first three terms on the right-hand side correspond
to boson-boson, fermion-fermion, and boson-fermion interac-
tions. The operators Ôr

i are single-particle operators of the
form

Ôr
b =

∑
i

Ob(i)n̂b,i , (4)

where i = (r,m) denotes the position and spin projections
and n̂b,i = â

†
i âi is a number operator. Here r is a position on

a lattice. In the above equation Ĥ1,ad denotes a single-particle
operator which comes from the use of commutation relations.
In what follows we add this operator into the single-particle
Hamiltonian Ĥ1 and therefore from now on it is not present in
Ĥ2.

Having done that, we use it in the decomposition of the
evolution under two-body operators into single-particle evo-
lution. To do it we analyze small time step �t evolution. Up
to linear terms in �t we have

exp(iĤ�t ) � exp(−iĤ1�t )(1 − iĤ2�t ), (5)

where Ĥ = Ĥ1 + Ĥ2 and Ĥ1,2 denote the single-particle-
and two-body-interaction parts of the Hamiltonian. We now
introduce the operators

Ûα ({ζ }) = exp

(√−i�t
∑

r

ζr;αÔr
α

)
,

Ûα;bf ({ζ }) = exp

(√−i�t
∑

r

ζr;bf Ôr
α;bf

)
, (6)

where α = b, f , and ζ are complex variables defined to-
gether with the single variable probability distribution ρ(ζ ),

∫
d2ζ ρ(ζ ) = 1. We additionally define the operator

Û2({ζ }) = Ûb({ζ ∗})Ûb({ζ })Ûf ({ζ ∗})Ûf ({ζ })

× Ûb;bf ({ζ ∗})Ûf ;bf ({ζ }) (7)

together with the average defined as

〈. . .〉s =
∫ ∏

r

d2ζr,b ρ(ζr,b )
∫ ∏

r

d2ζr,f ρ(ζr,f )

×
∫ ∏

r

d2ζr,bf ρ(ζr,bf ) · · · .

According to Eq. (6), to get the linear terms in �t we need to
expand the operator given by Eq. (7) up to quadratic terms in
ζ . Taking

〈ζr,i〉s = 0, 〈ζr,iζr ′,j 〉s = 0, 〈ζ ∗
r;iζr ′,j 〉s = ωr;iδr,r ′δi,j ,

(8)

where i, j = b, f, bf , we obtain up to linear terms

〈Û2({ζ })〉s � 1 − iĤ2�t. (9)

Introducing the operator

Û ({ζ }) = exp(−iĤ1�t )Û2({ζ }), (10)

we end up with

exp(−iĤ�t ) � 〈Û ({ζ })〉s , (11)

where we used Eqs. (5) and (9). In a finite time we have

exp(−iĤ t ) �
t/�t∏
j=1

〈Û ({ζ }j )〉j,s , (12)

where {ζ }j and 〈. . .〉j,s denote a set of ζ and the average
in a j th time step, respectively. The equality in the above
equation is obtained in the limit �t → 0. To simplify the
notation we use {ζ }t,�t as a set combining all sets {ζ }j for j =
1 . . . t/�t , the total average 〈. . .〉s combining all averages, and
additionally

Û ({ζ }t,�t , t,�t ) =
t/�t∏
j=1

Û ({ζ }j ) (13)

as an evolution operator consisting of all subsequent evolu-
tions under single-particle operators. Upon inserting the above
in Eq. (12) we arrive at

exp(−iĤ t ) � 〈Û ({ζ }t,�t , t,�t )〉s . (14)

We now discuss the average 〈U ({ζ }t,�t , t,�t )〉s . It is the
multidimensional integral over the whole set {ζ }t,�t with the
number of dimensions growing with the decrease of �t . In
such case the use of Monte Carlo sampling is adequate. There
the multidimensional integral is approximated by a finite sum,
i.e.,

〈Û ({ζ }t,�t , t,�t )〉s � 1

M

M∑
k=1

Û ({ζk}t,�t , t,�t ), (15)

where {ζk}t,�t denotes the whole set {ζ }t,�t in the kth term
in the sum. This set is obtained by drawing all ζ constituting
the set {ζk}t,�t , each with the same single-variable probability
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density ρ. The equality in the above sum is obtained in the
limit M → ∞. Upon inserting Eq. (15) into Eq. (14) we arrive
at

exp(−iĤ t ) � 1

M

M∑
k=1

Û ({ζk}t,�t , t,�t ). (16)

Thus, we decomposed the evolution under the Hamiltonian
with a quite general two-body interaction into a sum of op-
erators, each describing the evolution under a single-particle
operator. Consequently, we obtained the second crucial ingre-
dient of the method described in the introduction. As we see
above, the single-particle evolution operator Û ({ζ }t,�t , t,�t )
depends on the set of random variables {ζ }t,�t . Because we
deal with temporal evolution we in fact deal with stochastic
process where each set {ζ }t,�t is a realization of such a process
with 〈. . .〉s being an average over realizations.

To continue our analysis, we assume that the initial many-
body state |�(0)〉 is given by |�s〉 defined by Eq. (1). We
now use the first ingredient of the method mentioned in
the introduction: the result of the action of the operator
U ({ζk}t,�t , t,�t ) on the state |�s〉 is a wave function of the
same form as |�s〉, which we denoted as |� ′

s , {ζk}〉 (it was
denoted as |� ′

s〉 in the introduction). It reads

|� ′
s , {ζk}〉 = Û ({ζk}t,�t , t,�t )|�s〉.

Combining the above together with Eq. (16) we arrive at

|�〉 = exp(−iĤ t )|�s〉 � 1

M

M∑
k=1

|� ′
s , {ζk}〉,

which has exactly the same form as Eq. (2). As a result we
obtained the many-body wave function as a sum of states |�s〉
defined by Eq. (1). The above equation constitutes the main
result of the present paper.

To make the derivation of the method more transparent, let
us consider an example of a bosonic two-mode model:

Ĥ = U ((â†
1â1)2 + (â†

2â2)2). (17)

Here, we can clearly see that the two-body part of the Hamil-
tonian is already decomposed with Ôr

b = â
†
r âr and ωr = U

where r = 1, 2. We denote the probability amplitudes of a
single particle being located in modes 1, 2 as ψ1,2. Thus, the
N -particle state of the form |�s〉 given by Eq. (1) reads

|ψ1, ψ2; N〉 = 1√
N !

(ψ1â
†
1 + ψ2â

†
2)N |0〉

=
N∑

n=1

√(
N

n

)
ψ1

nψ2
N−n|n,N − n〉, (18)

where |0〉 denotes the particle vacuum and |n,N − n〉 denotes
the state of n and N − n particles in the first and second mode,
respectively. Now we use the just-derived stochastic method
in a single time step �t . That is, we wish to calculate the
many-body wave function after time step �t . According to
the previous consideration, the evolution operator Û2 given
by Eq. (7) now takes the form

Û2({ζ }) = Ûb({ζ ∗})Ûb({ζ }), (19)

where the set {ζ } consists of two complex variables ζ1,b and
ζ2,b. The method consists of applying this operator to the
initial state |ψ1, ψ2; N〉〉s , i.e.,

Û2({ζ })|ψ1, ψ2; N〉 = Ûb({ζ ∗})Ûb({ζ })|ψ1, ψ2; N〉.
Because we deal with single-particle evolution, the resulting
state is of the form |ψ ′

1, ψ
′
2; N〉, i.e.,

|ψ ′
1, ψ

′
2; N〉 = Ub({ζ ∗})Ub({ζ })|ψ1, ψ2; N〉, (20)

where

ψ ′
r = exp(

√−i�t (ζr,b + ζ ∗
r,b ))ψr (21)

for r = 1, 2. According to Eqs. (9), (19), and (20) we should
obtain

(1 − iĤ�t )|ψ1, ψ2; N〉 = 〈|ψ ′
1, ψ

′
2; N〉〉s .

We will show that this is indeed the case. From Eq. (18) we
obtain

〈|ψ ′
1, ψ

′
2; N〉〉s =

〈
N∑

n=1

√(
N

n

)
ψ ′

1
n
ψ ′

2
N−n|n,N − n〉

〉
s

.

Inserting ψ ′
r given by Eq. (21) into the above, expanding up to

quadratic terms in ζ , and using 〈|ζr,b|2〉s = U we arrive at

〈|ψ ′
1, ψ

′
2; N〉〉s �

N∑
n=1

√(
N

n

)
{1 − iU�t[n2 + (N − n)2]}

×ψn
1 ψN−n

2 |n,N − n〉.
Because U (n2 + (N − n)2)|n,N − n〉 = Ĥ |n,N − n〉, the
above reads

〈|ψ ′
1, ψ

′
2; N〉〉s � (1 − iĤ�t )

N∑
n=1

√(
N

n

)

×ψn
1 ψN−n

2 |n,N − n〉.
From Eq. (18) we find that the above reads

〈|ψ ′
1, ψ

′
2; N〉〉s � (1 − iĤ�t )|ψ1, ψ2; N〉,

which is what we wished to obtain.

III. TREATMENT OF GREATER-THAN-TWO-BODY
INTERACTIONS

Note that the method presented above is capable of han-
dling more than two-body interactions. The necessary crite-
rion for the application of the above method is the possibil-
ity of decomposing the interaction Hamiltonian into single-
particle operators. Consider an n-particle interaction (let us
take bosons for simplicity) that can be decomposed [15]

Ĥn =
∑

r

ωr

n∏
j=1

Ôr
j . (22)

The crucial part of the method consists of decomposing

(1 − iĤn�t ) �
〈∏

j

exp(Âj )

〉
s

, (23)
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where Âj are single-particle operators. The above needs to
be satisfied to linear terms in �t . When we look at the form
of decomposition given by Eq. (22) it is straightforward to
introduce

Un,i ({ζ }) = exp

(∑
r

(−i�tωr )1/nζi,r Ô
r
i

)
,

with i = 1, . . . , n and random variables having the property〈
n∏

i=1

ζi,r

〉
s

= 1, (24)

with all the other terms up to order n equal to zero. Then we
have

1 − i�tĤn �
〈

n∏
i=1

Un,i ({ζ })

〉
s

, (25)

which is what we need. The above-defined random variables
can be constructed in the following way: We take ζi,r , i =
1, . . . , n − 1 as independent complex random variables with
〈|ζi,r |2〉 = 1 and take ζn = ∏n−1

i=1 ζ ∗
i,r .

The above results can be easily generalized to the bosonic
Hamiltonian of the form

Ĥ =
N0∑
n=1

Ĥn,

where each Ĥn has the form given by Eq. (22). In this case, the
evolution operator up to terms linear in �t can be decomposed
as

1 − iĤ�t �
N0∏
n=1

(1 − iĤn�t ).

Inserting Eq. (25) into the above and using (1 − iĤ1�t ) �
exp(−iĤ1�t ) we arrive at

1 − iĤ�t � exp(−iĤ1�t )
N0∏
n=2

〈
n∏

i=1

Un,i ({ζ })

〉
s

=
〈

exp(−iĤ1�t )
N0∏
n=2

n∏
i=1

Un,i ({ζ })

〉
s

where 〈. . .〉s denotes now the global average. As we did
before, we take the finite time evolution and approximate the
overall average by the finite sum. Thus, as we did before,
we end up with a decomposition of the evolution operator
exp(−iĤ t ) by a sum of evolutions under single-particle op-
erators. Starting from a state of the form |�s〉 we end up with
the final wave function of the form given by Eq. (2).

It is straightforward to generalize the above to Bose-Fermi
mixtures in the case of an n-particle interaction (nb bosons
and nf fermions) of the form

Ĥnb,nf
=

∑
r

ωr

nb∏
i=1

Ôr
i,b

nf∏
j=1

Ôr
j,f , (26)

where nf + nb = n. As above we introduce

Uj ;k ({ζ }) = exp

(∑
r

(−i�tωr )1/nζj,r,kÔ
r
j,k

)
,

where k = b, f . In the above j = 1, . . . , nb for k = b or j =
1, . . . , nf for k = f . We additionally take〈

nb∏
i=1

ζi,r,b

nf∏
j=1

ζj,r,f

〉
s

= 1.

Then, as in the bosonic case described above, we arrive at

1 − i�tĤn �
〈

nb∏
i=1

Ui,b({ζ })
nf∏

j=1

Uj,f ({ζ })

〉
s

.

Using results that we have just obtained, we see that the
method is capable of handling the Bose-Fermi Hamiltonians
of the form

Ĥ =
∑
nb,nf

Ĥnb,nf
,

where Ĥnb,nf
is of the form given by Eq. (26).

We now briefly discuss the form of the probability distri-
bution ρ. As we saw above we use complex random variables
with the first and second moment defined. All the higher
moments do not appear in the derivation. Thus the probability
distribution is not unique. For simplicity of the numerical
calculation we can take the Gaussian probability distribution.

IV. CALCULATION OF MEAN VALUES OF OBSERVABLES

As a last step let us discuss the calculation of mean values
of observables. Looking at Eq. (2) it seems that, to calculate
the mean values of observables, we need to store all wave
functions |� ′

s,j 〉 in computer memory. For large M this could
be a serious obstacle for the method. However, we do not need
to do it. We have

〈Ô〉 = 〈�|Ô|�〉 = lim
M→∞

1

M2

M∑
j,k=1

〈� ′
s,j |Ô|� ′

s,k〉.

Thus to calculate 〈Ô〉 we need to calculate numerically
〈� ′

s,j |Ô|� ′
s,k〉. This means that we need to run two indepen-

dent stochastic processes obtaining two wave functions, which
we can call |� ′

s,k〉 and |� ′
s,j 〉. Having them stored in computer

memory, we calculate 〈� ′
s,j |Ô|� ′

s,k〉 and keep only the result
of the calculation while deleting the two stochastic wave
functions. Repeating this procedure and adding the obtained
results we converge towards 〈Ô〉.

As shown above the stochastic method always gives the
mean values of observables when M → ∞. In practical use,
the crucial question is how fast, with increasing M , the
numerical result converges towards the true value. In practice,
for given M , there are ways to calculate the error connected
with the obtained mean value of a given observable. The
analog of the above-described method was used to calculate
the properties of bosons and fermions independently. In the
bosonic case, it was used to calculate the properties of atoms
scattered in the collision of Bose-Einstein condensates. The
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calculations were done for a few different systems with true
experimental parameters, with the mean number of atoms
being about 105 and the three-dimensional (3D) lattice con-
sisting of about 106 points [3]. In this case it turned out
that it was enough to have about 104 trajectories to obtain
a reasonably small error for quantities such as the density
of scattered atoms or the two-particle correlation function
[16]. In the fermionic case, the ground-state properties of
the unitary Fermi gas limit were calculated on the 8 × 8 × 8
lattice with 42 atoms [7]. The above shows that the analog of
the presented method was capable of obtaining a reasonably
small error for many realistic systems. This is an important
argument that the presented method is capable of handling
calculations of interesting Bose-Fermi mixtures.

However, the main goal of the present paper is to show
that the stochastic-wave-function approach, which is derived
independently for bosons and fermions, can be easily gener-
alized to Bose-Fermi mixtures and to greater-than-two-body
interactions. It is worth mentioning, that within the stochastic-
wave-function approach, there are many ways of mapping the
quantum evolution on the stochastic process. The proposed
method is only one way of doing so. It is important to add
that, in the fermionic case, a mapping free of the famous “sign
problem” was found [7]. The natural extension of the present
paper would be to find a more general way of mapping, which
can be probably done by considering the evolution of density
matrices instead of wave functions [2].

We now comment on the choice of the initial many-body
state. The above method was formulated for the initial state
|�s〉 given by Eq. (1). However, it naturally extends to initial
states being a superposition or mixtures of states |�s〉. It is
known that any many-body state is a superposition of states
|�s〉 [2,9,17], so in principle the above method can treat any
initial state. However, in practice one is usually interested in
thermal states as a starting point of the dynamics. So the first
goal is to find the thermal state. This can be done by adopting
the above-described method to imaginary time evolution as it
was done in the case of bosons [3,18] and fermions [4].

V. SUMMARY

In the present paper, we generalized the stochastic wave
function, which was recently formulated independently for
bosonic and fermionic systems, to Bose-Fermi mixtures. In
the case of a wide class of two-particle interactions, and
certain class of more-than-two particle interactions, the quan-
tum dynamics was mapped exactly onto set of single-particle
wave functions with their evolution governed by a stochastic
process.
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APPENDIX: DECOMPOSITION OF TWO-BODY
INTERACTION POTENTIAL OPERATOR

We consider two particle interaction potential V (1, 2)
where 1, 2 denote degrees of freedom of a given particle.

These degrees of freedom are, for example, position r and
spin projection m (on a given quantization axis) of a particle,
i.e., 1 = (r1,m1). When both particles are identical bosons or
fermions, the potential has to be symmetric with respect to
the change of particles: V (1, 2) = V (2, 1). If we think of the
potential as a matrix, than to be Hermitian, the matrix needs
to be real (because it is symmetric). Such a matrix can be
diagonalized with real vectors Or and real eigenvalues ωr . It
may be represented as

V (1, 2) =
∑

r

ωrO
r (1)Or (2). (A1)

The real eigenvector Or (r,m) is a function of the degrees of
freedom of a given particle.

As written in the main body of the paper in the case of
the boson-fermion interaction, we restrict ourselves to the
potential of the form

Vbf (1, 2) =
∑

r

ωr;bf Or
b,bf (1)Or

f,bf (2), (A2)

where 1 and 2 denote the bosonic and fermionic degrees of
freedom, respectively.

Now we use the above to decompose the two-particle-
interaction part of the Hamiltonian Ĥ2 written in the second-
quantized form. We have

Ĥ2 = 1

2

∑
r

ωr;b

∑
i,j

Or
b (i)Or

b (j )â†
i â

†
j âi âj

+ 1

2

∑
r

ωr;f

∑
i,j

Or
f (i)Or

f (j )ĉ†i ĉ
†
j ĉi ĉj

+ 1

2

∑
r

ωr;bf

∑
i,j

Or
b,bf (i)Or

f,bf (j )â†
i ĉ

†
j âi ĉj ,

where i, j = (r,m) and j denotes degrees of freedom of
a boson or fermion which is position and spin projection.
Here we use r being defined on a lattice with âi and ĉi

being bosonic and fermionic annihilation operators. Using the
commutations relations we arrive at

Ĥ2 =
∑

r

ωr;bÔ
r
bÔ

r
b +

∑
r

ωr;f Ôr
f Ôr

f

+
∑

r

ωr;bf Ôr
b;bf Ôr

f ;bf + Ĥ1,ad ,

where

Ôr
b =

∑
i

Ob(i)n̂b,i , Ôr
f =

∑
i

Or
f (i)n̂f,i ,

Ôr
b,bf =

∑
i

Or
b,bf (i)n̂b,i , Ôr

f,bf =
∑

i

Or
f,bf (i)n̂f,i ,

Ĥ1,ad = −1

2

∑
i

Vb(i, i)n̂b,i − 1

2

∑
i

Vf (i, i)n̂f,i ,

where n̂b,i = â
†
i âi and n̂f,i = ĉ

†
i ĉi .
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