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Scaling behavior of Tan’s contact for trapped Lieb-Liniger bosons: From two to many
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We show that the contact parameter of N harmonically trapped interacting one-dimensional bosons at zero
temperature can be analytically and accurately obtained by a simple rescaling of the exact two-boson solution,
and that N -body effects can be almost factorized. The small deviations observed between our analytical results
and density matrix renormalization group (DMRG) calculations are more pronounced when the interaction
energy is maximal (i.e., at intermediate interaction strengths) but they remain bounded by the large-N local-
density approximation obtained from the Lieb-Liniger equation of state stemming from the Bethe ansatz.
The rescaled two-body solution is so close to the exact ones, that is possible, within a simple expression
interpolating the rescaled two-boson result to the local density, to obtain N -boson contact and ground-state
energy functions in very good agreement with DMRG calculations. Our results suggest a change of paradigm
in the study of interacting quantum systems, giving to the contact parameter a more fundamental role than
energy.
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I. INTRODUCTION

The relation between two-body and many-body physics is
often an important point for the comprehension and descrip-
tion of strongly correlated quantum systems. A celebrated
example is provided by homogeneous one-dimensional (1D)
interacting systems solvable by the Bethe ansatz, such as
bosons and fermions with contact interactions [1–3]. In that
case, the N -body solution can be exactly expressed as a func-
tion of a product of two-body scattering contributions. Gen-
erally, such a system is no longer integrable when subjected
to an external potential, but a notable exception is the limit of
infinitely strong repulsive interactions, known as the Tonks-
Girardeau limit, where fermionization occurs. In that case,
the system remains exactly solvable for any number of bosons
and fermions [4–12]. At finite interactions, the harmonically
trapped system can be exactly solved for two particles [13]
and is approximately solved in the large-N limit by a local-
density approximation (LDA) on the Lieb-Liniger solution
[14]. For finite-N systems, several approaches have been
proposed: a pair-correlated wave-function approach [15,16],
a T -matrix approach for the Fermi polaron at zero and finite
temperature [17], a geometric wave-function description that
is very accurate for two and three bosons [18], and, more
recently, an interpolatory ansatz combining the noninteracting
and unitary wave functions [19]. This last approach provides
very accurate results for the energy in impurity systems [19],
but is less accurate when increasing the number of particle
components [20].

A crucial observable for a 1D system of N particles with
contact interactions is Tan’s contact parameter, characterizing
the asymptotic behavior of the momentum distribution of
the particles CN = limk→∞ k4n(k) [21]. The contact embeds
information on the interaction energy and the density-density
correlation function [22–24]. It is a univocal measure of the
wave-function symmetry of fermionic and/or bosonic mix-
tures [11,12]. The contact parameter is also determined by
the probability density of finding two particles at a vanishing
distance [14]. For trapped quantum gases, this probability
density has a nontrivial dependence on the number of particles
and on the interaction strength [25,26].

In this paper, we propose a change of paradigm by showing
that the contact parameter plays in fact a more fundamen-
tal role than the energy in analyzing Lieb-Liniger bosons.
Inspired by the scaling properties of this model, we show
that if the starting point of the scaling analysis is the contact
parameter instead of the energy, the two-body result provides
a very good description of the system for any number of
particles and interaction strengths. The quantitative difference
between our predictions and numerically exact DMRG results
is always very small (i.e., less than a few percent) and is the
largest at intermediate interaction strengths where the inter-
action energy is also the largest. For particle numbers N > 2
we show that the many-body corrections to the rescaled two-
body result can be accounted for by a simple interpolation
connecting the two-body solution and the LDA one. With
this, we obtain an analytical and very accurate expression for
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the contact parameter at all particle numbers N that we use
to derive an accurate formulation for the total energy of the
system.

II. MODEL AND SCALING ANALYSIS

We start with the case of N � 2 identical and harmonically
trapped 1D bosons of mass m at zero temperature, interacting
via repulsive contact interactions. Such a system is described
by the many-body Hamiltonian

H =
N∑

j=1

⎡
⎣−h̄2

2m

∂2

∂x2
j

+ 1

2
m ω2 x2

j + g
∑
�>j

δ(xj − x�)

⎤
⎦, (1)

with g = 2h̄2/(m|a1D|) � 0 [27]. As shown by Tan in
[22–24], the contact parameter associated with the eigenen-
ergy EN reads

CN (g) = m2

πh̄4

(
− ∂EN

∂g−1

)
= m2g2

πh̄4

∂EN

∂g
≡ m2g

πh̄4 Eint, (2)

where Eint is the interaction energy. Tan’s contact [Eq. (2)]
is thus a direct byproduct of the dependence of the system
energy on the interaction strength g. In the following, we will
focus our analysis on the ground-state energy. By rescaling
Hamiltonian (1) by the ground-state energy in the fermion-
ized regime E∞

N = N2h̄ω/2, and by expressing the particle
coordinates in units of aho/

√
N , where aho = √

h̄/(mω) is the
harmonic oscillator length, it is easy to see that the ground-
state energy is written as [11]

EN (g) = E∞
N E (N, gN ), (3)

where

gN = mgaho

2h̄2
√

N
= aho

|a1D|√N
≡ α√

N
(4)

is the dimensionless interaction strength and α=aho/|a1D|.
The dimensionless energy function E interpolates between
the noninteracting regime where E (N, 0) = 1/N and the
fermionized regime where E (N,∞) = 1. Obviously, Tan’s
contact depends on the same parameters N and gN and reads

CN (g) = N5/2

πa3
ho

C(N, gN ), (5)

where the rescaled dimensionless Tan’s contact

C(N, z) = z2 ∂zE (N, z) (6)

is evaluated at z = gN . By the same token, Eint =
E∞

N Eint(N, z) and we find

Eint(N, z) = C(N, z)

z
= z ∂zE (N, z). (7)

In the thermodynamic limit (N, aho → ∞ at constant
aho/

√
N ), the only scaling parameter is gN , both for the

dimensionless energies E, Eint and contact parameter C. This
can be easily shown in a LDA on the Lieb-Liniger homoge-
neous solution [1,14], and generalized to a generic trapping
potential (see Appendix A). One gets

ELDA
N (g) = E∞

N ELDA(gN ),

CLDA
N (g) = N5/2

πa3
ho

CLDA(gN ),
(8)

with ELDA(0)=CLDA(0)=0, ELDA(∞)=1, and CLDA(∞)=
128

√
2/(45π2) [14]. Although the derivation has been de-

tailed for single-component bosons, it is possible to show that
the scaling analysis applies also to multicomponent bosons
and fermions [11,28–31], the Hamiltonian being the same as
Eq. (1).
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FIG. 1. Rescaled dimensionless contact C(N, z), Eq. (6) (left panel), and reduced contact parameter fN (z), Eq. (10) (right panel),
as a function of the dimensionless scaling parameter z = aho/(|a1D|√N ) = aho/(|a′

1D|√2). The different symbols correspond to DMRG
calculations: N = 2 (black squares), N = 3 (brown circles), N = 4 (purple triangles up), N = 5 (light-blue triangles down), and N = 8 (green
diamonds). The black continuous line corresponds to Eq. (C1), and the orange dashed line corresponds to the LDA solution, Eq. (8) [14]. Top
inset in the right panel: Reduced contact parameter fN (z) for SU(κ ) fermions [11] (red points), κ ranging from 2 to 6, superposed to all the
data and curves of the main panel. Bottom inset in the right panel: Convergence rate RN (z) as a function of N , in a log-log scale, for z = 0.14
(squares), 0.35 (stars), 0.70 (crosses), and z → ∞ (plus).
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III. REDUCED CONTACT PARAMETER
AND SCALING ANSATZ

Strictly speaking, the LDA scaling behavior with respect
to the sole variable z should only hold in the large-N limit.
Indeed, it is what we observe if we plot C(N, z) obtained by
a two-tensor DMRG optimization of a matrix product states
(MPS) ansatz [32] (see Appendix B) in comparison with
CLDA(z), as shown in the left panel of Fig. 1. However all
the curves seem to have the same shape, but with different
asymptotic values. Here we put forward a different scaling
hypothesis by assuming that the reduced scaling parameter

fN (z) = CN (g(z))
CN (∞)

= C(N, z)

C(N,∞)
, (9)

with g(z) = 2h̄2
√

Nz/(maho), is a universal function for any
N � 2. In particular, if this scaling hypothesis holds,

fN (z) = f2(z). (10)

This would correspond to the assumption that an N -boson
system at contact interaction strength g is amenable to an ef-
fective two-boson system at a rescaled weaker contact interac-
tion strength g′ = √

2/Ng. Stated equivalently, the scattering
length is renormalized through a1D → a′

1D = √
N/2 a1D. In

the case of N = 2 bosons, Tan’s contact is given by

C2(g) = m2g2

πh̄4 |ψν (0)|2, (11)

where ψν (0) is the wave function solving the Schrödinger
equation for the relative motion [13] evaluated at x1 − x2 = 0.
It is straightforward (see Appendix C) to show that

f2(z) = C(2, z)

C(2,∞)
= πν2 2ν−1

N (ν) [�(1 − ν/2)]2
, (12)

where C(2,∞) = 1/(2
√

π ), N (ν) is a normalization factor
(see Appendix C), and ν solves

�(−ν/2)

�(−ν/2 + 1/2)
= −1

z
. (13)

In the right panel of Fig. 1, we compare the exact result
for f2(z), Eq. (C4), to the numerical data. The fact that
all curves (almost) collapse show that z = aho/(|a1D|√N ) =
aho/(|a′

1D|√2) is indeed the dimensionless scaling parameter
of the reduced contact parameter, and that the contact for any
interaction strength and any number N of particles can be
deduced from a simple two-body calculation, f2(z), and from
the knowledge of the contact for N particles in the Tonks-
Girardeau limit, C(N,∞), which, for bosons, can be calcu-
lated exactly [7]. This means also that the function CN (∞)
almost embeds the full N dependence of the problem for any
value of z, even for few-body systems where the N5/2 factor,
deduced in the thermodynamic limit, starting from the energy
scaling analysis, fails. This result seems to be general and not
to depend on the particle statistics [11,28–31]. Indeed, the data
for the reduced contact parameter of harmonically trapped
one-dimensional SU(κ) interacting fermions [11] collapse on
the same curve, as shown in the top inset in the right panel of
Fig. 1.

A. Are two enough?

Our DMRG data match at first sight very well with the
simple prediction of Eq. (10). However, we observe small
deviations at intermediate interaction strengths where the
data lie between f2 (black continuous line) and the LDA
solution fLDA = CLDA(z)/CLDA(∞) (orange dashed line) that
is known to be a very good approximation for the contact in
the large-N limit. This point is illustrated in the bottom inset
of the right panel of Fig. 1, where we show, by plotting the
convergence rate RN (z) = 1 − C(N, z)/CLDA(z), how fast the
exact contact converges to its LDA value at increasing N , for
various values of z. A numerical fit in the fermionized regime
[7] gives

RN (∞) = 1 − C(N,∞)

CLDA(∞)
� 1.04 N−7/4. (14)

The weak dependence on z of the slope of the convergence
rate RN (z) confirms that the dependence on N of CN (z) is
almost independent of z.

B. Beyond two

To further quantify the corrections to the scaling prediction
of Eq. (10), we plot in Fig. 2 the difference DN (z)=fN (z)−
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FIG. 2. Top panel: Difference DN (z)=fN (z)−f2(z) for differ-
ent values of N as a function of the dimensionless scaling parameter
z. Middle panel: Dimensionless interaction energy Eint(N, z) for
different values of N , Eq. (7), as a function of z. All curves display
a clear maximum at intermediate dimensionless interaction strengths
z � 0.5. Bottom panel: Scaled difference DN (z)/βN with βN = 1 −
2/N for different values of N as a function of z. All curves collapse
quite well onto the LDA prediction DLDA(z) (dashed orange curve)
even if further corrections would be needed around the maximum.
Symbols are the same as in Fig. 1.
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FIG. 3. Reduced contact parameter fN (α/
√

N ), Eq. (10), for
different N and plotted as a function of α=aho/|a1D| for better visi-
bility. Solid lines: theoretical prediction, Eq. (15); symbols: DMRG
results. Symbols are the same as in Fig. 1.

f2(z). We observe that DN (z) reaches its largest value where
the interaction energy Eint(N, z) is maximum. By comparing
DN (z) to the LDA prediction DLDA(z) = fLDA(z) − f2(z)
(orange dashed line), we infer the approximate, but quite
accurate, proportionality relation DN (z) � βN DLDA(z) with
βN = 1 − 2/N ; see bottom panel of Fig. 2. As a consequence,
the simple interpolation

fN (z) � (1 − βN ) f2(z) + βN fLDA(z) (15)

connects quite accurately the exact two-body solution for the
contact parameter to the LDA one. We validate this inter-
polation in Fig. 3 by comparing Eq. (15) with DMRG data
obtained for N = 3, 4, 5, and 8 bosons. We find a perfect
agreement. This means that within our approach, we can
calculate with the same degree of precision all nontrivial ex-
perimentally relevant quantities that are directly connected to
the contact parameter, such as the interaction energy [22,33],
the two-body correlation function [14,33], the magnetization
[11], the loss-rate in boson-fermion mixtures [34], or the
heating rate due to measurement backaction of an atomic
system in an optical cavity [35].

IV. FROM THE CONTACT TO THE ENERGY

The most crucial test of the quality of our ansatz for the
contact parameter is the ground-state energy, since it is ob-
tained by integration of the contact adding up the deviations:

E (N, z) = 1 −
∫ ∞

z

dz′ C(N, z′)
z′2 . (16)

Using Eq. (15), we arrive at

E (N, z) � 1 − 2

N

C(N,∞)

C(2,∞)
[1 − E (2, z)]

−
(

1 − 2

N

) C(N,∞)

CLDA(∞)
[1 − ELDA(z)]. (17)
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FIG. 4. Rescaled ground-state energy �N (z) relative to its non-
interacting value, Eq.(18), as a function of the dimensionless scaling
parameter z for different values of N . Solid lines: theoretical predic-
tion, Eq. (17); symbols: DMRG results, same N values and symbols
as in Fig. 1.

In Fig. 4, we plot the rescaled energy difference

�N (z) = EN (g(z)) − EN (0)

E∞
N − EN (0)

= NE (N, z) − 1

N − 1
, (18)

whose limits �N (∞)=1 and �N (0)=0 do not depend on N .
We compare the exact numerical results with the prediction
obtained by using Eq. (17) for different values of N . The
agreement with the DMRG data is very good from moderately
weak to strong interaction strengths (z � 0.02). Discrepancies
only occur in the weak interaction regime (z � 0.02) where
LDA is less accurate.

V. CONCLUSION

We have shown that the contact parameter for N harmoni-
cally trapped interacting 1D bosons at zero temperature can be
simply and accurately obtained from an appropriate rescaling
of the two-body contact parameter followed by a smooth inter-
polation to the N -body LDA one. The key point is a change
of paradigm: identifying the contact as the starting point for
the scaling analysis instead of the energy. Indeed almost all
the dependence of the contact on the number of particles can
be embedded in the contact at infinite interactions for any
number of particles. This result seems to be general and not
to depend on the particle statistics. It shows the fundamental
role of the contact, which is likely due to its local two-body
correlation nature. We have further shown that our approach
leads to a ground-state energy for any number of bosons that
matches very well the exact result down to moderately weak
interaction strengths where no analytical solution is known.
Our results improve on previous studies [15,18–20] with a
simpler and more accurate ansatz, which further confirms
that the ground-state properties of an interacting 1D Bose
gas can be accurately described by an effective two-body
contact interaction dressed by the other particles in the fluid
[33,36]. Our work constitutes an important step forward in
understanding the effects of correlations and interactions in
harmonically trapped one-dimensional interacting boson and
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fermion mixtures. It opens the way to further studies of
similar scaling properties in higher dimensional systems [37],
confined in various trapping potentials, at zero and finite
temperature [26].
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APPENDIX A: SCALING PROPERTIES AND LOCAL
DENSITY APPROXIMATION FOR TAN’S

CONTACT PARAMETER

We detail here the derivation of the scaling properties
of N one-dimensional bosons with contact interactions of
strength g.

1. Scaling for the homogeneous system

For a homogeneous system of length L, the number density
ρ = L/N defines a length scale ρ−1 and an energy scale
h̄2ρ2/(2m). Scaling all spatial variables by ρ−1 in the Hamil-
tonian (1) with ω = 0, it is easy to see that both the energy per
particle and the energy density follow, in the thermodynamic
limit, the scaling relations

EN

N
= h̄2ρ2

2m
e(γ ),

EN

L
= h̄2ρ3

2m
e(γ ), (A1)

where e(γ ) is a monotonically increasing function of the
dimensionless interaction strength

γ = mg

2h̄2ρ
= 1

ρ|a1D| = L

N |a1D| ≡ α

N
, (A2)

where α = L/|a1D|. The scaling relations in Eq. (A1) and the
equation of state e(γ ) for the homogeneous system were ex-
actly determined by Lieb and Liniger via the Bethe ansatz [1].
In the thermodynamic limit N,L → ∞ at constant density
ρ, it takes values between e(0) = 0 and e(∞) = π2/3. For
g → ∞, and for large N , we have E∞

N � N3ε0/3 where ε0 =
π2h̄2/(2mL2) is the ground-state energy of a particle in a box
of size L. Then, from Tan’s relation for the contact parameter,
see Eq. (2), it is easy to infer

CN (g) � Nρ3

π
γ 2 de

dγ
= N4

πL3
γ 2 de

dγ
(A3)

for the homogeneous system. Note that following Eq. (3),
we would have E (N, γ ) � 3e(γ )/π2 for the homogeneous
system at large N .

2. Scaling for the harmonically trapped system

In the presence of a harmonic potential, the appropriate
thermodynamic limit is instead obtained by taking N → ∞
and ω → 0 at constant Nε0 where ε0 = h̄ω/2 is now the
harmonic ground-state energy [11]. Stated equivalently, N and
aho → ∞ at constant ratio

√
N/aho. Note that this ratio can

be interpreted as an effective (constant) particle density ρ =
N/LN in the thermodynamic limit for a system of size LN =√

Naho → ∞. Using this ρ and h̄2ρ2/(2m) as the spatial
and energy scales of the system, considerations analogous
to the homogeneous case then lead to Eqs. (3) and (4) with
E∞

N = N2h̄ω/2, α = aho/|a1D| and γ = α/
√

N (≡ gN ). In
particular, Eq. (A3) immediately leads to Eqs. (5) and (6)
when replacing ρ by

√
N/aho.

Our approach is an alternative to the one developed in [25]
where the scaling is expressed as a function of the parameter
γ (0) = mg/[h̄2ρ(0)], where ρ(0) is the density at the trap
center.

3. Scaling for a general trapping potential

Let us consideri the case of an arbitrary confining potential
V (x), in the case where the wave function vanishes at the
boundaries. Denoting by εn = ηn εξ (n ∈ N) the consecu-
tive energy levels of V (x), where εξ = h̄2/(2mξ 2) and ξ are
the characteristic energy and length scales of the trap, the
thermodynamic limit is obtained in a similar way. Indeed,
the ground-state energy per particle in the infinitely repulsive
interacting limit then reads EN (g = ∞)/N = b(N ) εξ where

b(N ) = 1

N

N−1∑
n=0

ηn ∼ N2q . (A4)

The thermodynamic limit is then obtained by taking N → ∞
and ξ → ∞ at constant ratio Nq/ξ . We would thus have
LN = ξ N1−q and γ ≡ gN = α N−q . For the harmonic trap,
one has q = 1/2.

4. Local density approximation

Such scaling forms for the harmonically trapped system
are recovered exactly in the LDA. We start from the chemical
potential of the homogeneous system as obtained from the
Lieb-Liniger equation of state:

μh = ∂EN

∂N
= h̄2ρ2

2m

(
3 e(γ ) − γ

de

dγ

)
. (A5)

By defining the interaction energy scale εg = h̄2/(2ma2
1D) =

4g/|a1D|, we see that μh = εg F (γ ) with

F (γ ) = 3
e(γ )

γ 2
− 1

γ

de

dγ
. (A6)

The above is a monotonous function of γ for bosons in the
Lieb-Liniger model [1]. Inverting this equation, we can obtain
the particle density in terms of the chemical potential under
the form ρ|a1D| = n(μh/εg ), where n is a dimensionless
function. In the presence of the harmonic potential Vext (x) =
mω2x2/2, the inhomogeneous density profile within the LDA
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reads

ρ(x) = 1

|a1D| n

(
μt − Vext (x)

εg

)
�(1 − |x|/R), (A7)

where � is the Heaviside step function and R =
√

2μt/(mω2)
the Thomas-Fermi radius.

The chemical potential of the trapped gas μt is obtained by
imposing the normalization condition N = ∫

ρ(x)dx. After
the change of variable z = x/R and noting that εg = h̄ω α2/2
and R = aho

√
2μt/(h̄ω) it is easy to recast this normalization

condition into√
μt

εg

∫
|z|�1

n

[
μt

εg

(1 − z2)

]
dz = 1

g2
N

. (A8)

Just like for the homogeneous case, this equation can be
inverted to give μt = εg M (gN ). By integrating backward the

chemical potential, EN (g) ≡ ∫ N

0 μt (N ′) dN ′, the dimension-
less LDA energy reads

ELDA(gN ) = 2EN (g)

h̄ωN2
= α2

2

∫ N

0
M (α/

√
N ′) dN ′. (A9)

With the change of variables y = α/
√

N ′, we finally arrive at

ELDA(gN ) = 2g4
N

∫ ∞

gN

M (y)

y3
dy, (A10)

from which the LDA Tan’s contact parameter CLDA(z) =
z2 ∂zELDA(z) follows. For bosons in the Tonks-Girardeau
regime, one has CLDA(∞)=64

√
2/(45π2) [14]. The corre-

sponding expressions for multicomponent fermions in the
limit of infinite repulsive interactions have been derived
in [11].

APPENDIX B: DENSITY MATRIX
RENORMALIZATION GROUP

The numerical results for Tan’s contact of several par-
ticles at finite interactions have been obtained by a two-
tensor DMRG optimization of a matrix product states (MPS)
ansatz [32]. Namely, we take a (tight-binding) lattice dis-
cretization of Eq. (1) in a sufficiently large box (L up to
12aho), and we extract the continuum limit by considering
lattice spacings a down to aho/16: the tunneling amplitude,
external potential, and on-site interaction strength scale like
t ∝ a−2, V ∝ a2, and U ∝ a−1 respectively. We encompass

the conservation laws of the particle number in the tensor
network structure directly, in order to achieve both speedup
and increased accuracy. The discarded probability is kept
below 10−12, and no truncation is performed on the local
bosonic Hilbert space. For more details, we refer the reader,
e.g., to a recent work of ours [11].

APPENDIX C: REDUCED CONTACT
PARAMETER FOR TWO BOSONS

In the case of N = 2 bosons, Tan’s contact is given by

C2(g) = m2g2

πh̄4 |ψν (0)|2, (C1)

where

ψν (0) = 1√
aho

√
N (ν)

(
π
2

)1/4
2ν/2

�(−ν/2 + 1/2)
�

(
−ν

2
,

1

2
, 0

)

(C2)

is the wave function solving the Schrödinger equation for
the relative motion [13] evaluated at x1 − x2 = 0. �(u) is the
gamma Euler function, � is the (Kummer) hypergeometric
function, and

N (ν) = �(ν + 1)

{
1 + sin(πν)

2π

[
Ψ

(
ν

2
+ 1

)
− Ψ

(
ν

2
+ 1

2

)]}

(C3)

is a normalization factor involving the di-gamma function
Ψ(u) = �′(u)/�(u). It is straightforward to show that

C(2, g2)

C(2,∞)
= πν2 2ν−1

N (ν) [�(1 − ν/2)]2
≡ f2(g2), (C4)

where C(2,∞) = 1/(2
√

π ). The ν are indeed a function of
α/

√
2 since they solve

�(−ν/2)

�(−ν/2 + 1/2)
=

√
2

α
= 1

g2
(C5)

and are the analogs of the integers labeling the Hermite
polynomials in the harmonic oscillator [13]. Noticeably, for
ν ∈ [0, 1], we have N (ν) � 1, [�(1 − ν/2)]−2 � [1 − (1 −
1/π )ν], and

f2(g2) � ν2 2ν−1 [π − (π − 1)ν]. (C6)
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